特許第5830167号(P5830167)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジヤトコ株式会社の特許一覧
<>
  • 特許5830167-無段変速機及びその油圧制御方法 図000002
  • 特許5830167-無段変速機及びその油圧制御方法 図000003
  • 特許5830167-無段変速機及びその油圧制御方法 図000004
  • 特許5830167-無段変速機及びその油圧制御方法 図000005
  • 特許5830167-無段変速機及びその油圧制御方法 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5830167
(24)【登録日】2015年10月30日
(45)【発行日】2015年12月9日
(54)【発明の名称】無段変速機及びその油圧制御方法
(51)【国際特許分類】
   F16H 61/02 20060101AFI20151119BHJP
   F16H 61/662 20060101ALI20151119BHJP
【FI】
   F16H61/02
   F16H61/662
【請求項の数】6
【全頁数】11
(21)【出願番号】特願2014-519930(P2014-519930)
(86)(22)【出願日】2013年5月28日
(86)【国際出願番号】JP2013064702
(87)【国際公開番号】WO2013183483
(87)【国際公開日】20131212
【審査請求日】2014年11月28日
(31)【優先権主張番号】特願2012-130650(P2012-130650)
(32)【優先日】2012年6月8日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000231350
【氏名又は名称】ジヤトコ株式会社
(73)【特許権者】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(74)【代理人】
【識別番号】100075513
【弁理士】
【氏名又は名称】後藤 政喜
(74)【代理人】
【識別番号】100120260
【弁理士】
【氏名又は名称】飯田 雅昭
(72)【発明者】
【氏名】高橋 誠一郎
(72)【発明者】
【氏名】江口 岳
(72)【発明者】
【氏名】歌川 智洋
(72)【発明者】
【氏名】水落 知幸
(72)【発明者】
【氏名】野武 久雄
(72)【発明者】
【氏名】榊原 健二
(72)【発明者】
【氏名】池田 孝広
(72)【発明者】
【氏名】志水 昌之
【審査官】 小川 克久
(56)【参考文献】
【文献】 特開昭62−028561(JP,A)
【文献】 特開昭60−053256(JP,A)
【文献】 特開2005−036820(JP,A)
【文献】 特開2007−132420(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16H 59/00−61/12
F16H 61/16−61/24
F16H 61/66−61/70
F16H 63/40−63/50
(57)【特許請求の範囲】
【請求項1】
プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機であって、
エンジンによって駆動されるオイルポンプと、
前記オイルポンプの吐出圧を減圧して前記プライマリ圧及び前記セカンダリ圧の元圧となるライン圧を調圧するドレン式の調圧弁であり、目標ライン圧に対応する信号圧と前記ライン圧とが両端に作用するとともにストロークに応じてドレンポートを開閉するスプールと、前記スプールを付勢するスプリングとを有するライン圧調圧弁と、
変速がキックダウンであるか判断するキックダウン判断手段と、
変速がキックダウンであると判断された場合に、キックダウンによって増大する前記無段変速機への入力トルクに対応する第1目標圧まで前記目標ライン圧を昇圧する第1増圧手段と、
前記ライン圧が前記第1目標圧になったか判断する昇圧判断手段と、
前記ライン圧が前記第1目標圧になったと判断された場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する第2増圧手段と、
を備えた無段変速機。
【請求項2】
請求項1に記載の無段変速機であって、
前記第2増圧手段は、前記目標ライン圧を前記第2目標圧に所定時間保持する、
