特許第5835399号(P5835399)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 横浜ゴム株式会社の特許一覧
<>
  • 特許5835399-空気入りタイヤ 図000002
  • 特許5835399-空気入りタイヤ 図000003
  • 特許5835399-空気入りタイヤ 図000004
  • 特許5835399-空気入りタイヤ 図000005
  • 特許5835399-空気入りタイヤ 図000006
  • 特許5835399-空気入りタイヤ 図000007
  • 特許5835399-空気入りタイヤ 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5835399
(24)【登録日】2015年11月13日
(45)【発行日】2015年12月24日
(54)【発明の名称】空気入りタイヤ
(51)【国際特許分類】
   B60C 11/03 20060101AFI20151203BHJP
   B60C 11/12 20060101ALI20151203BHJP
   B60C 11/13 20060101ALI20151203BHJP
   B60C 11/00 20060101ALI20151203BHJP
【FI】
   B60C11/03 300A
   B60C11/03 300E
   B60C11/12 C
   B60C11/13 B
   B60C11/00 D
   B60C11/03 D
   B60C11/12 A
   B60C11/12 B
【請求項の数】16
【全頁数】17
(21)【出願番号】特願2014-95422(P2014-95422)
(22)【出願日】2014年5月2日
(65)【公開番号】特開2015-212118(P2015-212118A)
(43)【公開日】2015年11月26日
【審査請求日】2015年5月1日
(73)【特許権者】
【識別番号】000006714
【氏名又は名称】横浜ゴム株式会社
(74)【代理人】
【識別番号】100089118
【弁理士】
【氏名又は名称】酒井 宏明
(74)【代理人】
【識別番号】100118762
【弁理士】
【氏名又は名称】高村 順
(72)【発明者】
【氏名】永吉 勝智
【審査官】 梶本 直樹
(56)【参考文献】
【文献】 特開2012−250610(JP,A)
【文献】 特開平05−238209(JP,A)
【文献】 国際公開第2010/055659(WO,A1)
【文献】 特開2009−012671(JP,A)
【文献】 特開2013−154654(JP,A)
【文献】 特開2000−255216(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B60C 11/00−11/24
(57)【特許請求の範囲】
【請求項1】
タイヤ周方向に延在する複数の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、
タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶと共に、前記最外周方向主溝に区画されたタイヤ幅方向外側の前記陸部をショルダー陸部と呼ぶときに、
前記ショルダー陸部が、
タイヤ周方向に延在する1本の周方向細溝と、
前記周方向細溝からタイヤ幅方向内側に延在して前記最外周方向主溝に開口する複数の内側ラグ溝と、
前記周方向細溝からタイヤ幅方向外側に延在してタイヤ接地端に至る複数の外側ラグ溝と、
前記最外周方向主溝、前記周方向細溝および前記複数の内側ラグ溝に区画されて成る複数の内側ブロックと、
前記周方向細溝、タイヤ接地端および前記複数の外側ラグ溝に区画されて成る複数の外側ブロックとを備え、
前記内側ブロックと前記外側ブロックとが、前記周方向細溝を中心としてタイヤ周方向に千鳥状に配置され、
前記内側ブロックの前記最外周方向主溝側のエッジ部がタイヤ幅方向に振幅をもつステップ形状を有し、
前記内側ブロックが切欠部を前記ステップ形状の段差部に有し、且つ、
前記ステップ形状の段差部がタイヤ周方向に連続した踏面を有することを特徴とする空気入りタイヤ。
【請求項2】
前記ステップ形状のステップを基準とした前記内側ブロックの最小幅W1_minと、最小幅W1_minの前記最外周方向主溝側の測定点からタイヤ接地端までの距離D1とが、0.40≦W1_min/D1≦0.60の関係を有する請求項に記載の空気入りタイヤ。
【請求項3】
前記周方向細溝の溝幅W2と、前記内側ラグ溝の溝幅W3および前記外側ラグ溝の溝幅W4とが、0.10≦W2/W3≦0.50および0.10≦W2/W4≦0.50の関係を有する請求項1または2に記載の空気入りタイヤ。
【請求項4】
前記内側ブロックの前記周方向細溝側のエッジ部および前記外側ブロックの前記周方向細溝側のエッジ部が、タイヤ周方向にそれぞれ連続する請求項1〜のいずれか一つに記載の空気入りタイヤ。
【請求項5】
前記内側ブロックが、一方の端部にて前記内側ブロック内で終端すると共にタイヤ幅方向外側に延在して他方の端部にて前記最外周方向主溝に開口するサイプを有する請求項1〜のいずれか一つに記載の空気入りタイヤ。
【請求項6】
前記外側ブロックが、一方の端部にて前記外側ブロック内で終端すると共にタイヤ幅方向外側に延在してタイヤ接地端に至るサイプを有する請求項1〜のいずれか一つに記載の空気入りタイヤ。
【請求項7】
前記周方向細溝の溝深さH2と、前記最外周方向主溝の溝深さH1とが、0.40≦H2/H1≦0.70の関係を有する請求項1〜のいずれか一つに記載の空気入りタイヤ。
【請求項8】
前記内側ラグ溝の溝深さH3および前記外側ラグ溝の溝深さH4と、前記最外周方向主溝の溝深さH1とが、0.30≦H3/H1≦0.60および0.30≦H4/H1≦0.60の関係を有する請求項1〜のいずれか一つに記載の空気入りタイヤ。
