【実施例】
【0030】
以下、例を挙げて本発明を詳細に説明するが、これらによって本発明が限定されるものではない。
【0031】
<カンジダ菌(Candida albicans NBRC 1385)菌液の調製>
サブロー液体培地5mLを入れた試験管にカンジダ菌(Candida albicans NBRC 1385)を植菌し、これを24時間、110min
-1の条件で振盪培養した。その後、6500rpm、4℃での遠心分離により集菌および生理食塩水を用いて2回洗菌したものを、滅菌済みのイオン交換水で再懸濁してカンジダ菌液を調製した。
【0032】
<アメーバ(Acanthamoeba polyphaga ATCC 30871)の調製>
(1)PYGC液体培地の調製
プロテオースペプトン(Sigma)5g、酵母エキス(OXIOD)5g、NaCl(関東化学)2.5gを450mLの蒸留水に溶解後、オートクレーブ滅菌し、室温まで冷却して第1液を調製した。
D(+)−グルコース(関東化学)5g、L−システイン・HCl 0.475g(関東化学)を蒸留水35mLに溶解し、これに0.5M Na
2HPO
4(関東化学)水溶液10mLと0.5M KH
2PO
4(関東化学)水溶液5mLを加えて混和し、この溶液をろ過滅菌(0.45μm、ADVANTEC)して第2液を調製した。
【0033】
第1液と第2液を混和し、ろ過滅菌済みの1N KOH水溶液または1N HCl水溶液でpH6.5±0.1に調整して第3液を調製した。
ろ過滅菌済みの0.4M MgCl
2(関東化学)水溶液2.5mLと0.4M CaCl
2(関東化学)水溶液0.5mLを第3液に加え、PYGC液体培地を調製した。
また、第1液のプロテオースペプトンと酵母エキスをそれぞれ2.5g、第2液のD(+)−グルコース(関東化学)を2.5gとしたこと以外は上記PYGC液体培地と同様にして、1/2 PYGC液体培地を調製した。
【0034】
(2)PAS培地(Page’s Amoeba Saline)の調製
本実施例では、細胞内ATP量測定を行うために、可溶性有機物を添加しない培地を用いた。このための培地として、NaCl 120mg、MgSO
4・7H
2O(関東化学) 4mg、CaCl
2 4mg、Na
2HPO
4 142mg、KH
2PO
4 136mgを蒸留水1000mLに溶解し、オートクレーブ滅菌したPage’s Amoeba Saline(PAS)を使用した。
【0035】
(3)熱処理大腸菌懸濁液の調製
Luria−Bertani培地(バクトトリプトン 10g、酵母エキス 5.0g、NaCl 5.0gを1Lにメスアップしたもの)5mL中で前培養した大腸菌を、2000mL容の坂口フラスコ中に調製した2倍濃度Nutrient Broth培地(Difco;以下NB培地と略す。)1000mLに加え、37℃において24時間振盪培養した。培養後の培地を450mL容遠心チューブに移し、6000rpm、4℃、10分間、遠心分離(MODEL50A−7、佐久間製作所)し、次いでPASで2回洗浄した後、PAS 100mLに再懸濁した。この大腸菌懸濁液を500mLの三角フラスコに移し、70℃、90分間、振盪下(90ストローク/分)で熱処理を行った。急冷の後、懸濁液を25mL遠沈管に分注し、使用時まで−80℃で保存した。
【0036】
(4)アメーバの前培養
凍結保存シストアメーバを35℃の水浴で解凍後、10mLのPYGC液体培地を分注した培養フラスコ(培養面積25cm
2、容量60mL)に0.1mL接種し、25℃で静置培養した。上清の汚れの程度に応じて培地を交換し、培養フラスコ底面に十分に増殖させて前々培養を行った。
実験に使用するアメーバの前培養は、上記前々培養アメーバを培地交換した後、培養フラスコの底面をボルテックスミキサーで激しく振動(20〜30秒間)し、剥離させて得たアメーバ懸濁液0.1mLを、1/2 PYGC液体培地9.9mLとOD
660≒4に調整した熱処理大腸菌0.1mLとを混合した培養フラスコに接種し、25℃で4日間静置培養することにより行った。
【0037】
(5)栄養体アメーバ懸濁液の調製
上記(4)にて前培養した培養液の上清を廃棄し、PAS 10mLで培養フラスコ内を緩やかに洗浄した後、激しい振動によりアメーバを剥離させ、培養液を15mL遠沈管に入れて遠心分離により集菌(2150rpm、4℃、5分間、himac CF7D2、HITACHI)および洗浄(2回)を行い、10mL PASで再懸濁した。所期の栄養体アメーバ細胞数に血球計数盤(depth 0.1mm、1/400pmm、Thoma)を使用し、PASで2×10
5cells/mLに調整した。
【0038】
(6)シストアメーバの調製