無段変速機。
【請求項3】
請求項2に記載の無段変速機であって、
前記第2増圧手段は、前記目標ライン圧を前記第2目標圧に所定時間保持した後、前記目標ライン圧を所定のランプ勾配で低下させる、
無段変速機。
【請求項4】
請求項1から3のいずれか一つに記載の無段変速機であって、
前記第2増圧手段は、前記ライン圧が前記第1目標圧になったと判断され、かつ、前記第1増圧手段による前記目標ライン圧の昇圧の結果、前記ドレンポートが前記スプールによって閉じられると判断される場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する、
無段変速機。
【請求項5】
請求項1から4のいずれか一つに記載の無段変速機であって、
前記第1増圧手段は、前記ライン圧を昇圧するのに併せて前記セカンダリ圧を昇圧する、
無段変速機。
【請求項6】
プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧を変更し、各プーリの溝幅を変更する油圧回路が、エンジンによって駆動されるオイルポンプと、前記オイルポンプの吐出圧を減圧して前記プライマリ圧及び前記セカンダリ圧の元圧となるライン圧を調圧するドレン式の調圧弁であり、目標ライン圧に対応する信号圧と前記ライン圧とが両端に作用するとともにストロークに応じてドレンポートを開閉するスプールと、前記スプールを付勢するスプリングとを有するライン圧調圧弁と、を有する無段変速機の油圧制御方法であって、
変速がキックダウンであるか判断し、
変速がキックダウンであると判断された場合に、キックダウンによって増大する前記無段変速機への入力トルクに対応する第1目標圧まで前記目標ライン圧を昇圧し、
前記ライン圧が前記第1目標圧になったか判断し、
前記ライン圧が前記第1目標圧になったと判断された場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する、
無段変速機の油圧制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無段変速機の油圧制御に関する。
【背景技術】
【0002】
無段変速機のキックダウン制御では、プライマリプーリに供給されるプライマリ圧を減圧し、セカンダリプーリに供給されるセカンダリ圧を増圧することで、目標とする変速速度を達成するための差推力を確保する。
【0003】
JP59−99148Aに開示される無段変速機は、キックダウンで必要となる油圧を確保するために、プライマリ圧及びセカンダリ圧の元圧となるライン圧を速やかに増圧する技術を開示している。
【発明の概要】
【0004】
無段変速機においては、ライン圧、プライマリ圧及びセカンダリ圧を調圧する調圧弁として、ドレン調圧式の調圧弁が採用されることが多い。
【0005】
ドレン調圧式の調圧弁は、ドレンポートを開閉するスプールと、スプールを付勢するスプリングとを備え、ソレノイド等から調圧弁に供給される信号圧に基づいて、調圧弁に供給される元圧の一部をドレンするとともに、調圧後の油圧をスプールに作用させるフィードバック回路によって、調圧後の油圧を信号圧に対応する油圧(目標とする油圧)に制御する構成である。
【0006】
しかしながら、調圧弁をドレン調圧式の調圧弁で構成した場合、キックダウンによって目標とする油圧が急増する状況において、実油圧が目標とする油圧に対してオーバーシュート及びアンダーシュートを繰り返し、アンダーシュートを起こしたタイミングでプーリによるベルト挟持力が不足し、ベルトが滑る可能性があった。
【0007】
これは、目標とする油圧が急激に上がって油量収支が不足すると、実油圧がなるべく高くなるように調圧弁のドレンポートが閉じられるが、ドレンポートが閉じたタイミングで油圧が急激に立ち上がり、かつ、エンジンの回転速度が増大してオイルポンプの吐出圧が上昇することを受けて、実油圧が目標とする油圧に対してオーバーシュートするからである。
【0008】
そして、オーバーシュートが起こると、今度は、実油圧を下げるべく、フィードバック回路の働きによってスプールがドレンポートを開く方向に押し戻されるが、バネ・マス系に起因する遅れがあるので、実油圧が目標とする油圧まで下がってもドレンポートは直ちには閉じず、この結果、ドレン量が過多となって実油圧のアンダーシュートが発生するからである(揺り返しによるアンダーシュートの発生)。
【0009】
