(58)【調査した分野】(Int.Cl.,DB名)
成分組成が、質量%で、C:0.06〜0.12%、Si:0.01〜1.0%、Mn:1.2〜3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005〜0.07%、Ti:0.005〜0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織がベイナイトと島状マルテンサイトとの2相組織からなり、該島状マルテンサイトの面積分率が3〜20%かつ円相当径が3.0μm以下であり、一様伸びが7%以上、降伏比が85%以下であり、引張強度が517MPa以上であり、母材靭性が−20℃での吸収エネルギーで200J以上であり、さらに250℃以下の温度で30分以下の歪時効処理を施した後においても一様伸びが7%以上かつ降伏比85%以下であり、引張強度が517MPa以上であり、母材靭性が−20℃での吸収エネルギーで200J以上であることを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板。
更に、質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる一種または二種以上を含有することを特徴とする請求項1に記載の耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板。
【背景技術】
【0002】
近年、溶接構造用鋼材においては、高強度、高靱性に加え、耐震性の観点から低降伏比化、高一様伸びが要求されている。たとえば、大変形を受ける可能性がある地震地帯等へ適用されるラインパイプ用鋼材には、低降伏比化に加え高一様伸び性能が要求されることがある。一般に、鋼材の金属組織を、軟質相であるフェライトの中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化、高一様伸び化が可能であることが知られている。
【0003】
上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、特許文献1には、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼入れ(Q’)を施す熱処理方法が開示されている。
【0004】
特許文献2には、製造工程が増加することがない方法として、Ar
3温度以上で圧延終了後、鋼材の温度がフェライトが生成するAr
3 変態点以下になるまで加速冷却の開始を遅らせる方法が開示されている。
【0005】
特許文献1、特許文献2に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、特許文献3には、Ar
3変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が開示されている。
【0006】
さらには、特許文献4には、鋼材の合金元素の添加量を大きく増加させることなく、低降伏比ならびに優れた溶接熱影響部靭性を達成する技術として、Ti/NやCa−O−Sバランスを制御しながら、フェライト、ベイナイト、島状マルテンサイトの3相組織とする方法が開示されている。
【0007】
また、特許文献5には、Cu、Ni、Moなどの合金元素の添加により、低降伏比かつ高一様伸び性能を達成する技術が開示されている。
【0008】
一方、ラインパイプに用いられるUOE鋼管やERW鋼管のような溶接鋼管は、鋼板を冷間で管状へ成形して、突き合わせ部を溶接後、通常防食等の観点から鋼管外面にポリエチレンコーティングや粉体エポキシコーティングのようなコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪時効が生じ、降伏応力が上昇し、鋼管における降伏比は鋼板における降伏比よりも大きくなってしまうという問題がある。これに対しては、たとえば、特許文献6および7には、TiとMoを含有する複合炭化物の微細析出物、あるいは、Ti、Nb、Vのいずれか2種以上を含有する複合炭化物の微細析出物を活用した、耐歪時効特性に優れた低降伏比高強度高靱性鋼管およびその製造方法が開示されている。
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、特許文献1に記載の熱処理方法では、二相域焼入れ温度を適当に選択することにより、低降伏比化が達成可能であるが、熱処理工程数が増加するため、生産性の低下や、製造コストの増加を招くという問題がある。
【0011】
また、特許文献2に記載の技術では、圧延終了から加速冷却開始までの温度域を放冷程度の冷却速度で冷却する必要があるため、生産性が極端に低下するという問題がある。
【0012】
さらには、特許文献3に記載の技術では、その実施例が示すように、引張強さで490N/mm
2(50kg/mm
2)以上の鋼材とするために、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。
【0013】