【請求項9】
前記周方向細溝が、複数の屈曲点をもつ屈曲形状を有する請求項1〜のいずれか一つに記載の空気入りタイヤ。
【請求項10】
前記内側ラグ溝および前記外側ラグ溝が、前記周方向細溝の前記屈曲点に連通する請求項に記載の空気入りタイヤ。
【請求項11】
前記周方向細溝の前記屈曲点における屈曲角αが、1[deg]≦α≦30[deg]の範囲内にある請求項9または10に記載の空気入りタイヤ。
【請求項12】
前記周方向細溝の溝幅W2が、1.0[mm]≦W2≦3.0[mm]の範囲内にある請求項1〜11のいずれか一つに記載の空気入りタイヤ。
【請求項13】
タイヤ赤道面から前記周方向細溝までの距離Lsと、タイヤ赤道面からタイヤ接地端までの距離Lとが、0.70≦Ls/L≦0.90の関係を有する請求項1〜12のいずれか一つに記載の空気入りタイヤ。
【請求項14】
トレッドゴムが、50以上75以下のゴム硬度を有する請求項1〜13のいずれか一つに記載の空気入りタイヤ。
【請求項15】
JATMA規定の最高空気圧が350[kPa]以上600[kPa]以下の範囲内にある小型トラック用タイヤを適用対象とする請求項1〜14のいずれか一つに記載の空気入りタイヤ。
【請求項16】
1つの前記内側ブロックが、一方の端部にて前記内側ブロック内で終端すると共にタイヤ幅方向外側に延在して他方の端部にて前記最外周方向主溝に開口する複数のセミクローズドサイプと、両端部にて前記内側ブロックの内部で終端するクローズドサイプとを有し、且つ、前記クローズドサイプと前記切欠部とが、前記ブロック内にてタイヤ周方向の同位置に配置される請求項1〜15のいずれか1つに記載の空気入りタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤの耐偏摩耗性を向上できる空気入りタイヤに関する。
【背景技術】
【0002】
近年の小型トラック用スタッドレスタイヤでは、タイヤの氷上性能および雪上性能を向上させるために、サイプを有する複数のブロック列を備えたトラクションパターンが採用されている。かかる従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−12671号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
一方で、上記のようなトラクションパターンを有する構成では、ブロックの偏摩耗(特に、ヒール・アンド・トゥ摩耗)を抑制すべき課題がある。
【0005】
そこで、この発明は、上記に鑑みてなされたものであって、タイヤの耐偏摩耗性を向上できる空気入りタイヤを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、この発明にかかる空気入りタイヤは、タイヤ周方向に延在する複数の周方向主溝と、前記周方向主溝に区画されて成る複数の陸部とを備える空気入りタイヤであって、タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶと共に、前記最外周方向主溝に区画されたタイヤ幅方向外側の前記陸部をショルダー陸部と呼ぶときに、前記ショルダー陸部が、タイヤ周方向に延在する1本の周方向細溝と、前記周方向細溝からタイヤ幅方向内側に延在して前記最外周方向主溝に開口する複数の内側ラグ溝と、前記周方向細溝からタイヤ幅方向外側に延在してタイヤ接地端に至る複数の外側ラグ溝と、前記最外周方向主溝、前記周方向細溝および前記複数の内側ラグ溝に区画されて成る複数の内側ブロックと、前記周方向細溝、タイヤ接地端および前記複数の外側ラグ溝に区画されて成る複数の外側ブロックとを備え、且つ、前記内側ブロックと前記外側ブロックとが、前記周方向細溝を中心としてタイヤ周方向に千鳥状に配置され、前記内側ブロックの前記最外周方向主溝側のエッジ部がタイヤ幅方向に振幅をもつステップ形状を有し、前記内側ブロックが切欠部を前記ステップ形状の段差部に有し、且つ、前記ステップ形状の段差部がタイヤ周方向に連続した踏面を有することを特徴とする。
【発明の効果】
【0007】
この発明にかかる空気入りタイヤでは、内側ブロックと外側ブロックとが周方向細溝を中心としてタイヤ周方向に千鳥状に配置されるので、タイヤ接地時にて周方向細溝が塞がることにより、内側ブロックと外側ブロックとがタイヤ周方向に連続的に噛み合う。これにより、ショルダー陸部のタイヤ周方向の剛性が確保されて、ブロックの偏摩耗(特に、ヒール・アンド・トゥ摩耗)が抑制される利点がある。
【図面の簡単な説明】
【0008】
図1図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。
図2図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。
図3図3は、図2に記載したトレッドパターンのショルダー陸部を示す説明図である。
図4図4は、図2に記載したトレッドパターンのショルダー陸部を示す説明図である。
図5図5は、三次元サイプの一例を示す説明図である。
図6図6は、三次元サイプの一例を示す説明図である。
図7図7は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
【発明を実施するための形態】
【0009】
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
【0010】
[空気入りタイヤ]
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域を示している。また、同図は、空気入りタイヤの一例として、小型トラック用スタッドレスタイヤを示している。なお、同図において、符号CLは、タイヤ赤道面である。また、タイヤ幅方向とは、タイヤ回転軸(図示省略)に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