本発明の目的は、したがって、キックダウン時に実油圧が揺り返しによってアンダーシュートしないようにすることで、ベルトの滑りを防止することである。
【0010】
本発明のある態様によれば、プライマリプーリと、セカンダリプーリと、これらプーリの間に巻き掛けられる動力伝達部材と、プライマリプーリに供給されるプライマリ圧及びセカンダリプーリに供給されるセカンダリ圧を変更し、各プーリの溝幅を変更することで変速する無段変速機が提供される。
【0011】
この無段変速機は、エンジンによって駆動されるオイルポンプと、前記オイルポンプの吐出圧を減圧して前記プライマリ圧及び前記セカンダリ圧の元圧となるライン圧を調圧するドレン式の調圧弁であり、目標ライン圧に対応する信号圧と前記ライン圧とが両端に作用するとともにストロークに応じてドレンポートを開閉するスプールと、前記スプールを付勢するスプリングとを有するライン圧調圧弁とを備える。
【0012】
そして、変速がキックダウンであるか判断し、変速がキックダウンであると判断された場合に、キックダウンによって増大する前記無段変速機への入力トルクに対応する第1目標圧まで前記目標ライン圧を昇圧し、前記ライン圧が前記第1目標圧になったか判断し、前記ライン圧が前記第1目標圧になったと判断された場合に、前記目標ライン圧を前記第1目標圧よりも高い第2目標圧まで昇圧する。
【0013】
上記態様によれば、ライン圧は第1目標圧に対してオーバーシュートするが、目標ライン圧が第2目標圧に高められたことによって、制御上はオーバーシュートが起こっていないと認識されるので、ライン圧調圧弁の動きが抑制され、オーバーシュートの揺り返しとして起こるアンダーシュートが防止される。
【0014】
本発明の実施形態及び本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
【図面の簡単な説明】
【0015】
図1図1は、無段変速機の概略構成図である。
図2図2は、変速制御油圧回路の概略構成図である。
図3図3は、ライン圧調圧弁の概略構成図である。
図4図4は、キックダウン時の油圧制御の内容を示したフローチャートである。
図5図5は、キックダウン時の目標ライン圧及び目標セカンダリ圧の変化を示したタイムチャートである。
【発明を実施するための形態】
【0016】
図1は、無段変速機(以下、「CVT」という。)1の概略構成を示している。プライマリプーリ2及びセカンダリプーリ3が両者の溝が整列するよう配置され、これらプーリ2、3の溝にはベルト4が巻き掛けられている。プライマリプーリ2と同軸にエンジン5が配置され、エンジン5とプライマリプーリ2の間には、エンジン5の側から順に、トルクコンバータ6、前後進切換え機構7が設けられている。
【0017】
トルクコンバータ6は、エンジン5の出力軸に連結されるポンプインペラ6a、前後進切換え機構7の入力軸に連結されるタービンランナ6b、ステータ6c及びロックアップクラッチ6dを備える。
【0018】
前後進切換え機構7は、ダブルピニオン遊星歯車組7aを主たる構成要素とし、そのサンギヤはトルクコンバータ6のタービンランナ6bに結合され、キャリアはプライマリプーリ2に結合される。前後進切換え機構7は、さらに、ダブルピニオン遊星歯車組7aのサンギヤ及びキャリア間を直結する発進クラッチ7b、及びリングギヤを固定する後進ブレーキ7cを備える。そして、発進クラッチ7bの締結時には、エンジン5からトルクコンバータ6を経由した入力回転がそのままプライマリプーリ2に伝達され、後進ブレーキ7cの締結時には、エンジン5からトルクコンバータ6を経由した入力回転が逆転され、プライマリプーリ2へと伝達される。
【0019】
プライマリプーリ2の回転はベルト4を介してセカンダリプーリ3に伝達され、セカンダリプーリ3の回転は、出力軸8、歯車組9及びディファレンシャルギヤ装置10を経て図示しない駆動輪へと伝達される。
【0020】
上記の動力伝達中にプライマリプーリ2及びセカンダリプーリ3間の変速比を変更可能にするために、プライマリプーリ2及びセカンダリプーリ3の溝を形成する円錐板のうち一方を固定円錐板2a、3aとし、他方の円錐板2b、3bを軸線方向へ変位可能な可動円錐板としている。
【0021】
これら可動円錐板2b、3bは、ライン圧PLを元圧として作り出したプライマリ圧Ppri及びセカンダリ圧Psecをプライマリプーリ室2c及びセカンダリプーリ室3cに供給することにより固定円錐板2a、3aに向けて付勢され、これによりベルト4を円錐板に摩擦接合させてプライマリプーリ2及びセカンダリプーリ3間での動力伝達が行われる。