上記(5)で調製した栄養体アメーバを、シスト形成培地(KCl 0.7g、CaCl
2 0.8g、MgSO
4・7H
2O 0.8gを蒸留水1000mLに溶解後、オートクレーブ滅菌)中に2×10
5cells/mLとなるように添加してアメーバ懸濁液を調整した。シスト形成培地0.9mLを分注した48穴マイクロプレートに上記アメーバ懸濁液0.1mLを接種し、25℃で8日間静置培養することによりシスト化させた。
【0039】
<カンジダ菌(Candida albicans NBRC 1385)に対する暴露試験>
[実験例1]
滅菌イオン交換水で2×10
6cells/mLに調製したカンジダ菌液20mLを、深底90mmシャーレに入れた。これに、終濃度が1mg/Lになるようにハイジェニア(タマ化学工業株式会社)溶液を添加後、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数をハイジェニアの添加から0、1、3、6時間後に測定した。結果を
図2に黒丸●で示す。ハイジェニアおよびUVAの暴露開始から1時間後には生菌数は10分の1に急減し、開始から6時間後には約100分の1にまで減少した。
【0040】
なお、UVAの照射は、100×300mm
2の基板に9直列×3並列で365nmLEDを備えた装置を用いて行った(サン電子工業株式会社製作)。光源部から50mmの距離における照射強度は628μW/cm
2であった。本実験例で使用したUVA照射装置の模式図を
図1に示す。また、当該UVA照射装置の発光スペクトルを
図10に実線で示す。
生菌数の測定は、0.7% Tween80入り生理食塩水で菌液を10倍段階希釈し、各希釈液100μLを0.7% Tween80入りサブロー寒天培地に塗布し、48時間、30℃で培養後、コロニーを計数することにより行った。
【0041】
[実験例2]
ハイジェニアに代えて10%塩化ベンザルコニウム溶液(和光純薬工業;以下BACと略す。)を終濃度が1mg/Lになるように添加したこと以外は実験例1と同様にして実験を行った。結果を
図2に逆黒三角▼で示す。BACとUVAの暴露から1時間後には生菌数が約6分の1に減少したが、その後は6時間を経過するまで生菌数に大きな変化は見られなかった。
【0042】
[実験例3]
UVAを照射しなかったこと以外は実験例1と同様にして実験を行った。結果を
図2に白丸○で示す。ハイジェニアの暴露から1時間後には生菌数が約6分の1に減少し、6時間後には20分の1に減少した。
【0043】
[実験例4]
UVAを照射しなかったこと以外は実験例2と同様にして実験を行った。結果を
図2に逆三角▽で示す。BACの暴露から1時間後には生菌数が約6分の1に減少したが、その後は6時間を経過するまで生菌数に大きな変化は見られなかった。
【0044】
[実験例5]
ハイジェニア溶液を添加しなかったこと以外は実験例1と同様にして実験を行った。結果を
図2に黒三角▲で示す。実験開始から6時間経過後に至るまで生菌数に大きな変化は見られなかった。
【0045】
[実験例6]
コントロール実験として、ハイジェニア溶液の添加も、UVA照射もしないこと以外は実験例1と同様にして実験を行った。結果を
図2に×で示す。実験開始から時間の経過とともにわずかに生菌数が増加した。
【0046】
実験例1〜6の結果から、カンジダ菌に対しては、ハイジェニアとUVA−LEDとの併用により、除菌作用について優れた相乗効果がみられた。特に、ハイジェニアのみを使用した場合(実験例3)に比べてUVA−LEDを併用することで、6時間後における生菌数が5分の1に減少し、ハイジェニアとUVA−LEDの併用による殺真菌性の相乗効果が示された。
【0047】
<栄養体アメーバ(Acanthamoeba polyphaga ATCC 30871)に対する暴露試験>
[実験例7]
48穴マイクロプレート(IWAKI)に、上記(5)で調製した2×10
5cells/mLの栄養体アメーバ懸濁液0.1mL、上記(3)で調製した熱処理大腸菌懸濁液を、最終OD
660が0.08になるように0.1mLおよびPAS 0.75mLを分注し、アメーバ定着のため2時間静置した後、終濃度が1mg/Lとなるようにハイジェニア(タマ化学工業株式会社製)溶液を0.05mL添加した。
【0048】
実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、プレートを25℃で静置培養した。ハイジェニアの添加から0、1、3および6時間後に後述する手順にて浮遊アメーバおよび付着アメーバ由来のATP量を測定し、両者の和をアメーバ生細胞由来の全ATP量とした。
結果を
