特許第5825238号(P5825238)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000002
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000003
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000004
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000005
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000006
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000007
  • 特許5825238-燃料電池及び燃料電池の製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5825238
(24)【登録日】2015年10月23日
(45)【発行日】2015年12月2日
(54)【発明の名称】燃料電池及び燃料電池の製造方法
(51)【国際特許分類】
   H01M 8/02 20060101AFI20151112BHJP
【FI】
   H01M8/02 S
   H01M8/02 E
【請求項の数】6
【全頁数】10
(21)【出願番号】特願2012-220074(P2012-220074)
(22)【出願日】2012年10月2日
(65)【公開番号】特開2014-72165(P2014-72165A)
(43)【公開日】2014年4月21日
【審査請求日】2014年10月28日
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110000028
【氏名又は名称】特許業務法人明成国際特許事務所
(74)【代理人】
【識別番号】100140224
【弁理士】
【氏名又は名称】松浦 武敏
(72)【発明者】
【氏名】高崎 文彰
(72)【発明者】
【氏名】内山 智暁
【審査官】 守安 太郎
(56)【参考文献】
【文献】 特開2012−094366(JP,A)
【文献】 特開2011−028852(JP,A)
【文献】 特開2007−165156(JP,A)
【文献】 特開2008−130432(JP,A)
【文献】 特開平10−302814(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/02
(57)【特許請求の範囲】
【請求項1】
燃料電池であって、
膜電極接合体と、
前記膜電極接合体の2つの面にそれぞれ配置される第1と第2のガス拡散層と、
前記膜電極接合体の一方の面の外縁部に設けられるシール部であって、前記第1のガス拡散層との間において、前記膜電極接合体を常湿で撓んだ状態とするように、配置されるシール部と、
前記膜電極接合体と、前記第1、第2のガス拡散層と、前記シール部とを挟持する一対のセパレータプレートと、
を備える、燃料電池。
【請求項2】
請求項1に記載の燃料電池において、
前記膜電極接合体は長方形であり、
前記シール部と前記第1のガス拡散層との間の隙間は、前記長方形の短辺と平行に形成されている、燃料電池。
【請求項3】
燃料電池の製造方法であって、
大きさの異なる第1と第2のガス拡散層を準備する工程と、
前記第1と第2のガス拡散層の間に膜電極接合体を配置する工程と、
前記膜電極接合体の一方の面の外縁部に、前記第1のガス拡散層との間において、前記膜電極接合体を常湿で撓んだ状態とするように、シール部を配置する工程と、
一対のセパレータプレートで、前記膜電極接合体と、前記第1、第2のガス拡散層と、前記シール部とを挟持して燃料電池をユニット化する工程と、
を備える、燃料電池の製造方法。
【請求項4】
請求項3に記載の燃料電池の製造方法において、さらに、
前記膜電極接合体の相対湿度を0%として前記膜電極接合体を乾燥収縮させる工程と、
ユニット化した前記燃料電池の相対湿度を常湿に戻す工程と、
を備え、
前記シール部を配置する工程は、前記膜電極接合体が乾燥収縮した状態で行われる、燃料電池の製造方法。
【請求項5】
請求項4に記載の燃料電池の製造方法において、さらに、