また、特許文献4記載の技術では、パイプラインなどに用いられる場合に要求される一様伸び性能についてはミクロ組織の影響など必ずしも明確となっていなかった。
【0014】
特許文献5に記載の技術では、合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部靭性の劣化が問題となる。
【0015】
特許文献6または7に記載の技術では、耐歪時効特性は改善されたものの、パイプラインなどに用いられる場合に要求される一様伸び性能との両立については未解決である。
【0016】
また、特許文献1〜7には、フェライト相が必須であるが、API規格でX60以上と高強度化するにつれて、フェライト相を含む場合、引張強度の低下を招き、強度を確保するためには合金元素の増量が必要となるため、合金コストの上昇や低温靱性の低下を招くおそれがあった。
【0017】
このように従来の技術では、生産性を低下させたり、また素材コストを上昇させたりすることなく、優れた溶接熱影響部靭性を備え、高一様伸びを有し、耐歪時効特性にも優れた低降伏比高強度高一様伸び鋼板を製造することは困難であった。
【0018】
そこで、本発明は、このような従来技術の課題を解決し、高製造効率、および、低コストで製造可能な、API 5L X60グレード以上、(ここでは、特に、X65およびX70グレード)の高一様伸び特性を備えた低降伏比高強度高一様伸び鋼板及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0019】
本発明者らは上記課題を解決するために、鋼板の製造方法、特に制御圧延及び制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、以下の知見を得た。
【0020】
(a)加速冷却過程でベイナイト変態途中、すなわち未変態オーステナイトが存在する温度領域で冷却を停止し、その後ベイナイト変態終了温度(以下Bf点と呼ぶ)より高い温度から再加熱を行うことにより、鋼板の金属組織を、ベイナイト相中に硬質な島状マルテンサイト(以下MAと呼ぶ)が均一に生成した2相組織とし、低降伏比化が可能である。
【0021】
MAは、たとえば3%ナイタール溶液(nital:硝酸アルコール溶液)でエッチング後、電解エッチングして観察すると、容易に識別可能である。走査型電子顕微鏡(SEM)で鋼板のミクロ組織を観察すると、MAは白く浮き立った部分として観察される。
【0022】
(b)Mn、Siなどのオーステナイト安定化元素を適量添加することにより、未変態オーステナイトが安定化するため、Cu、Ni、Mo等の高価な合金元素を多量添加しなくても硬質なMAの生成が可能である。
【0023】
(c)オーステナイト未再結晶温度域の900℃以下で50%以上の累積圧下を加えることによりMAを均一微細分散させることができ、低降伏比を維持しながら、一様伸びを向上させることが可能である。
【0024】
(d)さらに、上記(c)のオーステナイト未再結晶温度域における圧延条件と、上記(a)の再加熱条件との両方を適切に制御することにより、MAの形状を制御できる、すなわち、円相当径の平均値で3.0μm以下に微細化することができる。そして、その結果、従来鋼であれば時効により降伏比劣化などが生じるような熱履歴を受けてもMAの分解が少なく、時効後も所望の組織形態および特性を維持することが可能である。
【0025】
本発明は上記の知見に更に検討を加えてなされたもので、すなわち、本発明の要旨は、以下の通りである。
【0026】
第一の発明は、成分組成が、質量%で、C:0.06〜0.12%、Si:0.01〜1.0%、Mn:1.2〜3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005〜0.07%、Ti:0.005〜0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織がベイナイトと島状マルテンサイトとの2相組織からなり、該島状マルテンサイトの面積分率が3〜20%かつ円相当径が3.0μm以下であり、一様伸びが7%以上、降伏比が85%以下であり、さらに250℃以下の温度で30分以下の歪時効処理を施した後においても一様伸びが7%以上かつ降伏比85%以下であることを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板である。
【0027】
第二の発明は、更に、質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005〜0.003%、B:0.005%以下の中から選ばれる一種または二種以上を含有することを特徴とする第一の発明に記載の耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板である。
【0028】
第三の発明は、第一または第二の発明のいずれかに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、900℃以下での累積圧下率が50%以上となるようにAr