図3に黒丸●で示す。ATP量は、ハイジェニアおよびUVAの暴露開始から急激に減少し、6時間後には約71分の1にまで減少した。
【0049】
なお、ATP測定は、薬剤不活化剤としてTween80を終濃度が0.5w/v%となるように0.2mL添加し、30分静置後に行った。ATP測定試薬は、抗菌試験用発光測定試薬セット(キッコーマン株式会社製)を使用し、測定機器は、ルミネッセンスリーダーBLR−201(アロカ)を使用した。
【0050】
(浮遊アメーバ由来のATP量測定)
まず、各ウェルから上清を静かに除き、得られた上清0.9mLをルミチューブに分注し、これにATP消去試薬0.1mLを加えよく攪拌した。次いで、この溶液を別のルミチューブ3本に0.1mLずつ分注後、20分間静置することにより細胞外ATPを消去した。消去後、ATP抽出試薬を0.1mL加えよく攪拌し、30秒間の抽出時間後、発光試薬を0.1mL加え、30秒間積算の発光量から検量線(PAS溶媒で作成、検出限界9.52×10
-2pmol/L)により浮遊アメーバ由来のATP量を算出した。
【0051】
(付着アメーバ由来のATP量測定)
上清を除いた各ウェルにPAS 0.36mLおよびATP消去試薬0.04mLを加え、20分間静置して細胞外ATPを消去した。次に、ATP抽出試薬を0.4mL加えて混合し30秒間抽出した後、各ウェルから溶液を吸い取り、これをルミチューブ3本に0.2mLずつ分注し、発光試薬0.1mLを加え、浮遊アメーバ由来のサンプルと同様の手順にて付着アメーバ由来のATP量を算出した(PAS溶媒で検量線作成、検出限界9.52×10
-2pmol/L)。データには示さないが、本測定法で含有する熱処理大腸菌由来のATP発光量は検出限界以下であった。
【0052】
[実験例8]
ハイジェニアに代えてBACを終濃度が1mg/Lになるように添加したこと以外は実験例7と同様にして実験を行った。結果を
図3に逆黒三角▼で示す。ATP量は、BACおよびUVAの暴露開始から急激に減少し、6時間後にはハイジェニア+UVAの実験例7と同程度の約63分の1にまで減少した。
【0053】
[実験例9]
UVAを照射しなかったこと以外は実験例7と同様にして実験を行った。結果を
図3に白丸○で示す。ハイジェニアの暴露から3時間後にはATP量が約3分の1に減少し、6時間後には約11分の1に減少した。
【0054】
[実験例10]
UVAを照射しなかったこと以外は実験例8と同様にして実験を行った。結果を
図3に逆三角▽で示す。BACの暴露から時間の経過とともに穏やかにATP量が減少し、6時間後には4分の1に減少した。
【0055】
[実験例11]
ハイジェニア溶液の代わりにPAS0.05mLを添加したこと以外は実験例7と同様にして実験を行った。結果を
図3に黒三角▲で示す。実験開始から時間の経過とともにATPが減少し、6時間後には40分の1に減少した。
【0056】
[実験例12]
コントロール実験として、ハイジェニア溶液の代わりにPAS0.05mLを添加し、UVA照射をしないこと以外は実験例7と同様にして実験を行った。結果を
図3に×で示す。実験開始から6時間経過後までATP量の変化はわずかであった。
【0057】
以上、実験例7〜12の栄養体アメーバに対する暴露試験の結果から、BACまたはハイジェニアを単独で用いた場合と比較して、UVA−LED照射を併用することでより強い殺アメーバ効果が得られることが示された。UVA−LED併用時の抗菌剤としてBACを用いた場合とハイジェニアの場合とでは殺アメーバ効果に大きな差はみられなかった。しかし、ハイジェニアはBACと比較して溶血毒性、皮膚感作性などの毒性が低いことから、コンタクトレンズの洗浄などの医療器具洗浄の用途において有利である。
なお、UVA−LED単独使用の場合と比べ、BACまたはハイジェニアを併用した際の6時間後におけるATP量は、それぞれ63%、56%に減少した。
【0058】
<シスト体アメーバに対する暴露試験 抗菌剤濃度3mg/L>
[実験例13]
上記(6)で調製したシスト体アメーバからシスト形成培地を除いた後、各ウェルにPAS 1mLを添加してウェルを穏やかに洗浄し、次いで、PAS 0.95mLと、終濃度が3mg/Lとなるようにハイジェニア溶液を0.05mL添加した。
【0059】
実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、プレートを25℃で静置培養した。ハイジェニアの添加から0、1、3および6時間後に実験例7と同様の手順にて浮遊および付着シスト由来のATP量を測定し、両者の和をアメーバ生細胞由来の全ATP量とした。
結果を
図4に黒丸●で示す。ATP量は、ハイジェニアおよびUVAの暴露開始から減少し、6時間後には11分の1にまで減少した。