前記燃料電池を作製するときの相対湿度から相対湿度0%にしたときの前記膜電極接合体の寸法変化量だけ、前記膜電極接合体の長手方向の長さを前記第2のガス拡散層の長手方向の長さよりも長くするように決定する工程を備える、燃料電池の製造方法。
【請求項6】
請求項3に記載の燃料電池の製造方法において、さらに、
予め、前記膜電極接合体を湿潤・乾燥させるサイクル数と、前記膜電極接合体が裂ける応力と、の関係を測定する工程と、
前記関係から膜電極接合体の耐用年数内の湿潤・乾燥のサイクル数で前記膜電極接合体が裂けない応力の値を求める工程と、
前記応力により生じる前記膜電極接合体の歪み量だけ、前記膜電極接合体の長手方向の長さを前記膜電極接合体の長手方向の長さよりも長くするように決定する工程と、
を備える、燃料電池の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、燃料電池に関し、特に燃料電池の周縁部の構造に関する。
【背景技術】
【0002】
セパレータと、積層部材と、シール部材と、を備えている燃料電池が知られている(特許文献1)この燃料電池において、シール部材は、セパレータと積層部材の端部と一体に成形されている。積層部材は、セパレータの一の側に配置された電解質膜と、電解質膜とセパレータとの間に配置される拡散層と、を少なくとも含む。電解質膜の一の面の周縁部は、セパレータの一の側の面に接触している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−123885号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
自動車等に用いられる燃料電池は、運転状態、停止状態が繰り返され、電解質膜が湿潤し、あるいは乾燥する。電解質膜が乾燥すると乾燥収縮する。このとき引っ張り応力が掛かり、電解質膜の状態によっては、電解質膜が裂ける虞があった。
【課題を解決するための手段】
【0005】
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
本発明の一形態によれば、燃料電池が提供される。この燃料電池は、膜電極接合体と、前記膜電極接合体の2つの面にそれぞれ配置される第1と第2のガス拡散層と、前記膜電極接合体の一方の面の外縁部に設けられるシール部であって、前記第1のガス拡散層との間において、前記膜電極接合体を常湿で撓んだ状態とするように、配置されるシール部と、前記膜電極接合体と、前記第1、第2のガス拡散層と、前記シール部とを挟持する一対のセパレータプレートと、を備える。この形態の燃料電池によれば、膜電極接合体に撓みを有しており、撓みは、第1のガス拡散層とシールとの間の隙間に入り込み、乾燥時に、膜電極接合体に乾燥収縮が生じても、隙間に入り込んだ撓みが伸ばされることにより、膜電極接合体に応力が発生することを抑制し、膜電極接合体の乾燥収縮により裂けを抑制することが可能となる。
【0006】
(1)本発明の一形態によれば、燃料電池が提供される。この形態の燃料電池は、膜電極接合体と、前記膜電極接合体の2つの面にそれぞれ配置される第1と第2のガス拡散層と、前記膜電極接合体の一方の面の外縁部に設けられるシール部であって、前記第1のガス拡散層との間において、前記膜電極接合体を常湿で弛んだ状態とするように、配置されるシール部と、前記膜電極接合体と、前記第1、第2のガス拡散層と、前記シール部とを挟持する一対のセパレータプレートと、を備える。この形態の燃料電池によれば、膜電極接合体に弛みを有しており、弛みは、第1のガス拡散層とシールとの間の隙間に入り込み、乾燥時に、膜電極接合体に乾燥収縮が生じても、隙間に入り込んだ弛みが伸ばされることにより、膜電極接合体に応力が発生することを抑制し、膜電極接合体の乾燥収縮により裂けを抑制することが可能となる。
【0007】
(2)上記形態の燃料電池において、前記膜電極接合体は長方形であり、前記隙間は、前記長方形の短辺と平行に形成されていてもよい。膜電極接合体の長辺と平行な方向の乾燥収縮量は、短辺と平行な方向の乾燥収縮量よりも大きい。シール部と第1のガス拡散層との隙間は、4辺の全てに存在する。この形態の燃料電池によれば、膜電極接合体の弛みが入り込む隙間は、膜電極接合体の長方形の短辺と平行に形成されているので、膜電極接合体の長辺と平行な方向の乾燥収縮量が大きく、湿潤時にその分弛みが大きくなっても、大きくなる弛みを隙間に吸収することが可能となる。