【0011】
この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。
【0012】
一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。
【0013】
カーカス層13は、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13は、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。
【0014】
ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上40[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ベルトカバー143は、コートゴムで被覆されたスチールあるいは有機繊維材から成る複数のベルトコードを圧延加工して構成され、絶対値で45[deg]以上70[deg]以下のベルト角度を有する。また、ベルトカバー143は、交差ベルト141、142のタイヤ径方向外側に積層されて配置される。
【0015】
トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびビードフィラー12、12のタイヤ幅方向外側にそれぞれ配置されて、左右のビード部を構成する。
【0016】
なお、トレッドゴム15(特に、トレッド面を構成するキャップゴム)は、50以上75以下のゴム硬度を有することが好ましく、60以上70以下のゴム硬度を有することがより好ましい。ゴム硬度とは、JIS−K6263に準拠したJIS−A硬度をいい、20[℃]の条件下にて測定される。
【0017】
[トレッドパターン]
図2は、図1に記載した空気入りタイヤのトレッド面を示す平面図である。同図は、スタッドレスタイヤのトラクションパターンを示している。なお、図2において、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。また、符号Tは、タイヤ接地端である。
【0018】
図2に示すように、この空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31〜33と、タイヤ幅方向に延在する複数のラグ溝41〜44とをトレッド部に備える。
【0019】
周方向主溝とは、摩耗末期を示すウェアインジケータを有する周方向溝であり、一般に、5.0[mm]以上の溝幅および7.5[mm]以上の溝深さを有する。
【0020】
溝幅は、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、溝開口部における左右の溝壁の距離の最大値として測定される。陸部が切欠部や面取部をエッジ部に有する構成では、溝長さ方向を法線方向とする断面視にて、トレッド踏面と溝壁の延長線との交点を基準として、溝幅が測定される。また、溝がタイヤ周方向にジグザグ状あるいは波状に延在する構成では、溝壁の振幅の中心線を基準として、溝幅が測定される。
【0021】
溝深さは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて、トレッド踏面から溝底までの距離の最大値として測定される。また、溝が部分的な凹凸部やサイプを溝底に有する構成では、これらを除外して溝深さが測定される。
【0022】
規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
【0023】
ここで、タイヤ幅方向の最も外側にある左右の周方向主溝22、22を最外周方向主溝と呼ぶ。また、左右の最外周方向主溝22、22よりもタイヤ幅方向内側にある陸部31、32をセンター陸部と呼ぶ。また、左右の最外周方向主溝22、22よりもタイヤ幅方向外側にある陸部33、33をショルダー陸部と呼ぶ。
【0024】
例えば、図2の構成では、4本の周方向主溝21、22がタイヤ赤道面CLを中心として左右対称に配置されている。また、これらの周方向主溝21、22により、3列のセンター陸部31、32、32と、左右一対のショルダー陸部33、33とが区画されている。また、左右のショルダー陸部33、33が、左右のタイヤ接地端T、T上にそれぞれ配置されている。
【0025】
しかし、これに限らず、周方向主溝21、22がタイヤ赤道面CLを中心として左右非対称に配置されても良い(図示省略)。また、周方向主溝が、タイヤ赤道面CL上に配置されても良い(図示省略)。また、周方向主溝が、3本あるいは5本以上の周方向主溝が配置されても良い(図示省略)。
【0026】
[ショルダー陸部]
図3および図4は、図2に記載したトレッドパターンのショルダー陸部を示す説明図である。これらの図において、図3は、一方のショルダー陸部33の拡大平面図を示し、図4は、ショルダー陸部33のタイヤ子午線方向の拡大断面図を示している。
【0027】
図2および図3に示すように、この空気入りタイヤ1では、ショルダー陸部33が、1本の周方向細溝23と、複数の内側ラグ溝43および複数の外側ラグ溝44と、これらの溝23、43、44に区画されて成る複数の内側ブロック331および複数の外側ブロック332とを備える。
【0028】
周方向細溝23は、タイヤ周方向に延在する細溝である(図2および図3参照)。この周方向細溝23は、ショルダー陸部33の接地面内に配置される。また、周方向細溝23は、ストレート形状を有しても良いし、屈曲形状あるいは波状形状を有しても良い。
【0029】
例えば、図2の構成では、1本の周方向細溝23が、左右のショルダー陸部33、33にそれぞれ配置されている。また、周方向細溝23が、最外周方向主溝22とタイヤ接地端Tとの間の領域に配置されて、ショルダー陸部33の接地面をタイヤ幅方向に二分割している。