【0060】
[実験例14]
ハイジェニアに代えてBACを終濃度が3mg/Lになるように添加したこと以外は実験例13と同様にして実験を行った。結果を
図4に逆黒三角▼で示す。ATP量は、BACおよびUVAの暴露開始から減少し、6時間後には約17分の1にまで減少した。
【0061】
[実験例15]
UVAを照射しなかったこと以外は実験例13と同様にして実験を行った。結果を
図4に白丸○で示す。ハイジェニアの暴露から6時間後にはATP量が約2分の1に減少した。
【0062】
[実験例16]
UVAを照射しなかったこと以外は実験例14と同様にして実験を行った。結果を
図4に逆三角▽で示す。BACの暴露によるATP量の変化は少なく、6時間後ATP量は、実験開始直後の97%程度であった。
【0063】
[実験例17]
ハイジェニア溶液の代わりにPAS0.05mLを添加したこと以外は実験例13と同様にして実験を行った。結果を
図4に黒三角▲で示す。実験開始から時間の経過とともにATPが減少し、6時間後には約7分の1に減少した。
【0064】
[実験例18]
コントロール実験として、ハイジェニア溶液の代わりにPAS0.05mLを添加し、UVA照射をしないこと以外は実験例13と同様にして実験を行った。結果を
図4に×で示す。実験開始から6時間経過後までATP量の変化はわずかであった。
【0065】
以上、実験例13〜18のシスト体アメーバに対する暴露試験の結果から、BACまたはハイジェニアを単独で用いた場合と比較して、UVA−LED照射を併用することでシスト体アメーバに対するより強い殺アメーバ効果が得られることが示された。UVA−LED併用時の抗菌剤としてBACを用いた場合とハイジェニアの場合とでは殺アメーバ効果に大きな差はみられなかった。しかし、ハイジェニアはBACと比較して溶血毒性、皮膚感作性などの毒性が低いことから、コンタクトレンズの洗浄などの医療器具洗浄の用途において有利である。
なお、UVA−LED単独使用の場合と比べ、BACまたはハイジェニアを併用した際の6時間後におけるATP量は、それぞれ41%、64%に減少した。
【0066】
<シスト体アメーバに対する暴露試験 抗菌剤濃度1mg/L>
[実験例19〜24]
ハイジェニアとBACの終濃度を1mg/Lとしたこと以外は実験例13〜18と同様にして、それぞれATP量の測定を行った(実験例19〜24)。結果を
図5に示す。これらの結果から、抗菌剤濃度が1mg/Lでは、ハイジェニア、BACともに単独ではシスト体アメーバに対する殺アメーバ効果は弱く、UVA−LEDと併用しても殺アメーバ効果の併用効果は確認できなかった。
【0067】
<大腸菌(Escherichia coli NBRC 12713)に対する暴露試験>
[実験例25]
大腸菌(Escherichia coli NBRC 12713)を、Luria−Bertani培地(バクトトリプトン 10g、酵母エキス 5.0g、NaCl 5.0gを1Lにメスアップしたもの)5mLを入れた試験管中で17時間、110min
-1にて振盪培養して前培養した。前培養液を6500rpm、4℃で集菌および生理食塩水で2回洗菌し、滅菌イオン交換水で再懸濁し、2×10
6cells/mLに調製した。この大腸菌菌液20mLを、深底90mmシャーレに入れ、次いで、終濃度が0.3μMになるようにハイジェニア(タマ化学工業株式会社)溶液を添加後、実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数をハイジェニアの添加から0、10、30および60分後に測定した。結果を
図6に黒丸●で示す。ハイジェニアおよびUVAの暴露開始から30分後には生菌数は10分の1に急減し、開始から60分後には約1万分の1にまで減少した。
【0068】
なお、生菌数の測定は、0.7% Tween80入り生理食塩水で菌液を10倍段階希釈し、各希釈液100μLをSCDLP寒天培地に塗布し、24時間、37℃で培養後、コロニーを計数することにより行った。
【0069】
[実験例26]
UVAを照射しなかったこと以外は実験例25と同様にして実験を行った。結果を
図6に白丸○で示す。生菌数はハイジェニアの暴露から緩やかに減少し、60分後には生菌数が約7分の1となった。
【0070】
[実験例27]
ハイジェニア溶液を添加しなかったこと以外は実験例25と同様にして実験を行った。結果を
図6に黒三角▲で示す。実験開始から60分後には生菌数が100分の1まで減少した。
【0071】
[実験例28]
コントロール実験として、ハイジェニア溶液の添加も、UVA照射もしないこと以外は実験例25と同様にして実験を行った。結果を