【0008】
(3)本発明の一形態によれば、燃料電池の製造方法が提供される。この形態の燃料電池の製造方法は、大きさの異なる第1と第2のガス拡散層を準備する工程と、前記第1と第2のガス拡散層の間に膜電極接合体を配置する工程と、前記膜電極接合体の一方の面の外縁部に、前記第1のガス拡散層との間において、前記膜電極接合体を常湿で弛んだ状態とするように、シール部を配置する工程と、一対のセパレータプレートで、前記膜電極接合体と、前記第1、第2のガス拡散層と、前記シール部とを挟持して燃料電池をユニット化する工程と、を備える。この形態の燃料電池の製造方法によれば、ユニット化後に膜電極接合体に弛みを有する燃料電池を製造することができる。乾燥時に、膜電極接合体に乾燥収縮が生じても、弛みが伸ばされることにより、膜電極接合体に応力が発生することを抑制し、膜電極接合体の乾燥収縮により裂けを抑制することが可能となる。
【0009】
(4)上記形態の燃料電池の製造方法において、さらに、前記膜電極接合体の相対湿度を0%として前記膜電極接合体を乾燥収縮させる工程と、ユニット化した前記燃料電池の相対湿度を常湿に戻す工程と、を備え、前記シール部を配置する工程は、前記膜電極接合体が乾燥収縮した状態で行われてみよい。この形態の燃料電池の製造方法によれば、燃料電池を作製したときに膜電極接合体に弛みがあっても、相対湿度0%としたときにちょうど膜電極接合体の弛みがなくなるので、乾燥収縮時に膜電極接合体に掛かる応力を低減する膜電極接合体ことが可能となる。
【0010】
(5)上記形態の燃料電池の製造方法において、さらに、前記燃料電池を作製するときの相対湿度から相対湿度0%にしたときの前記膜電極接合体の寸法変化量だけ、前記膜電極接合体の長手方向の長さを前記第2のガス拡散層の長手方向の長さよりも長くするように決定する工程を備えてもよい。この形態の燃料電池の製造方法によれば、膜電極接合体の端部と第2のガス拡散層の端部との位置を合わせることが可能となる。
【0011】
(6)上記形態の燃料電池の製造方法において、さらに、予め、前記膜電極接合体を湿潤・乾燥させるサイクル数と、前記膜電極接合体が裂ける応力と、の関係を測定する工程と、 前記関係から膜電極接合体の耐用年数内の湿潤・乾燥のサイクル数で前記膜電極接合体が裂けない応力の値を求める工程と、前記応力により生じる前記膜電極接合体の歪み量だけ、前記膜電極接合体の長手方向の長さを前記膜電極接合体の長手方向の長さよりも長くするように決定する工程と、を備えてもよい。この形態の燃料電池の製造方法によれば、燃料電池の耐用年数内での膜電極接合体の裂けを抑制することが可能となる。
【0012】
なお、本発明は種々の形態で実現することが可能であり、例えば、燃料電池の他、燃料電池の製造方法、等の形態で実現することができる。
【図面の簡単な説明】
【0013】
図1】第1の実施形態の燃料電池の単セルの端部の断面を模式的に示す図である。
図2】第1の実施形態の燃料電池の単セルを第1のガス拡散層側から見たときの平面図である。
図3】膜電極接合体の相対湿度と歪みとの関係を示すグラフである。
図4】膜電極接合体に掛ける乾湿サイクルの回数と、膜電極接合体が裂ける応力との関係を示すグラフである。
図5】膜電極接合体の歪みと膜電極接合体に掛かる応力との関係を示すグラフである。
図6】本実施例における単セルの第1の製造方法の製造工程を示す説明図である。
図7】本実施例における単セルの第3の製造方法の製造工程を示す説明図である。
【発明を実施するための形態】
【0014】
第1の実施形態
図1は、第1の実施形態の燃料電池の単セルの端部の断面を模式的に示す図である。単セル10は、膜電極接合体100と、第1のガス拡散層110と、第2のガス拡散層120と、第1のセパレータプレート130と、第2のセパレータプレート140と、シール部150と、を備える。膜電極接合体100は、触媒層と、電解質膜の両面にそれぞれ形成された触媒層とを備える。電解質膜は、例えば、パーフルオロカーボンスルホン酸ポリマのようなプロトン伝導性を有する電解質膜で形成されている。触媒層は、触媒を担持したカーボンとアイオノマを含んでいる。触媒として、白金触媒や白金合金触媒を用いることができる。カーボンとして、カーボン粒子やカーボンナノチューブを用いることが出来る。アイオノマとしては、パーフルオロカーボンスルホン酸ポリマを用いることができる。