【0030】
また、図3に示すように、周方向細溝23が、複数の屈曲点(図中の「○」で示す点)をもつ屈曲形状を有し、タイヤ幅方向に振幅を有しつつタイヤ周方向にジグザグ状に延在している。かかる構成では、タイヤ接地時にて周方向細溝23が塞がることにより、周方向細溝23の対向する溝壁がタイヤ周方向に相互に噛み合う。これにより、ショルダー陸部33のタイヤ周方向の剛性が確保される。
【0031】
また、図3において、周方向細溝23の屈曲形状の屈曲角αが、1[deg]≦α≦30[deg]の範囲内にあることが好ましく、5[deg]≦α≦25[deg]の範囲内にあることがより好ましい。これにより、周方向細溝23の屈曲角αが適正化される。
【0032】
屈曲角αは、周方向細溝23の屈曲形状の屈曲点における溝中心線とタイヤ周方向とのなす角であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
【0033】
また、図3において、周方向細溝23の溝幅W2が、1.0[mm]≦W2≦3.0[mm]の範囲内にあることが好ましく、1.7[mm]≦W2≦2.3[mm]の範囲内にあることがより好ましい。これにより、周方向細溝23の溝幅W2が適正化される。
【0034】
周方向細溝23の溝幅W2は、溝開口部における対向する溝壁間の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。したがって、波状形状、ジグザグ形状などの振幅を有する溝については、その振幅によらずに溝幅が測定される。
【0035】
また、図4において、周方向細溝23の溝深さH2と、最外周方向主溝22の溝深さH1とが、0.40≦H2/H1≦0.70の関係を有することが好ましい。これにより、周方向細溝23の溝深さH2が適正化される。
【0036】
また、タイヤ赤道面CLから周方向細溝23までの距離Lsと、タイヤ赤道面CLからタイヤ接地端Tまでの距離Lとが、0.70≦Ls/L≦0.90の関係を有することが好ましい。これにより、タイヤ接地面内における周方向細溝23の位置が適正化される。
【0037】
タイヤ接地端Tとは、タイヤが規定リムに装着されて規定内圧を付与されると共に静止状態にて平板に対して垂直に置かれて規定荷重に対応する負荷を加えられたときのタイヤと平板との接触面におけるタイヤ軸方向の最大幅位置をいう。
【0038】
内側ラグ溝43は、周方向細溝23からタイヤ幅方向内側に延在して最外周方向主溝22に開口する横溝である(図2および図3参照)。すなわち、内側ラグ溝43は、最外周方向主溝22と周方向細溝23との間の領域に配置されて、タイヤ幅方向に延在する。また、内側ラグ溝43は、一方の端部にて周方向細溝23に開口し、他方の端部にて最外周方向主溝22に開口する。これにより、最外周方向主溝22と周方向細溝23とが、内側ラグ溝43を介して連通する。また、複数の内側ラグ溝43が、タイヤ周方向に所定間隔で配置される。
【0039】
外側ラグ溝44は、周方向細溝23からタイヤ幅方向外側に延在してタイヤ接地端Tに至る横溝である(図2および図3参照)。すなわち、外側ラグ溝44は、少なくとも周方向細溝23とタイヤ接地端Tとの間の領域に配置されて、タイヤ幅方向に延在する。また、外側ラグ溝44は、一方の端部にて周方向細溝23に開口し、また、他方の端部にて少なくともタイヤ接地端Tまで至る。また、複数の外側ラグ溝44が、タイヤ周方向に所定間隔で配置される。また、外側ラグ溝44は、タイヤ接地端Tを越えてトレッド端まで延在することが好ましい。これにより、ショルダー陸部33の排水性が向上する。
【0040】
トレッド端とは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときのタイヤのトレッド模様部分の両端部をいう。
【0041】
例えば、図3の構成では、内側ラグ溝43と外側ラグ溝44とが、周方向細溝23を中心としてタイヤ周方向に千鳥状に配置されている。言い換えると、内側ラグ溝43と外側ラグ溝44とが、タイヤ周方向に交互にオフセットして配置されている。また、周方向細溝23に対する内側ラグ溝43の開口部と外側ラグ溝44の開口部とが、相互に異なる位置にあり、また、タイヤ周方向に左右交互に配置されている。
【0042】
また、上記のように、周方向細溝23が、タイヤ周方向にジグザグ状に延在する屈曲形状を有している。そして、内側ラグ溝43および外側ラグ溝44が、周方向細溝23の屈曲点に対して凸側からそれぞれ接続している。これにより、内側ブロック331および外側ブロック332の周方向細溝23側のエッジ部が凸状となり、内側ブロック331および外側ブロック332の剛性が高められている。
【0043】
また、図3において、周方向細溝23の溝幅W2と、内側ラグ溝43の溝幅W3および外側ラグ溝44の溝幅W4とが、0.10≦W2/W3≦0.50および0.10≦W2/W4≦0.50の関係を有することが好ましい。
【0044】
外側ラグ溝44の溝幅W4は、タイヤ接地面内における溝幅の最大値として測定される。
【0045】
また、図4において、内側ラグ溝43の溝深さH3および外側ラグ溝44の溝深さH4と、最外周方向主溝22の溝深さH1とが、0.30≦H3/H1≦0.60および0.30≦H4/H1≦0.60の関係を有することが好ましく、0.40≦H3/H1≦0.50および0.40≦H4/H1≦0.50の関係を有することがより好ましい。また、内側ラグ溝43の溝深さH3および外側ラグ溝44の溝深さH4と、周方向細溝23の溝深さH2とが、H3<H2およびH4<H2の関係を有している。したがって、内側ラグ溝43および外側ラグ溝44は、最外周方向主溝22および周方向細溝23よりも浅い。これにより、ショルダー陸部33のラグ溝43、44の溝深さH3、H4が適正化されている。
【0046】