図6に×で示す。実験開始から60分の間での生菌数の変化はなかった。
【0072】
実験例25〜28の結果から、大腸菌に対しては、ハイジェニアとUVA−LEDとの併用により、除菌作用について優れた相乗効果がみられた。特に、ハイジェニアのみを使用した場合(実験例26)に比べてUVA−LEDを併用することで、60分後における生菌数が1000分の1以下となり、ハイジェニアとUVA−LEDの併用による殺菌性の相乗効果が示された。
【0073】
<緑膿菌(Pseudomonas aeruginosa ATCC 10145)に対する暴露試験>
[実験例29]
緑膿菌(Pseudomonas aeruginosa ATCC 10145)を、100mLの三角フラスコに入れた20mLのNB培地中で17時間、147min
-1にて振盪培養して前培養した。前培養液を6500rpm、4℃で集菌および生理食塩水で2回洗菌し、滅菌イオン交換水で再懸濁し、2×10
6cells/mLに調製した。この緑膿菌菌液20mLを、深底90mmシャーレに入れ、次いで、終濃度が0.05μMになるようにハイジェニア(タマ化学工業株式会社)溶液を添加後、実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数をハイジェニアの添加から0、10、30および60分後に測定した。結果を
図7に黒丸●で示す。ハイジェニアおよびUVAの暴露開始から30分後には生菌数は37分の1に急減し、開始から60分後には検出限界以下(10cells/mL未満)にまで減少した。
【0074】
なお、生菌数の測定は、0.7% Tween80入り生理食塩水で菌液を10倍段階希釈し、各希釈液100μLをSCDLP寒天培地に塗布し、24時間、37℃で培養後、コロニーを計数することにより行った。
【0075】
[実験例30]
UVAを照射しなかったこと以外は実験例29と同様にして実験を行った。結果を
図7に白丸○で示す。60分間のハイジェニアの暴露では生菌数の変化は認められなかった。
【0076】
[実験例31]
ハイジェニア溶液を添加しなかったこと以外は実験例29と同様にして実験を行った。結果を
図7に黒三角▲で示す。実験開始から60分後には生菌数が770分の1まで減少した。
【0077】
[実験例32]
コントロール実験として、ハイジェニア溶液の添加も、UVA照射もしないこと以外は実験例29と同様にして実験を行った。結果を
図7に×で示す。実験開始から60分の間での生菌数の変化はなかった。
【0078】
実験例29〜32の結果から、緑膿菌に対しては、ハイジェニアとUVA−LEDとの併用により、除菌作用について優れた相乗効果がみられた。特に、ハイジェニアのみを使用した場合(実験例30)の生菌数は、コントロールと大きな差は見られなかったにもかかわらず、ハイジェニアとUVA−LEDを併用することで、UVA−LEDの照射のみの場合と比べても、生菌数は100分の1以下の検出限界以下に減少し、指数関数的減少を伴った相乗的除菌効果が示された。
【0079】
<黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)に対する暴露試験>
[実験例33]
黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)を、Luria−Bertani培地5mLを入れた試験管中で、で17時間、110min
-1にて振盪培養して前培養した。前培養液を6500rpm、4℃で集菌および生理食塩水で2回洗菌し、滅菌イオン交換水で再懸濁し、2×10
6cells/mLに調製した。この黄色ブドウ球菌菌液20mLを、深底90mmシャーレに入れ、次いで、終濃度が3μMになるようにハイジェニア(タマ化学工業株式会社)溶液を添加後、実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数をハイジェニアの添加から0、10、30および60分後に測定した。結果を
図8に黒丸●で示す。ハイジェニアおよびUVAの暴露開始から30分後には生菌数は100分の1に急減し、開始から60分後には5000分の1まで減少した。
【0080】
なお、生菌数の測定は、0.7% Tween80入り生理食塩水で菌液を10倍段階希釈し、各希釈液100μLをSCDLP寒天培地に塗布し、24時間、37℃で培養後、コロニーを計数することにより行った。
【0081】
[実験例34]
UVAを照射しなかったこと以外は実験例33と同様にして実験を行った。結果を
図8に白丸○で示す。ハイジェニアの暴露から10分後には生菌数が100分の1まで激減し、60分後には生菌数が約3000分の1となった。