3温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500℃〜680℃まで加速冷却を行い、その後直ちに2.0℃/s以上の昇温速度で550〜750℃まで再加熱を行うことを特徴とする耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板の製造方法である。
【発明の効果】
【0029】
本発明によれば、高一様伸び特性を備えた低降伏比高強度高一様伸び鋼板を、溶接熱影響部靭性を劣化させたり、多量の合金元素を添加することなく、低コストで製造することができる。このため主にラインパイプに使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができ産業上極めて有用である。
【発明を実施するための形態】
【0031】
以下に本発明の各構成要件の限定理由について説明する。
【0032】
1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
【0033】
C:0.06〜0.12%
Cは炭化物として析出強化に寄与し、且つMA生成に重要な元素であるが、0.06%未満の添加ではMAの生成に不十分であり、また十分な強度が確保できないおそれがある。0.12%を超える添加は溶接熱影響部(HAZ)靭性を劣化させるため、C量は0.06〜0.12%の範囲とする。好ましくは0.06〜0.10%の範囲である。
【0034】
Si:0.01〜1.0%
Siは脱酸のため添加するが、0.01%未満の添加では脱酸効果が十分でなく、1.0%を超えて添加すると、靭性や溶接性を劣化させるため、Si量は0.01〜1.0%の範囲とする。好ましくは0.1〜0.3%の範囲である。
【0035】
Mn:1.2〜3.0%
Mnは強度、靭性向上、更に焼入性を向上しMA生成を促すために添加するが、1.2%未満の添加ではその効果が十分でなく、3.0%を超えて添加すると、靱性ならびに溶接性が劣化するため、Mn量は1.2〜3.0%の範囲とする。成分や製造条件の変動によらず、安定してMAを生成するためには、1.5%以上の添加が望ましい。さらに好適には、1.5〜1.8%の範囲である。
【0036】
P:0.015%以下、S:0.005%以下
本発明でP、Sは不可避的不純物であり、その量の上限を規定する。Pは、含有量が多いと中央偏析が著しく、母材靭性が劣化するため、P量は0.015%以下とする。Sは、含有量が多いとMnSの生成量が著しく増加し、母材の靭性が劣化するため、S量は0.005%以下とする。さらに好適には、Pは、0.010%以下、Sは、0.002%以下の範囲である。
【0037】
Al:0.08%以下
Alは脱酸剤として添加されるが、0.01%未満の添加では脱酸効果が十分でなく、0.08%を超えて添加すると鋼の清浄度が低下し、靱性が劣化するため、Al量は0.08%以下とする。好ましくは、0.01〜0.08%の範囲である。さらに好適には、0.01〜0.05%の範囲である。
【0038】
Nb:0.005〜0.07%
Nbは組織の微細粒化により靭性を向上させ、さらに固溶Nbの焼入性向上により強度上昇に寄与する元素である。その効果は、0.005%以上の添加で発現する。しかし、0.005%未満の添加では効果がなく、0.07%を超えて添加すると溶接熱影響部の靭性が劣化するため、Nb量は0.005〜0.07%の範囲とする。好ましくは、0.01〜0.05%の範囲である。
【0039】
Ti:0.005〜0.025%
TiはTiNのピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させる重要な元素である。その効果は、0.005%以上の添加で発現する。しかし、0.025%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti量は0.005〜0.025%の範囲とする。溶接熱影響部靭性の観点からは、好ましくは、0.005%以上0.02%未満の範囲である。さらに好適には、0.007〜0.016%の範囲である。
【0040】
N:0.010%以下
Nは不可避的不純物として扱うが、N量が0.010%を超えると、溶接熱影響部靭性が劣化するため、N量は0.010%以下とする。好ましくは0.007%以下である。さらに好適には、0.006%以下の範囲である。
【0041】
O:0.005%以下
本発明でOは不可避的不純物であり、その量の上限を規定する。Oは粗大で靱性に悪影響を及ぼす介在物の生成の原因となるため、O量は0.005%以下とする。好ましくは0.003%以下の範囲である。
【0042】
以上が本発明の基本成分であるが、鋼板の強度・靱性をさらに改善し、且つ焼入性を向上させMAの生成を促す目的で、以下に示すCu、Ni、Cr、Mo、V、Ca、Bの1種又は2種以上を含有してもよい。
【0043】
Cu:0.5%以下