【0015】
第1のガス拡散層110と、第2のガス拡散層120は、反応ガスを拡散するための多孔質の部材であり、それぞれ膜電極接合体100の各面に配置されている。第1のガス拡散層110、第2のガス拡散層120として、例えばカーボン不織布を用いたカーボンクロスやカーボンペーパーを用いることが可能であり、本実施例ではカーボンペーパーを用いたカーボンクロスを用いている。なお、第1のガス拡散層110、第2のガス拡散層120としては、カーボンクロスやカーボンペーパーの他、金属製や樹脂製の多孔体を用いることも可能である。本実施例では、第1のガス拡散層110の長手方向大きさは、膜電極接合体100の長手方向の大きさよりも小さく形成されている。第1のガス拡散層110の長手方向大きさは、膜電極接合体100の長手方向の大きさとほぼ同じ大きさである。
【0016】
膜電極接合体100の第1のガス拡散層110側の外縁部には、シール部150が形成されている。シール部150は、アノードガスの外部へのリークを抑制するために、設けられている樹脂製の部材である。本実施例では、シール部150は、第1のガス拡散層110との間に隙間160が形成されるように、設けられている。
【0017】
膜電極接合体100は、湿潤状態により、膨潤したり、乾燥収縮したりする。膨潤した状態の膜電極接合体100は、弛み100aを有しており、弛み100aは、隙間160に入り込んでいる。一方、乾燥収縮した状態では、弛み100aが真っすぐになることで乾燥収縮による応力を緩和し、膜電極接合体100の裂けを抑制する。なお、図1では、弛み100aを誇張して描いている。
【0018】
第1のガス拡散層110とシール部150の外側には、第1のセパレータプレート130が配置され、第2のガス拡散層120の外側には、第2のセパレータプレート140が配置される。第1のセパレータプレート130、第2のセパレータプレート140は、凹凸形状を有している。第1のセパレータプレート130と第1のガス拡散層110との間には、第1の反応ガス流路135が形成され、第2のセパレータプレート140と第2のガス拡散層120との間には、第2の反応ガス流路145が形成されている。
【0019】
図2は、第1の実施形態の燃料電池の単セルを第1のガス拡散層側から見たときの平面図である。なお、図2では、第1のセパレータプレート130の記載を省略している。なお、第2のセパレータプレート140は、裏側にあるので、見えない状態である。単セル10は、長手方向の長さがL1、短手方向の長さがL2の長方形形状をしている。単セル10の周部に、額縁状のシール部150が配置されている。シール部150の内側には、第1のガス拡散層110が配置されている。このとき、第1のガス拡散層110の長手方向の両端部とシール部150との間には隙間160が形成されており、隙間160には、弛緩した膜電極接合体100が見えている。なお、第1のガス拡散層110の短手方向の両端部とシール部150との間にも、隙間が形成されている。ただし、第1のガス拡散層110の短手方向の両端部とシール部150との間の隙間が形成されない構成であっても良い。
【0020】
図3は、膜電極接合体100の相対湿度と歪みとの関係を示すグラフである。図3の横軸は膜電極接合体100の相対湿度RH(%)であり、縦軸は、収縮乾燥時の膜電極接合体の長さを100%としたときの歪みS(%)である。したがって、相対湿度が0%のときの歪みは0(%)となる。一般に、膜電極接合体100は湿潤すると、長さが長くなる。収縮乾燥時の膜電極接合体100の長さL0とし、相対湿度Rt%のときの膜電極接合体100の長さをLtとすると、SとL0とLtの間には、以下の関係がある。
ΔLt=Lt−L0 …(1)
St=(ΔLt/L0)×100(%) …(2)
【0021】
したがって、膜電極接合体100の相対湿度0%にしたときの大きさを第2のガス拡散層120とほぼ同じ大きさとし、作製時の膜電極接合体100の大きさを、第2のガス拡散層120の大きさよりも歪みΔLtだけ大きく作製する。そして、膜電極接合体100と第2のガス拡散層の端部とを揃え、余った膜電極接合体100を弛ませて単セルを作製しておく。こうすれば、膜電極接合体100の相対湿度が0%となって膜電極接合体100が乾燥収縮して第2のガス拡散層120とほぼ同じ大きさとなっても、膜電極接合体100には、応力が掛かり難くなる。その結果、膜電極接合体100の裂けを抑制することができる。