【0082】
[実験例35]
ハイジェニア溶液を添加しなかったこと以外は実験例33と同様にして実験を行った。結果を
図8に黒三角▲で示す。実験開始から緩やかに生菌数は減少し、60分後には生菌数が10分の1となった。
【0083】
[実験例36]
コントロール実験として、ハイジェニア溶液の添加も、UVA照射もしないこと以外は実験例33と同様にして実験を行った。結果を
図8に×で示す。実験開始から60分の間での顕著な生菌数の変化はなかった。
【0084】
実験例33〜36の結果から、黄色ブドウ球菌に対しては、ハイジェニアとUVA−LEDとの併用による殺菌について相乗効果は認められなかった。そして、UVA−LEDによる黄色ブドウ球菌に対する殺菌効果は、大腸菌や緑膿菌と比較すると、明らかに低かった。従って、黄色ブドウ球菌の殺菌には、ハイジェニアの添加が有効であることが分かった。
【0085】
<緑膿菌(Pseudomonas aeruginosa ATCC 10145)バイオフィルムに対する暴露試験>
[実験例37]
緑膿菌(Pseudomonas aeruginosa ATCC 10145)を、100mLの三角フラスコに入れた20mLのNB培地中で17時間、147min
-1にて振盪培養して前培養した。前培養液を6500rpm、4℃で集菌および生理食塩水で2回洗菌し、滅菌イオン交換水で再懸濁し、これをR2A培地でOD
660=0.017(2.0×10
7cells/mL)に調製し、それを6.7×10
6cells/mLに希釈したものを、48穴マイクロプレート(平底、非コーティングポリスチレン製、滅菌済み、IWAKI)の各ウェルに1mLずつ分注し、30℃、5日間静置培養することにより、プレート壁にバイオフィルムを形成させた。
【0086】
バイオフィルムを形成した48穴マイクロプレートのウェル中から培地を除き、滅菌済みのイオン交換水で1回洗浄し、風乾させた。次いで、滅菌済みイオン交換水0.8mLをウェルに加え、終濃度が0.05μMになるようにハイジェニア(タマ化学工業株式会社)溶液を0.2mL添加後、実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、30℃で1時間静置培養した。
バイオフィルムでの生菌数を確実に評価するため、上清における生菌数と、プレート壁に吸着したバイオフィルム表層および内部の生菌数を計数した。上清については、ウェル中の上清を試験管へ移し、プレートを風乾させた。その上清を0.7% Tween80入り生理食塩水で希釈してから、SCDLP寒天培地に塗布し、24時間培養後にコロニーカウントを行った。一方、風乾したウェルについては、0.7% Tween80入り生理食塩水を1mL加え、ウェルの底と壁を十分にピペッティングし、0.7% Tween80入り生理食塩水で希釈後、上清と同様の手順にてコロニーカウントを行った。結果を
図9に棒グラフ(左端)で示す。網掛け棒を上清における生菌数、白色棒をバイオフィルム表層および内部の生菌数とした。ハイジェニアおよびUVAの暴露開始から60分後には上清生菌数は10cells未満、吸着生菌数は100cells未満までに急減した。
【0087】
なお、R2A培地は、ペプトン 0.5g、酵母抽出物 0.5g、カザミノ酸 0.5g、グルコース 0.5g、可溶性デンプン 0.5g、K
2HPO
4 0.3g、MgSO
4・7H
2O 0.05g、ピルビン酸ナトリウム 0.3gを1Lにメスアップし、pH7.0〜7.4としたものを使用し、UVAの照射は実験例1と同じ装置を用いて行った。
【0088】
[実験例38]
UVAを照射しなかったこと以外は実験例37と同様にして実験を行った。結果を
図9に棒グラフ(左から2番目)で示す。網掛け棒を上清における生菌数、白色棒をバイオフィルム表層および内部の生菌数とした。コントロール生菌数(右端)と比較し、ハイジェニアの暴露による生菌数の著しい変化は、60分暴露間では認められなかった。
【0089】
[実験例39]
ハイジェニア溶液を添加しない代わりに滅菌イオン交換水0.2mLを加えたこと以外は実験例37と同様にして実験を行った。結果を
図9に棒グラフ(左から3番目)で示す。網掛け棒を上清における生菌数、白色棒をバイオフィルム表層および内部の生菌数とした。UVAの暴露開始から60分後には上清生菌数は、約1000分の1まで減少し、一方吸着生菌数は10cells未満までに急減した。
【0090】
[実験例40]
コントロール実験として、ハイジェニア溶液を添加しない代わりに滅菌イオン交換水0.2mLを加え、UVA照射もしないこと以外は実験例37と同様にして実験を行った。結果を