Cuは、添加しなくてもよいが、添加することで鋼の焼入性向上に寄与するので添加してもよい。その効果を得るためには、0.05%以上添加することが好ましい。しかし、0.5%を超えて添加を行うと、靱性劣化が生じるため、Cuを添加する場合は、Cu量は0.5%以下とすることが好ましい。さらに好適には、0.4%以下の範囲である。
【0044】
Ni:1%以下
Niは添加しなくてもよいが、添加することで鋼の焼入性向上に寄与し、特に、多量に添加しても靱性劣化を生じないため、強靱化に有効であることから、添加してもよい。その効果を得るためには、0.05%以上添加することが好ましい。しかし、Niは高価な元素であるため、Niを添加する場合は、Ni量は1%以下とすることが好ましい。さらに好適には、0.4%以下の範囲である。
【0045】
Cr:0.5%以下
Crは添加しなくてもよいが、Mnと同様に低Cでも十分な強度を得るために有効な元素であるので添加してもよい。その効果を得るためには、0.1%以上添加することが好ましいが、過剰に添加すると溶接性が劣化するため、添加する場合は、Cr量は0.5%以下とすることが好ましい。さらに好適には、0.4%以下の範囲である。
【0046】
Mo:0.5%以下
Moは、添加しなくてもよいが、焼入性を向上させる元素であり、MA生成やベイナイト相を強化することで強度上昇に寄与する元素であるので添加してもよい。その効果を得るためには、0.05%以上添加することが好ましい。しかし、0.5%を超えて添加すると、溶接熱影響部靭性の劣化を招くことから、添加する場合には、Mo量は0.5%以下とすることが好ましく、0.3%以下とすることがさらに好ましい。
【0047】
V:0.1%以下
Vは、添加しなくてもよいが、焼入性を高め、強度上昇に寄与する元素であるので添加してもよい。その効果を得るためには、0.005%以上添加することが好ましいが、0.1%を超えて添加すると溶接熱影響部の靭性が劣化するため、添加する場合は、V量は0.1%以下とすることが好ましい。さらに好適には、0.06%以下の範囲である。
【0048】
Ca:0.0005〜0.003%
Caは硫化物系介在物の形態を制御して靭性を改善するので添加してもよい。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合にはCa量は0.0005〜0.003%の範囲とすることが好ましい。さらに好適には、0.001〜0.003%の範囲である。
【0049】
B:0.005%以下
Bは強度上昇、溶接熱影響部(HAZ)靭性改善に寄与する元素であるので添加してもよい。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は、B量は0.005%以下とすることが好ましい。さらに好適には、0.003%以下の範囲である。
【0050】
なお、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部靭性を得ることが出来るため、Ti/Nは2〜8の範囲とすることが好ましく、2〜5の範囲とすることがさらに好ましい。
【0051】
本発明の鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を拒むものではない。たとえば、靱性改善の観点から、Mg:0.02%以下、および/またはREM(希土類金属):0.02%以下を含むことができる。
【0052】
次に、本発明の金属組織について説明する。
【0053】
2.金属組織について
本発明では、主相のベイナイトに加えて面積分率が3〜20%かつ円相当径3.0μm以下の島状マルテンサイト(MA)を均一に含む金属組織とする。なお、ここで言う主相とは、80%以上の面積分率を意味する。
【0054】
主相のベイナイト中にMAが均一に生成した2相組織、すなわち、軟質な焼戻しベイナイトの中に、硬質なMAを含んだ複合組織とすることで、鋼板の低降伏比化、高一様伸び化を達成している。このような、軟質の焼戻しベイナイトと硬質のMAとの複相組織では、軟質相が変形を担うため、7%以上の高一様伸び化が達成可能である。
【0055】
組織中のMAの割合は、MAの面積分率(圧延方向や板幅方向等の鋼板の任意の断面におけるMAの面積の割合の平均値から算出)で、3〜20%とする。MAの面積分率が3%未満では低降伏比化を達成するには不十分な場合があり、また20%を超えると母材靱性を劣化させる場合がある。
【0056】
また、低降伏比化、および高一様伸び化の観点から、MAの面積分率は5〜12%とすることが望ましい。
図1にMAの面積分率と母材の一様伸びの関係を示す。MAの面積分率が3%未満では一様伸び7%以上を達成することが困難である。
図2に、MAの面積分率と母材の降伏比の関係を示す。MAの面積分率が3%未満では降伏比85%以下を達成することが困難である。なお、MAの面積分率は、例えばSEM(走査型電子顕微鏡)観察により得られた少なくとも4視野以上のミクロ組織写真を画像処理することによってMAの占める面積分率の平均値から算出することができる。
【0057】
また、母材の靭性確保の観点からMAの円相当径は3.0μm以下とする。