複数の内側ブロック331は、周方向主溝22、周方向細溝23および複数の内側ラグ溝43に区画されて成る(図2および図3参照)。これらの内側ブロック331は、周方向主溝22と周方向細溝23との間の領域にて、タイヤ周方向に一列に配置される。
【0047】
複数の外側ブロック332は、周方向細溝23、タイヤ接地端Tおよび複数の外側ラグ溝44に区画されて成る(図2および図3参照)。これらの外側ブロック332は、周方向細溝23とタイヤ接地端Tとの間の領域にて、タイヤ周方向に一列に配置される。
【0048】
また、図2に示すように、内側ブロック331および外側ブロック332が、周方向細溝23を中心としてタイヤ周方向に千鳥状に配置される。すなわち、上記のように、内側ラグ溝43および外側ラグ溝44が、タイヤ周方向にオフセットして配置されて周方向細溝23に対して左右交互に接続することにより、内側ブロック331および外側ブロック332が、周方向細溝23を中心としてタイヤ周方向に位置をずらしつつ左右交互に配置される。したがって、ショルダー陸部33が、内側ブロック331および外側ブロック332から成る2列のブロック列を備える。かかる構成では、周方向細溝23が屈曲形状を有し、周方向細溝23が接地外力により塞がることにより、内側ブロック331と外側ブロック332とがタイヤ周方向に相互に噛み合う。これにより、タイヤ接地時におけるショルダー陸部33のタイヤ周方向の剛性が確保される。
【0049】
また、図3に示すように、内側ブロック331および外側ブロック332が、タイヤ周方向に連続した踏面を有する。すなわち、内側ブロック331および外側ブロック332が、ブロック331、332を貫通する細溝やサイプを備えておらず、タイヤ周方向に分断されていない。これにより、ブロック331、332のタイヤ周方向の剛性が確保されて、タイヤ接地時におけるブロックの倒れ込みが抑制される。
【0050】
特に、図3の構成では、内側ブロック331の周方向細溝23側のエッジ部および外側ブロック332の周方向細溝23側のエッジ部が、タイヤ周方向にそれぞれ連続した構造を有している。かかる構成では、細溝やサイプが周方向細溝23に開口する構成(図示省略)と比較して、タイヤ接地時にて周方向細溝23が塞がったときに、内側ブロック331と外側ブロック332との噛み合い力が増加する。これにより、タイヤ接地時におけるブロックの倒れ込みが効果的に抑制される。
【0051】
また、図3に示すように、内側ブロック331の周方向主溝22側のエッジ部が、タイヤ幅方向に振幅をもつステップ形状を有する。これにより、ショルダー陸部33のトラクション成分が増加して、タイヤの氷上性能および雪上性能が高められている。
【0052】
例えば、図3の構成では、内側ブロック331の周方向主溝22側のエッジ部が、2つのステップ(符号省略)をもつステップ形状を有している。また、これらのステップが、ブロック踏面にてタイヤ周方向に略平行な直線形状を有し、タイヤ幅方向に相互にオフセットして配置されている。また、タイヤ周方向に隣り合う内側ブロック331、331のエッジ部のステップが、内側ラグ溝43を挟んで、タイヤ幅方向にオフセットして配置されている。これにより、ショルダー陸部33の周方向主溝22側のエッジ部が、タイヤ幅方向にステップ状に変化しつつタイヤ周方向に延在するステップ形状を有している。
【0053】
また、図3において、ステップ形状を有するエッジ部のステップを基準とした内側ブロック331の最小幅W1_minと、最小幅W1_minの周方向主溝22側の測定点からタイヤ接地端Tまでの距離D1とが、0.40≦W1_min/D1≦0.60の関係を有することが好ましい。これにより、内側ブロック331の幅が適正化される。
【0054】
内側ブロック331の最小幅W1_minは、ブロック踏面におけるエッジ部の直線部(ステップ)を基準とした内側ブロック331のタイヤ幅方向の距離の最小値であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
【0055】
距離D1は、ショルダー陸部33の接地幅の最小値であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
【0056】
なお、図3の構成では、内側ブロック331のステップ形状の段差量D2が、約2[mm]に設定されている。
【0057】
また、図3に示すように、内側ブロック331が、切欠部6をステップ形状の段差部に有することが好ましい。これにより、ブロック331のエッジ部の滑り量が均一化される。例えば、図3の構成では、内側ブロック331の周方向主溝22側のエッジ部が2つのステップをもつステップ形状を有し、これらのステップの接続部(段差部)に、タイヤ幅方向に延在する1つの切欠部6が形成されている。
【0058】
また、図3において、ステップ形状を有するエッジ部のステップを基準とした切欠部6の幅D3と、内側ブロック331の最小幅W1_minとが、0.05≦D3/W1_min≦0.25であることを要する。これにより、切欠部の機能が確保され、また、内側ブロック331の剛性が確保される。
【0059】
[サイプ]
また、図3の構成では、内側ブロック331および外側ブロック332が、複数のサイプ5をそれぞれ有している。また、これらのサイプ5が、タイヤ幅方向に延在するジグザグ形状を有し、タイヤ周方向に所定間隔で配置されている。これにより、ブロック331、332のエッジ成分が増加して、スタッドレスタイヤとしてのトラクション性能が高められている。
【0060】