図9に棒グラフ(右端)で示し、網掛け棒を上清における生菌数、白色棒をバイオフィルム表層および内部の生菌数とした。実験開始から60分後の生菌数は、上清においては10
8オーダー、バイオフィルムにおいては10
7オーダーであった。
【0091】
実験例37〜40の結果から、バイオフィルムを形成した緑膿菌に対しては、ハイジェニアとUVA−LEDとの併用により、除菌効果について優れた相乗効果がみられた。特に、ハイジェニアのみを使用した場合(実験例38)に比べてUVA−LEDを併用することで、60分暴露後における生菌数は激減し、ハイジェニアとUVA−LEDの併用による強い殺菌性の相乗効果が示された。
【0092】
<大腸菌(Escherichia coli NBRC 12713)に対する白色LED暴露試験>
[実験例41]
実験例25と同様の手順にて、2×10
6cells/mLの大腸菌菌液を調製した。この大腸菌菌液20mLを、深底90mmシャーレに入れ、次いで、終濃度が0.3μMになるようにハイジェニア(タマ化学工業株式会社)溶液を添加後、70mmの距離から白色LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数をハイジェニアの添加から0、10、30、60分後に測定した。結果を
図11に黒丸●で示す。ハイジェニアおよび白色LEDの暴露開始から30分後には生菌数は10分の1に減少し、開始から60分後には100分の1にまで減少した。
【0093】
なお、白色LEDの照射は、100×300mm
2の基板に9直列×3並列で白色LEDを備えた装置を用いて行った(サン電子工業株式会社製作)。光源部から70mmの距離における照射強度は890μW/cm
2であった。UVA−LED照射実験では、光源部と菌液との距離を50mmとしたが、白色LED照射実験では、放熱により生菌数に影響が及ぶことを避けるため、光源部と菌液との距離を70mmとした。本実験例では、白色LED照射装置として、
図1のUVA照射装置と同様の構成のものを使用した。当該白色LED照射装置の発光スペクトルを
図10に点線で示す。生菌数の測定は、実験例25と同様に行った。
【0094】
[実験例42]
白色LEDを照射しなかったこと以外は実験例41と同様にして実験を行った。結果を
図11に白丸○で示す。生菌数はハイジェニアの暴露から緩やかに減少し、60分後には生菌数が約7分の1となった。
【0095】
[実験例43]
ハイジェニア溶液を添加しなかったこと以外は実験例41と同様にして実験を行った。結果を
図11に三角△で示す。実験開始から60分後には生菌数が約4分の1に減少した。
【0096】
[実験例44]
コントロール実験として、ハイジェニア溶液の添加も、白色LED照射もしないこと以外は実験例41と同様にして実験を行った。結果を
図11に×で示す。実験開始から60分の間での生菌数の変化はなかった。
【0097】
実験例41〜44の結果から、大腸菌に対して、ハイジェニアと白色LEDとの併用により、除菌効果について相乗効果がみられた。特に、ハイジェニアのみを使用した場合(実験例42)に比べて白色LEDを併用することで、60分後における生菌数が約14分の1以下となり、ハイジェニアと白色LEDとの併用による殺菌性の相乗効果が示された。
【0098】
<カンジダ菌(Candida albicans NBRC 1385)に対する暴露試験>
[実験例45]
滅菌イオン交換水で2×10
6cells/mLに調製したカンジダ菌液20mLを、深底90mmシャーレに入れた。これに、終濃度が20mg/Lになるように式(2)化合物溶液を添加後、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数を式(2)化合物の添加から0、1、3、6時間後に測定した。結果を
図12に黒丸●で示す。式(2)化合物およびUVAの暴露開始から1時間後には生菌数は1000分の1に急減し、開始から3時間後には不検出となった。なお、UVAの照射と生菌数の測定は、実験例1と同様の手順にて行った。
【0099】
[実験例46]
UVAを照射しなかったこと以外は実験例45と同様にして実験を行った。結果を
図12に白丸○で示す。式(2)化合物の暴露から1時間後には生菌数が約10分の1に減少し、その後は生菌数に大きな変化はなかった。
【0100】
[実験例47]
式(2)化合物を添加しなかったこと以外は実験例45と同様にして実験を行った。結果を
図12に黒三角▲で示す。実験開始から6時間経過後に至るまで生菌数に大きな変化は見られなかった。
【0101】
[実験例48]
コントロール実験として、式(2)化合物の添加も、UVA照射もしないこと以外は実験例45と同様にして実験を行った。結果を