【0022】
変速は、プライマリ圧Ppri及びセカンダリ圧Psec間の差圧により両プーリ2、3の溝の幅を変化させ、プーリ2、3に対するベルト4の巻き掛け円弧径を連続的に変化させることによって行われる。
【0023】
プライマリ圧Ppri及びセカンダリ圧Psecは、前進走行レンジの選択時に締結する発進クラッチ7b、及び後進走行レンジの選択時に締結する後進ブレーキ7cへの供給油圧と共に変速制御油圧回路11によって制御される。変速制御油圧回路11は変速機コントローラ12からの信号に応答して制御を行う。
【0024】
変速機コントローラ12には、CVT1の実入力回転速度Ninを検出する入力回転速度センサ13からの信号と、CVT1の出力回転速度、すなわち、車速VSPを検出する車速センサ14からの信号と、プライマリ圧Ppriを検出するプライマリ圧センサ15pからの信号と、セカンダリ圧Psecを検出するセカンダリ圧センサ15sからの信号と、ライン圧PLを検出するライン圧センサ15lからの信号と、アクセル開度APOを検出するアクセル開度センサ16からの信号と、セレクトレバー位置を検出するインヒビタスイッチ17からの選択レンジ信号と、ブレーキペダルの踏み込みの有無を検出するブレーキスイッチ18からの信号と、エンジン5を制御するエンジンコントローラ19からのエンジン5の運転状態(エンジン回転速度Ne、エンジントルク、燃料噴時間、冷却水温TMPe等)に関する信号とが入力される。
【0025】
図2は、変速制御油圧回路11の概略構成を示している。
【0026】
変速制御油圧回路11は、オイルポンプ40、ライン圧調圧弁31、プライマリ圧調圧弁32及びセカンダリ圧調圧弁33を備える。
【0027】
オイルポンプ40は、エンジン5によって駆動される。
【0028】
ライン圧調圧弁31は、オイルポンプ40の吐出圧の一部をドレンして減圧することで、ライン圧PLを目標ライン圧tPLに調圧するドレン調圧式の調圧弁である。
【0029】
プライマリ圧調圧弁32及びセカンダリ圧調圧弁33は、ライン圧PLを元圧として、ライン圧PLの一部をドレンして減圧することでプライマリ圧Ppri及びセカンダリ圧Psecをそれぞれ目標プライマリ圧tPpri及び目標セカンダリ圧tPsecに調圧するドレン調圧式の調圧弁である。
【0030】
ライン圧調圧弁31、プライマリ圧調圧弁32及びセカンダリ圧調圧弁33は、それぞれ、調圧後の油圧を調圧弁に戻し、調圧後の油圧を目標とする油圧にフィードバック制御するためのフィードバック回路31f、32f、33fを有している。
【0031】
図3は、ライン圧調圧弁31の概略構成を示している。ここではライン圧調圧弁31の構成について説明するが、プライマリ圧調圧弁32及びセカンダリ圧調圧弁33も同様の構成である。
【0032】
ライン圧調圧弁31は、スプール31sと、スプール31sを内部に収容するハウジング31hと、スプール31sとハウジング31hとの間に改装されるスプリング31pを備える。
【0033】
ハウジング31hには、ポート31a〜31dが開口している。ポート31aは、フィードバック回路31fを介してポート31bと接続している。ポート31bはオイルポンプ40とプライマリ圧調圧弁32及びセカンダリ圧調圧弁33との間に接続している。ポート31cはドレンポートである。ポート31dはソレノイド弁(図示せず)に接続している。
【0034】
ポート31cの内側には、スプール31sのランド部31lが配置され、ポート31cはランド部31lによってその開度が調整される。
【0035】
ポート31dには、ソレノイド弁から目標ライン圧tPLに対応する信号圧が供給され、信号圧はスプール31sの右側端面に作用する。信号圧が増大すると、スプール31sが図中左側に移動し、ポート31cの開度が減少する。これにより、ポート31cからのドレン量が減ってライン圧PLが上がる。逆に、ポート31dに供給される信号圧が減少すると、スプール31sが図中右側に移動し、ポート31cの開度が増大する。これにより、ポート31cからのドレン量が増えてライン圧PLが下がる。
【0036】
また、このようにして調圧されたライン圧PLは、フィードバック回路31fを介してポート31aにも供給され、スプール31sの左側端面に作用する。調圧後のライン圧PLが目標ライン圧tPLに一致していれば、ライン圧PLと信号圧とスプリング31pの付勢力とがバランスし、スプール31sはそのときのストロークを保持する。