【0022】
第2の実施形態:
膜電極接合体100は乾燥すると収縮し、膜電極接合体100に応力が掛かる。ここで、膜電極接合体100は、膨張・収縮が繰り返されると、経年劣化する。そのため、製造直後において膜電極接合体100を裂くのに必要な応力よりも小さな応力しか掛かっていない状態でも膜電極接合体100が裂ける場合がある。第2の実施形態は、耐用年数内での膜電極接合体100の裂けを抑制する。
【0023】
図4は、膜電極接合体に掛ける乾湿サイクルの回数と、膜電極接合体100が裂ける応力との関係を示すグラフである。図4の横軸は、膜電極接合体に掛ける乾湿サイクルの回数であり、縦軸は、膜電極接合体100が裂ける応力である。なお、この測定では、湿潤時に弛みの無い状態で測定している。単セル10の乾湿サイクルの回数と膜電極接合体100が裂ける応力との関係を予め実験により求めておく。そして、耐用年数内に実行される乾湿サイクルの回数Nを実験等により求め、そのサイクルの回数Nから、耐用年数がちょうど経過したときの膜電極接合体100が裂ける応力δfを求めることができる。
【0024】
図5は、膜電極接合体に掛かる応力と膜電極接合体に裂けが生じる歪みとの関係を示すグラフである。図5の横軸は、膜電極接合体に裂けが生じる歪みであり、縦軸は、膜電極接合体100に掛かる応力である。膜電極接合体100に大きな応力が掛かると、変形し、大きな歪みが生じる。図4のグラフより求められた応力δfから、図5のグラフを用いて歪みSt(%)を算出することができる。
【0025】
第2の実施形態では、図3を用いて歪みStになる相対湿度Rtを求める。そして、相対湿度Rtの状態で、膜電極接合体100の大きさを第2のガス拡散層120よりも歪みStだけ大きく形成し、セル化する。その結果、膜電極接合体が、相対湿度0%となっても、膜電極接合体100の大きさは、第2のガス拡散層120の大きさに収まり、δf以上の応力がかからない。したがって、乾湿サイクルが繰り返され、膜電極接合体が経年劣化しても、耐用年数内であれば、δf以上の応力が掛からないので、耐用年数内での膜電極接合体100の裂けを抑制することが可能となる。
【0026】
第1の製造方法:
図6は、本実施例における単セルの第1の製造方法の製造工程を示す説明図である。第1の製造方法は、第1の実施形態に対応する製造方法である。工程(A)では、常湿で膜電極ガス拡散層接合体170を製造する。膜電極ガス拡散層接合体170は、膜電極接合体100と、第1のガス拡散層110と、第2のガス拡散層120とを一体にしたものである。ただし、膜電極接合体100と、第1のガス拡散層110との間、及び膜電極接合体100と、第2のガス拡散層120との間は、接着剤等で接着されていない。常湿とは、相対湿度(65±20)%である(JIS規格 JIS Z 8703)。なお、常湿の時の温度は、(20±15)℃である。
【0027】
工程(B)では、膜電極接合体100の相対湿度を0%にする。その結果、膜電極接合体100は乾燥収縮する。相対湿度を0%とする方法としては、真空にする、あるいは、窒素などの水分を含まない気体で置換する等の方法が上げられる。また、相対湿度は、厳密に0%でなくても、数パーセント(例えば5%)以下の低相対湿度であってもよい。なお、膜電極接合体100と第1、第2のガス拡散層110、120との端部とを揃える場合には、予め膜電極接合体100を長めにしておき、膜電極接合体100の相対湿度を0%にしたときに、第1、第2のガス拡散層110、120の端部からはみ出た膜電極接合体100を切り取っても良い。また、シール部150の角部150aあるいは、ガス拡散層の角部110aなど、応力集中が予想される部分については、面取りをしておいてもよい。また、締結やリークに問題がなければ、膜電極接合体100が、シール部150あるいは第2のガス拡散層120の端部の内側に入っていてもよい。
【0028】
工程(C)では、膜電極接合体100の外縁部にシール部150を配置し、さらに、膜電極ガス拡散層接合体170及びシール部150を挟持するように第1、第2のセパレータプレート130、140を配置し、加熱プレスしてセル化する。
【0029】