図12に×で示す。実験開始から時間の経過とともにわずかに生菌数が増加した。
【0102】
実験例45〜48の結果から、カンジダ菌に対しては、式(2)化合物とUVA−LEDとの併用により、除菌作用について非常に強い相乗効果がみられた。特に、式(2)化合物のみを使用した場合(実験例46)に比べてUVA−LEDを併用することで、6時間後には生菌数を不検出まで減少させ、式(2)化合物とUVA−LEDの併用による殺真菌性の相乗効果が示された。
【0103】
<大腸菌(Escherichia coli NBRC 12713)に対する暴露試験>
[実験例49]
滅菌イオン交換水で調整した2×10
6cells/mLの大腸菌(Escherichia coli NBRC 12713)菌液20mLを、深底90mmシャーレに入れた。次いで、終濃度が4.5μMになるように式(2)化合物溶液を添加後、実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数を式(2)化合物の添加から0、10、30および60分後に測定した。結果を
図13に黒丸●で示す。式(2)化合物およびUVAの暴露開始から30分後には生菌数は5分の1に急減し、開始から60分後には約1万分の1近くまで減少した。なお、生菌数の測定は、実験例25と同様の手順にて行った。
【0104】
[実験例50]
UVAを照射しなかったこと以外は実験例49と同様にして実験を行った。結果を
図13に白丸○で示す。生菌数は式(2)化合物の暴露から緩やかに減少し、60分後には生菌数が約3分の1となった。
【0105】
[実験例51]
式(2)化合物を添加しなかったこと以外は実験例49と同様にして実験を行った。結果を
図13に黒三角▲で示す。実験開始から60分後には生菌数が100分の1まで減少した。
【0106】
[実験例52]
コントロール実験として、式(2)化合物溶液の添加も、UVA照射もしないこと以外は実験例49と同様にして実験を行った。結果を
図13に×で示す。実験開始から60分の間での生菌数の変化はなかった。
【0107】
実験例49〜52の結果から、大腸菌に対しては、式(2)化合物とUVA−LEDとの併用により、除菌作用について優れた相乗効果がみられた。特に、式(2)化合物のみを使用した場合(実験例50)に比べてUVA−LEDを併用することで、60分後における生菌数が1000分の1以下となり、式(2)化合物とUVA−LEDの併用による殺菌性の相乗効果が示された。
【0108】
<緑膿菌(Pseudomonas aeruginosa ATCC 10145)に対する暴露試験>
[実験例53]
滅菌イオン交換水で懸濁した2×10
6cells/mLの緑膿菌(Pseudomonas aeruginosa ATCC 10145)菌液20mLを、深底90mmシャーレに入れた。次いで、終濃度が0.05μMになるように式(2)化合物溶液を添加後、実験例1と同じUVA照射装置を用いて、50mmの距離からUVA−LEDを連続照射しながら、30℃で静置培養した。菌液中の生菌数を式(2)化合物の添加から0、10、30および60分後に測定した。結果を
図14に黒丸●で示す。式(2)化合物およびUVAの暴露開始から30分後には生菌数は83分の1に急減し、開始から60分後には検出限界以下(10cells/mL未満)にまで減少した。なお、生菌数の測定は、実験例29と同様の手順にて行った。
【0109】
[実験例54]
UVAを照射しなかったこと以外は実験例53と同様にして実験を行った。結果を
図14に白丸○で示す。60分間の式(2)化合物の暴露では生菌数の変化は認められなかった。
【0110】
[実験例55]
式(2)化合物溶液を添加しなかったこと以外は実験例53と同様にして実験を行った。結果を
図14に黒三角▲で示す。実験開始から60分後には生菌数が770分の1まで減少した。
【0111】
[実験例56]
コントロール実験として、式(2)化合物溶液の添加も、UVA照射もしないこと以外は実験例53と同様にして実験を行った。結果を
図14に×で示す。実験開始から60分の間での生菌数の変化はなかった。
【0112】
実験例53〜56の結果から、緑膿菌に対しては、式(2)化合物とUVA−LEDとの併用により、除菌作用について優れた相乗効果がみられた。特に、式(2)化合物のみを使用した場合(実験例54)の生菌数は、コントロールと大きな差は見られなかったにもかかわらず、式(2)化合物とUVA−LEDを併用することで、UVA−LEDの照射のみの場合と比べても、生菌数は100分の1以下の検出限界以下に減少し、指数関数的減少を伴った相乗的除菌効果が示された。