また、図3に示すように、内側ブロック331および外側ブロック332のサイプ5が、セミクローズド構造を有している。具体的には、内側ブロック331のサイプ5が、一方の端部にて内側ブロック331内で終端し、タイヤ幅方向外側に延在して、他方の端部にて最外周方向主溝22に開口している。このため、内側ブロック331の周方向細溝23側のエッジ部が、サイプ5に分断されることなく、タイヤ周方向に連続する構造を有している。また、外側ブロック332のサイプ5が、一方の端部にて外側ブロック332内で終端し、タイヤ幅方向外側に延在して、タイヤ接地端Tで終端している。このため、外側ブロック332の周方向細溝23側のエッジ部が、サイプ5に分断されることなく、タイヤ周方向に連続する構造を有している。これにより、ブロック331、332のタイヤ周方向の剛性が高められている。
【0061】
サイプとは、1.0[mm]未満のサイプ幅を有する切り込みをいう。
【0062】
なお、サイプ5は、二次元サイプであっても良いし、三次元サイプであっても良い。例えば、図3の構成では、ショルダー陸部33のサイプ5が、いずれも三次元サイプである。
【0063】
二次元サイプとは、サイプ長さ方向を法線方向とする断面視(サイプ幅方向かつサイプ深さ方向を含む断面視)にて直線形状のサイプ壁面を有するサイプである。二次元サイプは、トレッド踏面にて、ストレート形状を有しても良いし、ジグザグ形状、波状形状あるいは円弧形状を有しても良い。
【0064】
三次元サイプとは、サイプ長さ方向を法線方向とする断面視にて、サイプ幅方向に屈曲した形状のサイプ壁面を有するサイプである。三次元サイプは、二次元サイプと比較して、対向するサイプ壁面の噛合力が強いため、タイヤ接地時におけるブロックの倒れ込みが効果的に抑制される。三次元サイプは、トレッド踏面にて、ストレート形状を有しても良いし、ジグザグ形状、波状形状あるいは円弧形状を有しても良い。かかる三次元サイプには、例えば、以下のものが挙げられる(図5および図6参照)。
【0065】
図5および図6は、三次元サイプの一例を示す説明図である。これらの図は、三次元サイプのサイプ壁面を示している。
【0066】
図5の三次元サイプ5では、サイプ壁面が、三角錐と逆三角錐とをサイプ長さ方向に連結した構造を有する。言い換えると、サイプ壁面が、トレッド面側のジグザグ形状と底部側のジグザグ形状とを互いにタイヤ幅方向にピッチをずらせ、該トレッド面側と底部側とのジグザグ形状の相互間で互いに対向し合う凹凸を有する。また、サイプ壁面が、これらの凹凸において、タイヤ回転方向に見たときの凹凸で、トレッド面側の凸屈曲点と底部側の凹屈曲点との間、トレッド面側の凹屈曲点と底部側の凸屈曲点との間、トレッド面側の凸屈曲点と底部側の凸屈曲点とで互いに隣接し合う凸屈曲点同士の間をそれぞれ稜線で結ぶと共に、これら稜線間をタイヤ幅方向に順次平面で連結することにより形成される。また、一方のサイプ壁面が、凸状の三角錐と逆三角錐とを交互にタイヤ幅方向に並べた凹凸面を有し、他方のサイプ壁面が、凹状の三角錐と逆三角錐とを交互にタイヤ幅方向に並べた凹凸面を有する。そして、サイプ壁面が、少なくともサイプの両端最外側に配置した凹凸面をブロックの外側に向けている。なお、このような三次元サイプとして、例えば、特許第3894743号公報に記載される技術が知られている。
【0067】
また、図6の三次元サイプ5では、サイプ壁面が、ブロック形状を有する複数の角柱をサイプ深さ方向に対して傾斜させつつサイプ深さ方向およびサイプ長さ方向に連結した構造を有する。言い換えると、サイプ壁面が、トレッド面においてジグザグ形状を有する。また、サイプ壁面が、ブロックの内部ではタイヤ径方向の2箇所以上でタイヤ周方向に屈曲してタイヤ幅方向に連なる屈曲部を有し、また、該屈曲部においてタイヤ径方向に振幅を持ったジグザグ形状を有する。また、サイプ壁面が、タイヤ周方向の振幅を一定にする一方で、トレッド面の法線方向に対するタイヤ周方向への傾斜角度をトレッド面側の部位よりもサイプ底側の部位で小さくし、屈曲部のタイヤ径方向の振幅をトレッド面側の部位よりもサイプ底側の部位で大きくする。なお、このような三次元サイプとして、例えば、特許第4316452号公報に記載される技術が知られている。
【0068】
[センター陸部]
図2に示すように、この空気入りタイヤ1では、センター陸部31、32が複数のラグ溝41、42を備えている。また、各ラグ溝41、42が、タイヤ幅方向に延在してセンター陸部31、32を貫通し、センター陸部31、32を区画する左右の周方向主溝21、22;21、22にそれぞれ開口している。また、複数のラグ溝41、42が、タイヤ周方向に所定間隔をあけて配置されている。これにより、各センター陸部31、32が、複数のラグ溝41、42によりタイヤ周方向に分断されてブロック列となっている。
【0069】
また、図2に示すように、最外周方向主溝22に区画されたセンター陸部32のブロックのエッジ部が、ショルダー陸部33の内側ブロック331のエッジ部に対応するステップ形状を有している。具体的には、センター陸部32のブロックの最外周方向主溝22側のエッジ部が、2つのステップをもつステップ形状を有している。また、これらのステップが、ブロック踏面にてタイヤ周方向に略平行な直線形状を有し、タイヤ幅方向に相互にオフセットして配置されている。また、センター陸部32のブロックのエッジ部と、ショルダー陸部33の内側ブロック331のエッジ部とが、最外周方向主溝22の溝幅が一定となるように、ステップ形状の位相を同期させて配置されている。これにより、最外周方向主溝22が、タイヤ幅方向にステップ状に屈曲しつつ、一定の溝幅にてタイヤ周方向に延在している。
【0070】
[効果]
以上説明したように、この空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21、22と、これらの周方向主溝21、22に区画されて成る複数の陸部31〜33とを備える(図2参照)。また、ショルダー陸部33が、タイヤ周方向に延在する1本の周方向細溝23と、周方向細溝23からタイヤ幅方向内側に延在して最外周方向主溝22に開口する複数の内側ラグ溝43と、周方向細溝23からタイヤ幅方向外側に延在してタイヤ接地端に至る複数の外側ラグ溝44と、最外周方向主溝22、周方向細溝23および複数の内側ラグ溝43に区画されて成る複数の内側ブロック331と、周方向細溝23、タイヤ接地端Tおよび複数の外側ラグ溝44に区画されて成る複数の外側ブロック332とを備える(図3参照)。また、内側ブロック331と外側ブロック332とが、周方向細溝23を中心としてタイヤ周方向に千鳥状に配置される。