図3にMAの円相当径と母材の靭性の関係を示す。MAの円相当径が3.0μm超えでは、母材の−20℃でのシャルピー吸収エネルギーを200J以上とすることが困難となる。MAの円相当径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値として求めることができる。なお、
図1〜
図3は、後述の実施例のデータから得られたものである。
【0058】
本発明では、Cu、Ni、Mo等の高価な合金元素を多量に添加しなくてもMAを生成させるために、Mn、Siを添加し未変態オーステナイトを安定化させ、再加熱、その後の空冷中のパーライト変態やセメンタイト生成を抑制することが重要である。また、フェライト生成を抑制する観点から、冷却の開始温度はAr
3温度以上であることが好ましい。
【0059】
本発明における、MA生成のメカニズムは概略以下の通りである。詳細な製造条件は後述する。
【0060】
スラブを加熱後、オーステナイト領域で圧延を終了し、その後加速冷却を開始する。
【0061】
加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了し、その後ベイナイト変態終了温度(Bf点)より高い温度から再加熱を行い、その後冷却する製造プロセスにおいて、そのミクロ組織の変化は次の通りである。
【0062】
加速冷却終了時のミクロ組織はベイナイトと未変態オーステナイトである。その後、Bf点より高い温度から再加熱を行うと、未変態オーステナイトからベイナイトへの変態が生じるが、このように比較的高温で生成するベイナイトでは、そのC固溶量が少ないため、Cが周囲の未変態オーステナイトへ排出される。
【0063】
そのため、再加熱時のベイナイト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、オーステナイト安定化元素である、Mn、Si等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、再加熱後の冷却でMAへと変態し、最終的にベイナイト相の中に、MAが生成した組織となる。
【0064】
本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点より高い温度とする必要がある。
【0065】
また、再加熱後の冷却については、MAの変態に影響を与えないため特に規定しないが、基本的に空冷とすることが好ましい。本発明では、Mn、Siを一定量添加した鋼を用い、ベイナイト変態途中で加速冷却を停止し、その後直ちに連続的に再加熱を行うことで、製造効率を低下させることなく硬質なMAを生成させることができる。
【0066】
なお、本発明に係る鋼では、金属組織が、主相のベイナイト相に一定量のMAを均一に含む組織であるが、本発明の作用効果を損なわない程度で、ベイナイトおよびMA以外の組織や析出物を含有するものも、本発明の範囲に含む。
【0067】
具体的には、フェライト、パーライトやセメンタイトなどが1種または2種以上混在する場合は、強度が低下する。しかし、ベイナイトおよびMA以外の組織の面積分率が低い場合は強度の低下の影響が無視できるため、組織全体に対する面積分率で3%以下であれば、ベイナイトおよびMA以外の金属組織を、すなわちフェライト、パーライトやセメンタイト等を1種または2種以上含有してもよい。
【0068】
以上述べた金属組織は、上述した組成の鋼を用いて、以下に述べる方法で製造することにより得ることができる。
【0069】
3.製造条件について
上述した組成を有する鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。その後、性能所望の形状に圧延し、圧延後に、冷却および加熱を行う。
【0070】
なお、本発明において、加熱温度、圧延終了温度、冷却終了温度および、再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(500〜680℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。
【0071】
また、昇温速度は、冷却後、再加熱温度(550〜750℃)までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。
【0072】
なお、Ar
3温度は、以下の式より計算される値を用いる。
Ar
3(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
なお、元素記号は各元素の含有量(質量%)を示す。
【0073】
加熱温度:1000〜1300℃
加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化するため、加熱温度は、1000〜1300℃の範囲とする。
【0074】
圧延終了温度:Ar
3 温度以上
圧延終了温度がAr
3温度未満であると、その後のフェライト変態速度が低下するため、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しない。そのため圧延終了温度をAr