工程(D)では、膜電極接合体100の相対湿度を常湿に戻す。これにより、膜電極接合体100は膨潤する。膜電極接合体100の端部は、シール部150により固定されており、中央部は、第1のガス拡散層110と第2のガス拡散層120により挟まれているので、膜電極接合体100の膨潤して伸びた部分は、弛み100aとして、シール部150と第1のガス拡散層110との間の隙間160に侵入する。
【0030】
膜電極接合体100が乾燥収縮した場合には、隙間160に侵入した弛み100aが元の侵入していない状態に戻ることにより、応力を緩和するので、膜電極接合体100の裂けを抑制することが可能となる。
【0031】
第2の製造方法:
第2の製造方法は、第1の製造方法と同様に、第1の実施形態に対応する製造方法であり、第1の製造方法の変形である。第1の製造方法では、まず常湿で膜電極ガス拡散層接合体170を作製したが、第2の実施例では、最初から相対湿度0%の状態で膜電極ガス拡散層接合体170を作製する。すなわち、第1の実施例の工程(A)を除いた、工程(B)〜(D)の工程のみを含んでいる。膜電極接合体100と第1、第2のガス拡散層110、120との端部とを揃える場合、第1の製造方法では、工程(A)で、一旦、膜電極接合体100を大きめに切り、工程(B)でさらに膜電極接合体100を切ることになる。第2の製造方法によれば、膜電極接合体100を切る工程は、工程(B)の1回だけであり、膜電極接合体100を切る手間を省きる。また、第1の製造方法において、膜電極接合体100を2回目に切った時に生じる切れ端は、再利用が困難であり、第2の製造方法を用いることで、膜電極接合体100の無駄を削減することが可能となる。
【0032】
第3の製造方法:
図7は、本実施例における単セルの第3の製造方法の製造工程を示す説明図である。第3の製造方法は、第2の実施形態に対応する製造方法である。工程(A)では、弛ませるべき歪みSt(%)と、この歪みSt(%)となる相対湿度Rt(%)を求める。具体的には、耐用年数における乾湿サイクルの回数を求め、図4に示す膜電極接合体に掛ける乾湿サイクルの回数と、膜電極接合体が裂ける応力との関係から応力δfを算出する。そして、図5に示す膜電極接合体の歪みと膜電極接合体に掛かる応力との関係を用いて、膜電極接合体100の歪みSt(%)を算出する。さらに、図3に示す膜電極接合体の相対湿度と歪みとの関係を用いて、相対湿度Rt(%)を求める。
【0033】
工程(B)では、膜電極接合体100を作製する。この工程(B)は、常湿で行っても良い。工程(C)では、膜電極接合体100の相対湿度を、工程(A)で求めた相対湿度Rt(%)に下げる。これにより、膜電極接合体100は、収縮する。
【0034】
工程(D)では、膜電極接合体100の外縁部にシール部150を配置し、さらに、膜電極ガス拡散層接合体170及びシール部150を挟持するように第1、第2のセパレータプレート130、140を配置し、加熱プレスしてセル化する。
【0035】
工程(E)では、膜電極接合体100の相対湿度を常湿に戻す。これにより、膜電極接合体100は膨潤する。膜電極接合体100の端部は、シール部150により固定されており、中央部は、第1のガス拡散層110と第2のガス拡散層120により挟まれているので、膜電極接合体100の膨潤して伸びた部分は、弛み100aとして、シール部150と第1のガス拡散層110との間の隙間160に侵入する。
【0036】
膜電極接合体100が乾燥収縮した場合には、隙間160に侵入した弛み100aが元の侵入していない状態に戻ることにより、応力を緩和する。このとき、耐用年数内であれば、膜電極接合体100に掛かる応力は、δf以下となるので、耐用年数内における膜電極接合体100の裂けを抑制することが可能となる。
【0037】
以上、いくつかの実施形態に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
【符号の説明】
【0038】
10…単セル
100…膜電極接合体
100a…弛み
110…第1のガス拡散層
110a…角部
120…第2のガス拡散層
130…第1のセパレータプレート
135…第1の反応ガス流路
140…第2のセパレータプレート
145…第2の反応ガス流路
150…シール部
150a…角部
160…隙間
170…膜電極ガス拡散層接合体
Lt/L0…Δ
N…回数
RH…相対湿度
Rt…相対湿度
δf…応力
図1
図2
図3
図4
図5
図6
図7