【0071】
かかる構成では、ショルダー陸部33が周方向細溝23を備えることにより、タイヤの氷雪上性能が向上する利点がある。
【0072】
一方で、かかる周方向細溝23を備える構成では、ショルダー陸部33のブロック剛性が低下して、ブロックにヒール・アンド・トゥ摩耗が生じ易いという課題がある。
【0073】
この点において、上記の構成では、内側ブロック331と外側ブロック332とが周方向細溝23を中心としてタイヤ周方向に千鳥状に配置されるので、タイヤ接地時にて周方向細溝23が塞がることにより、内側ブロック331と外側ブロック332とがタイヤ周方向に連続的に噛み合う。すると、ショルダー陸部33のタイヤ周方向の剛性が確保されて、タイヤ接地時におけるブロック331、332の倒れ込みが抑制される。これにより、ブロック331、332の偏摩耗(特に、ヒール・アンド・トゥ摩耗)が抑制される利点がある。
【0074】
また、この空気入りタイヤ1では、内側ブロック331の最外周方向主溝22側のエッジ部が、タイヤ幅方向に振幅をもつステップ形状を有する(図3参照)。これにより、ショルダー陸部33のトラクション成分が増加して、タイヤの氷上性能および雪上性能が向上する利点がある。
【0075】
また、この空気入りタイヤ1では、ステップ形状のステップを基準とした内側ブロック331の最小幅W1_minと、最小幅W1_minの最外周方向主溝22側の測定点からタイヤ接地端Tまでの距離D1とが、0.40≦W1_min/D1≦0.60の関係を有する(図3参照)。かかる構成では、周方向細溝23がショルダー陸部33の略中央に配置されるので、周方向細溝23の左右のブロック331、332の剛性が均一化される。これにより、ブロック331、332の偏摩耗が抑制される利点がある。
【0076】
また、この空気入りタイヤ1では、内側ブロック331が、切欠部6をエッジ部のステップ形状の段差部に有する(図3参照)。これにより、ブロック331のエッジ部の滑り量が均一化されて、ブロック331の偏摩耗が抑制される利点がある。
【0077】
また、この空気入りタイヤ1では、周方向細溝23の溝幅W2と、内側ラグ溝43の溝幅W3および外側ラグ溝44の溝幅W4とが、0.10≦W2/W3≦0.50および0.10≦W2/W4≦0.50の関係を有する(図3参照)。これにより、周方向細溝23の溝幅W2が適正化される利点がある。すなわち、周方向細溝23の溝幅W2の下限が上記の範囲内にあることにより、周方向細溝23による氷雪上性能の向上効果が適正に確保される。また、周方向細溝23の溝幅W2の上限が上記の範囲内にあることにより、タイヤ接地時にて、周方向細溝23が適正に塞がり、左右のブロック331、332の噛み合い力が適正に確保される。これにより、ブロック331、332の倒れ込みが抑制されて、ブロック331の偏摩耗が抑制される。
【0078】
また、この空気入りタイヤ1では、内側ブロック331の周方向細溝23側のエッジ部および外側ブロック332の周方向細溝23側のエッジ部が、タイヤ周方向にそれぞれ連続する(図3参照)。かかる構成では、ブロックのエッジ部に細溝やサイプが開口する構成(図示省略)と比較して、タイヤ接地時にて周方向細溝23が塞がったときに、内側ブロック331と外側ブロック332との噛み合い力が増加する。これにより、タイヤ接地時におけるブロックの倒れ込みが効果的に抑制される利点がある。
【0079】
また、この空気入りタイヤ1では、内側ブロック331が、一方の端部にて内側ブロック331内で終端すると共にタイヤ幅方向外側に延在して他方の端部にて最外周方向主溝22に開口するサイプ5を有する(図3参照)。これにより、ブロック331のエッジ成分が増加して、タイヤの氷雪上性能が向上する利点がある。また、サイプ5が、ブロック331を貫通しないことにより、周方向細溝23が塞がったときの内側ブロック331と外側ブロック332との噛み合い力が増加して、タイヤ接地時におけるブロックの倒れ込みが効果的に抑制される利点がある。
【0080】
また、この空気入りタイヤ1では、外側ブロック332が、一方の端部にて外側ブロック332内で終端すると共にタイヤ幅方向外側に延在してタイヤ接地端Tに至るサイプ5を有する(図3参照)。これにより、ブロック332のエッジ成分が増加して、タイヤの氷雪上性能が向上する利点がある。また、サイプ5が、ブロック332を貫通しないことにより、周方向細溝23が塞がったときの内側ブロック331と外側ブロック332との噛み合い力が増加して、タイヤ接地時におけるブロックの倒れ込みが効果的に抑制される利点がある。
【0081】
また、この空気入りタイヤ1では、周方向細溝23の溝深さH2と、最外周方向主溝22の溝深さH1とが、0.40≦H2/H1≦0.70の関係を有する(図4参照)。これにより、周方向細溝23の溝深さH2が適正化される利点がある。すなわち、0.40≦H2/H1であることにより、周方向細溝23の溝深さH2が確保されて、周方向細溝23による氷雪上性能の向上作用が適正に得られる。また、H2/H1≦0.70であることにより、ショルダー陸部33の剛性が適正に確保されて、ブロック331、332の偏摩耗が抑制される。
【0082】
また、この空気入りタイヤ1では、内側ラグ溝43の溝深さH3および外側ラグ溝44の溝深さH4と、最外周方向主溝22の溝深さH1とが、0.30≦H3/H1≦0.60および0.30≦H4/H1≦0.60の関係を有する(図4参照)。これにより、ラグ溝43、44の溝深さH3、H4が適正化される利点がある。すなわち、0.30≦H3/H1および0.30≦H4/H1であることにより、ラグ溝43、44の溝深さH3、H4が確保されて、タイヤの氷雪上性能が確保される。また、H3/H1≦0.60およびH4/H1≦0.60であることにより、ショルダー陸部33の剛性が適正に確保されて、ブロック331、332の偏摩耗が抑制される。