3温度以上とする。
【0075】
900℃以下の累積圧下率:50%以上
この条件は、本発明において重要な製造条件の一つである。900℃以下という温度域は、オーステナイト未再結晶温度域に相当する。この温度域における累積圧下率を50%以上とすることにより、オーステナイト粒を微細化することができるので、その後、旧オーステナイト粒界に生成するMAの生成サイトが増え、MAの粗大化の抑制に寄与する。
【0076】
900℃以下の累積圧下率が50%未満であると、生成するMAの円相当径が3.0μmを超えるため、一様伸びが低下したり母材靭性が低下したりする場合がある。そのため900℃以下の累積圧下率を50%以上とする。
【0077】
冷却速度:5℃/s以上、冷却停止温度:500〜680℃
圧延終了後、直ちに加速冷却を実施する。冷却開始温度がAr
3 温度以下となりポリゴナルフェライトが生成すると、強度低下が起こり、且つMAの生成も起こりにくくなるため、冷却開始温度をAr
3 温度以上とすることが好ましい。
【0078】
冷却速度は5℃/s以上とする。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、十分な強度や低降伏比が得られない。よって、圧延終了後の冷却速度は、5℃/s以上とする。
【0079】
本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなく、再加熱時のベイナイト変態を完了させることが可能である。
【0080】
冷却停止温度は500〜680℃とする。本プロセスは本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。
【0081】
すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が500℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。680℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため、加速冷却停止温度を500〜680℃とする。より良好な強度および靱性を与える上で好適なMA面積分率を確保する観点からは、好ましくは550〜660℃である。この加速冷却については、任意の冷却設備を用いることが可能である。
【0082】
加速冷却後の昇温速度:2.0℃/s以上、再加熱温度:550〜750℃
加速冷却停止後、直ちに2.0℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行う。ここで、加速冷却停止後、直ちに再加熱するとは、加速冷却停止後、120秒以内に2.0℃/s以上の昇温速度で再加熱することを言う。
【0083】
本プロセスも本発明において重要な製造条件である。前記加速冷却後の再加熱時に未変態オーステナイトがベイナイトへと変態し、それに伴い、残る未変態オーステナイトへCが排出されることにより、このCが濃化した未変態オーステナイトは、再加熱後の空冷時にMAへと変態する。
【0084】
MAを得るためには、加速冷却後Bf点以上の温度から550〜750℃の温度域まで再加熱する必要がある。
【0085】
昇温速度が2.0℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またMAの粗大化を招く場合があり、十分な低降伏比、一様伸びを得ることができない。この機構は必ずしも明確ではないが、再加熱の昇温速度を2℃/s以上と大きくすることにより、C濃縮領域の粗大化を抑制し、再加熱後の冷却過程で生成するMAの粗大化が抑制されるものと考えられる。
【0086】
再加熱温度が550℃未満ではベイナイト変態が十分起こらずCの未変態オーステナイトへの排出が不十分となり、MAが生成せず低降伏比化が達成できない。再加熱温度が750℃を超えるとベイナイトの軟化により十分な強度が得られないため、再加熱の温度域を550〜750℃の範囲とする。
【0087】
本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点より高い温度とする必要がある。
再加熱時に確実にベイナイト変態中のCを未変態オーステナイトへ濃化させるためには、再加熱開始温度より50℃以上昇温することが望ましい。再加熱温度において、特に温度保持時間を設定する必要はない。
【0088】
本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分なMAが得られるため、低降伏比化、高一様伸び化が達成できる。しかし、よりCの拡散を促進させMA体積分率を確保するために、再加熱時に30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、ベイナイト相において回復が起こり強度が低下する場合がある。
また、再加熱後の冷却速度は基本的には空冷とすることが好ましい。
【0089】
加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。