【0037】
これに対し、調圧後のライン圧PLが目標ライン圧tPLよりも低い場合は、スプール31sが図中左側に移動してポート31cの開度が減少し、ドレン量が減ってライン圧PLが上がる。逆に、調圧後のライン圧PLが目標ライン圧tPLよりも高い場合は、スプール31sが図中右側に移動してポート31cの開度が増大し、ドレン量が増えてライン圧PLが下がる。
【0038】
これにより、ライン圧PLは、目標ライン圧tPLになるようにフィードバック制御される(自己フィードバック)。
【0039】
ここで、油量収支が足りている状況ではポート31cが閉じられることはないが、油量収支が不足する状況では、できる限り高いライン圧PLが得られるように、ポート31cが閉じられる。
【0040】
このため、キックダウンによって目標ライン圧tPLが急激に上がり、油量収支が不足する状況では、ライン圧調圧弁31のポート31cが閉じられるが、この場合、ライン圧PLが目標ライン圧tPLに対してオーバーシュートする。そして、これに対して何も手当をしないと、その揺り返しとしてライン圧PLが目標ライン圧tPLに対してアンダーシュートし、ベルト4が滑る可能性がある。
【0041】
そこで、本実施形態では、以下に説明するキックダウン時の油圧制御を行う。
【0042】
図4は、キックダウン時の油圧制御の内容を示したフローチャートである。これを参照しながらキックダウン時の制御について説明する。
【0043】
まず、S1では、変速機コントローラ12は、変速がキックダウン(アクセルペダルが急激かつ大きく踏み込まれた時に行われるダウンシフト)か判断する。キックダウンかは、アクセル開度APOの変化量及び変化速度に基づき判断することができる。
【0044】
変速がキックダウンであると判断された場合は処理がS2に進み、そうでない場合は処理が終了する。
【0045】
S2では、変速機コントローラ12は、目標ライン圧tPLをキックダウンによって増大するCVT1への入力トルクに対応する第1目標圧(すなわち、変速後に必要となる最終目標圧)まで上げる(第1段階の昇圧)。これにより、セカンダリプーリ3によるベルト4の挟持圧が高められ、ベルト4が滑るのが防止される。
【0046】
S3では、変速機コントローラ12は、ライン圧調圧弁31のポート31cが閉じられたか判断する。上記の通り、ポート31cは、油量収支が不足する場合に閉じられ、その判断は、エンジン回転速度Ne、ライン圧PL及び変速比に基づき行われる。具体的には、エンジン回転速度Neが所定値よりも低く(オイルポンプ40の吐出圧が低い)、ライン圧PLが所定値よりも低く(実圧が低い)、かつ、変速比が所定変速比よりもハイ側(キックダウン時に必要とされる油圧の増分が大きい)の場合に油量収支が不足し、ポート31cが閉じられると判断される。
【0047】
ポート31cが閉じられると判断された場合はライン圧PLのオーバーシュートが発生するので、S4以降に進み、その揺り返しによるアンダーシュートを防止するための処理が行われる。そうでない場合は処理が終了する。
【0048】
S4では、変速機コントローラ12は、ライン圧PLが第1目標圧まで昇圧したか判断する。肯定的な判断がなされた場合は処理がS5に進み、そうでない場合はS4の判断が繰り返される。かかる判断を行うのは、ライン圧PLのオーバーシュートはライン圧PLが第1目標圧まで昇圧した直後に起こり、オーバーシュートの揺り返しを防止するS5以降の処理を行うには、ライン圧PLが第1目標圧まで昇圧したタイミングで開始するのが好適であるからである。
【0049】
S5では、変速機コントローラ12は、目標ライン圧tPLを第1目標圧よりも高い第2目標圧まで上げる(第2段階の昇圧)。この処理は、目標ライン圧tPLの下限値を第1目標圧よりも高い第2目標圧に設定し、当該下限値を用いて目標ライン圧tPLの下限規制を行うことによって行われる。
【0050】
第2目標圧は、ライン圧PLの第1目標圧に対するオーバーシュート発生時の圧よりも高い値に設定される。これにより、目標ライン圧tPLがライン圧PLよりも高くなるので、制御上はオーバーシュートが起こっていないと認識され、フィードバック回路31fの働きによってスプール31sがポート31cを開く方向に押し戻されることはなく、したがって、揺り返しによるアンダーシュートも発生しない。
【0051】