【0083】
また、この空気入りタイヤ1では、周方向細溝23が、複数の屈曲点をもつ屈曲形状を有する(図3参照)。かかる構成では、タイヤ接地時にて周方向細溝23が塞がることにより、周方向細溝23の対向する溝壁がタイヤ周方向に相互に噛み合う。これにより、接地外力によるブロック331、332の倒れ込みが抑制されて、ショルダー陸部33の偏摩耗が効果的に抑制される利点がある。
【0084】
また、この空気入りタイヤ1では、内側ラグ溝43および外側ラグ溝44が、周方向細溝23の屈曲点に連通する(図3参照)。これにより、タイヤ接地時におけるブロック331、332の倒れ込みが抑制されて、陸部33の偏摩耗が効果的に抑制される利点がある。
【0085】
また、この空気入りタイヤ1では、周方向細溝23の屈曲部の屈曲角αが、1[deg]≦α≦30[deg]の範囲内にある(図3参照)。これにより、周方向細溝23の屈曲角αが適正化される利点がある。すなわち、1[deg]≦αであることにより、タイヤ接地時における周方向細溝23の溝壁の噛み合い力が形成されて、ブロック331、332の倒れ込みの抑制作用が得られる。また、α≦30[deg]であることにより、周方向細溝23における排雪性が確保される。
【0086】
また、この空気入りタイヤ1では、周方向細溝23の溝幅W2が、1.0[mm]≦W2≦3.0[mm]の範囲内にある(図3参照)。これにより、周方向細溝23の溝幅W2が適正化される利点がある。すなわち、周方向細溝23の溝幅W2の下限が上記の範囲内にあることにより、周方向細溝23による氷雪上性能の向上効果が適正に確保される。また、周方向細溝23の溝幅W2の上限が上記の範囲内にあることにより、タイヤ接地時にて、周方向細溝23が適正に塞がり、左右のブロック331、332の噛み合い力が適正に確保される。これにより、ブロック331、332の倒れ込みが抑制されて、ブロック331の偏摩耗が抑制される。
【0087】
また、この空気入りタイヤ1では、タイヤ赤道面CLから周方向細溝23までの距離Lsと、タイヤ赤道面CLからタイヤ接地端Tまでの距離Lとが、0.70≦Ls/L≦0.90の関係を有する(図2参照)。これにより、周方向細溝23のタイヤ幅方向の位置が適正化される利点がある。例えば、周方向細溝23の配置を上記のように設定することにより、車両の空荷時にてタイヤ接地幅が小さいときにも、周方向細溝23を接地面内に配置できる。これにより、車両の積載条件に関わらず、周方向細溝23の機能を適正に確保できる。
【0088】
また、この空気入りタイヤ1では、トレッドゴム15が、50以上75以下のゴム硬度を有する。これにより、トレッド部の剛性が適正に確保される利点がある。
【0089】
[適用対象]
また、この空気入りタイヤ1は、70[%]以下の偏平率を有する低偏平タイヤに適用され、特に、JATMA規定の最高空気圧が350[kPa]以上600[kPa]以下の範囲内にある小型トラック用タイヤを適用対象とすることが好ましい。小型トラック用タイヤは、主として地場走行に用いられるため、ストップ・アンド・ゴーの繰り返しにより、ヒール・アンド・トゥ摩耗が発生し易い。したがって、かかる小型トラック用タイヤを適用対象とすることにより、ヒール・アンド・トゥ摩耗の抑制効果を顕著に得られる利点がある。
【実施例】
【0090】
図7は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
【0091】
この性能試験では、相互に異なる複数の試験タイヤについて、耐ヒール・アンド・トゥ摩耗性能に関する評価が行われた。この性能試験では、タイヤサイズ205/85R16 117/115Lの小型トラック用タイヤがJATMA規定の適用リムに組み付けられ、この試験タイヤにJATMA規定の最高空気圧および最大負荷が付与される。
【0092】
また、試験タイヤが、試験車両である3トン積みトラックの総輪に装着され、試験車両が平均速度60[km/h]にて5万[km]の舗装路を走行し、ショルダー陸部のブロックに発生した偏摩耗が観察される。そして、この観察結果に基づいて、従来例を基準(100)とした指数評価が行われる。この数値は大きいほど好ましい。
【0093】
実施例1〜12の試験タイヤは、図1図4に記載した構成を有する。また、タイヤ赤道面CLからタイヤ接地端Tまでの距離LがL=80[mm]であり、最外周方向主溝22の最大溝深さH1がH1=13.5[mm]である。
【0094】
従来例の試験タイヤでは、実施例1の構成において、ショルダー陸部33が、周方向細溝23を備えておらず、1列のブロック列から成る。比較例の試験タイヤは、実施例1の構成において、内側ブロック331および外側ブロック332が、千鳥配列ではなく、格子配列(タイヤ周方向およびタイヤ幅方向に位置を揃えた配置)となっている。
【0095】
試験結果に示すように、実施例1〜12の試験タイヤでは、タイヤの耐偏摩耗性能、氷上性能および雪上性能が向上することが分かる。
【符号の説明】
【0096】
1:空気入りタイヤ、11:ビードコア、12:ビードフィラー、13:カーカス層、14:ベルト層、141、142:交差ベルト、143:ベルトカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム、21、22:周方向主溝、23:周方向細溝、31、32:センター陸部、33:ショルダー陸部、331:内側ブロック、332:外側ブロック、41、42:ラグ溝、43:内側ラグ溝、44:外側ラグ溝、5:サイプ、6:切欠部
図1
図2
図3
図4
図5
図6
図7