【0090】
以上、述べたように、本発明においては、まず、オーステナイト未再結晶温度域の900℃以下で50%以上の累積圧下を加えることにより、オーステナイト粒の微細化を通じてMA生成サイトを増やし、MAを均一微細分散させることができる。さらに、本発明においては、加速冷却後の再加熱の昇温速度を大きくすることにより、MAの粗大化を抑制するので、MAの円相当径を3.0μm以下に微細化することができる。これにより、85%以下の低降伏比や良好な低温靱性を維持しながら、一様伸びを7%以上と従来に比べ向上させることができる。
【0091】
さらに、従来鋼であれば歪時効により特性劣化するような熱履歴を受けても、本発明鋼ではMAの分解が少なく、ベイナイトとMAとの2相組織からなる所定の金属組織を維持することが可能となる。その結果、本発明においては、250℃で30分という、一般的な鋼管のコーティング工程では高温かつ長時間に相当する熱履歴を経ても、歪時効による降伏応力(YS)上昇や、これに伴う降伏比の上昇や一様伸びの低下を抑制することができ、従来鋼であれば歪時効により特性劣化するような熱履歴を受けても、本発明鋼では降伏比:85%以下、一様伸び:7%以上を確保することができる。
【実施例1】
【0092】
表1に示す成分組成の鋼(鋼種A〜J)を連続鋳造法によりスラブとし、板厚20、33mmの厚鋼板(No.1〜16)を製造した。
【0093】
【表1】
【0094】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。
【0095】
各鋼板(No.1〜16)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを用いて計算により求めた。
【0096】
また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度(460〜630℃)までの冷却に必要な温度差をその冷却を行うのに要した時間で除した平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度(540〜680℃)までの再加熱に必要な温度差を再加熱するのに要した時間で除した平均昇温速度である。
【0097】
【表2】
【0098】
以上のようにして製造した鋼板の機械的性質を測定した。測定結果を表3に示す。引張強度は、圧延方向に直角方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。
【0099】
引張強度517MPa以上(API 5L X60以上)を本発明に必要な強度とした。降伏比、一様伸びは、圧延方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。降伏比85%以下、一様伸び7%以上を本発明に必要な変形性能とした。
【0100】
母材靭性については、圧延方向に直角方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−20℃での吸収エネルギーを測定し、その平均値を求めた。−20℃での吸収エネルギーが200J以上のものを良好とした。
【0101】
溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を3本採取し、シャルピー衝撃試験を行った。そして、−20℃での吸収エネルギーを測定し、その平均値を求めた。−20℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。
【0102】
なお、製造した鋼板を250℃にて30分間保持して、歪時効処理した後、母材の引張試験およびシャルピー衝撃試験、溶接熱影響部(HAZ)のシャルピー衝撃試験を同様に実施し、評価した。なお、歪時効処理後の評価基準は、上述した歪時効処理前の評価基準と同一の基準で判定した。
【0103】
【表3】
【0104】
表3において、本発明例であるNo.1〜7はいずれも、成分組成および製造方法が本発明の範囲内であり、250℃にて30分間の歪時効処理前後ともに、引張強度517MPa以上の高強度で降伏比85%以下、一様伸び7%以上の低降伏比、および高一様伸びであり、母材ならびに溶接熱影響部の靭性は良好であった。
【0105】
また、鋼板の組織はベイナイト相にMAが生成した組織であり、MAの面積分率は3〜20%の範囲内であった。なお、MAの面積分率は、走査型電子顕微鏡(SEM)で観察したミクロ組織から画像処理により求めた。
【0106】
No.8〜13は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、鋼板組織中のMAの面積分率あるいは円相当径が本発明の範囲外であり、250℃、にて30分の歪時効処理前あるいは後のいずれかの状態で、降伏比、一様伸びが不十分か、あるいは良好な強度、靭性が得られなかった。No.14〜16は成分組成が本発明の範囲外であるので、No.14、15では降伏比、一様伸びが発明の範囲外になり、また、No.16は靭性が劣っていた。