なお、油量収支が不足する状況であるので、目標ライン圧tPLを第2目標圧まで高めても、ライン圧PLが第2目標圧に対してオーバーシュートすることはない。
【0052】
S6では、変速機コントローラ12は、所定時間待機する。これによって、ライン圧PLを高く保持し、揺り返しによるアンダーシュートを確実に防止する。
【0053】
S7では、変速機コントローラ12は、S5で用いた下限値を下げることで、目標ライン圧tPLを所定のランプ勾配で低下させる。これは、目標ライン圧tPLを第2目標圧まで上げたことで入力トルクに対して過多になっているライン圧PLを入力トルクに応じた圧まで下げるためである。所定のランプ勾配で下げるのは、急激に目標ライン圧tPLを下げると、ライン圧調圧弁31のバネ・マス系に起因する遅れによってライン圧PLが目標ライン圧tPLに対してアンダーシュートするので、これを防止するためである。
【0054】
以上の処理により、キックダウンによって目標ライン圧tPLが急激に上がって油量収支が不足しても、ライン圧PLのオーバーシュートの揺り返しとしてのアンダーシュートを防止し、ベルト滑りを防止することができる。
【0055】
なお、セカンダリ圧調圧弁33についても同様の制御を行う。
【0056】
すなわち、キックダウンによって目標セカンダリ圧tPsecが急激に上がって油量収支が不足する場合には、目標セカンダリ圧tPsecが入力トルクに対応する第1目標圧よりも高い第2目標圧まで上げられる。
【0057】
これにより、セカンダリ圧Psecが第1目標圧をオーバーシュートしても、制御上はオーバーシュートが起こっていないと認識されるようにし、セカンダリ圧Psecを下げるためのセカンダリ圧調圧弁33の動作を抑制して、オーバーシュートの揺り戻しとして起こるアンダーシュートを防止する。
【0058】
続いて、上記キックダウン時の油圧制御を行うことによる作用効果について説明する。
【0059】
図5は、キックダウン時の目標ライン圧tPL及び目標セカンダリ圧tPsecの変化を示している。
【0060】
時刻t1で変速がキックダウンと判断されると、目標ライン圧tPL及び目標セカンダリ圧が、それぞれ変速後の入力トルクに対応した第1目標圧までそれぞれ急激に高められる。これにより、油量収支が不足する状況になり、ライン圧調圧弁31のポート31c及びセカンダリ圧調圧弁33のドレンポートが閉じられる。なお、油量収支の不足は一時的であり、エンジン回転速度Neが増大してオイルポンプ40の吐出圧が上昇すると、油量収支の不足は解消する。
【0061】
時刻t2で、ライン圧PL及びセカンダリ圧Psecがそれぞれ第1目標圧になると、目標ライン圧tPL及び目標セカンダリ圧がさらに高い第2目標圧に設定される。ライン圧PL及びセカンダリ圧Psecはそれぞれ第1目標圧に対してオーバーシュートするが、目標ライン圧tPL及び目標セカンダリ圧tPsecが第2目標圧に高められたことによって、制御上はオーバーシュートが起こっていないと認識され、ライン圧調圧弁31及びセカンダリ圧調圧弁33の動きが抑制されるので、オーバーシュートの揺り戻しとして起こるアンダーシュートが防止される。
【0062】
時刻t2〜t3では、目標ライン圧tPL及び目標セカンダリ圧tPsecは、第2目標圧に所定時間保持される。これにより、オーバーシュートの揺り返しとしてのアンダーシュートを確実に防止することができる。
【0063】
そして、時刻t3以降では、目標ライン圧tPL及び目標セカンダリ圧tPsecは所定のランプ勾配で下げられる。これにより、入力トルクに対して油圧が過多の状態を解消するとともに、目標ライン圧tPL及び目標セカンダリ圧tPsecが急激に下がることによるアンダーシュートが防止される。
【0064】
なお、上記目標ライン圧tPL及び目標セカンダリ圧tPsecの2段階目の昇圧は、第1段階の昇圧で油量収支が不足し、ライン圧調圧弁31のポート31c及びセカンダリ圧調圧弁33のドレンポートが閉じられる場合にのみ行われるので、不必要な昇圧による燃費の悪化を防止することができる。
【0065】
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的に限定する趣旨ではない。
【0066】
本願は日本国特許庁に2012年6月8日に出願された特願2012−130650号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
図1
図2
図3
図4
図5