【0014】
後述の実施例に示すように、本発明のポリグルタミン酸のカリウム塩の顕著な血中GIP濃度上昇抑制効果は、ポリグルタミン酸のカリウム塩の分子量に関わらず全般的に認められたが、ポリグルタミン酸のカリウム塩の分子量がある程度大きいほうがよりGIP濃度上昇抑制効果に優れている。
そのため、より効果的に血中GIP濃度上昇を抑制するためには、本発明において用いられるポリグルタミン酸のカリウム塩の分子量として、重量平均分子量が約500以上であることが好ましく、1,000以上であることがより好ましく、2,000以上であることがさらに好ましく、3,000以上であることがさらに好ましく、5,000以上であることが特に好ましい。
使用されるポリグルタミン酸のカリウム塩の重量平均分子量の上限は約5,000,000であるのが好ましいが、製造面、及び本発明の血中インスリン濃度上昇抑制剤を経口用液体製剤としたときの喉ごし、ぬるつき、嚥下のしやすさなどの観点から、その粘度が比較的低い方が好ましく、使用されるポリグルタミン酸のカリウム塩の重量平均分子量は1,000,000以下であることがより好ましく、500,000以下であることがさらに好ましい。
より具体的には、本発明に用いるポリグルタミン酸のカリウム塩の重量平均分子量は500〜5,000,000であることが好ましく、1,000〜1,000,000であることがより好ましく、2,000〜500,000であることがさらに好ましく、3,000〜500,000であることがさらに好ましく、4,000〜400,000であることが特に好ましく、5,000〜300,000であることが殊更好ましい。 重量平均分子量の測定は、例えば、ゲルろ過カラムを用いた高速液体クロマトグラフィーにより行うことができる。
【実施例】
【0021】
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
【0022】
〔分析方法〕
ポリグルタミン酸のカリウム塩の定量法及び重量平均分子量測定法−1:
ポリグルタミン酸のカリウム塩の定量及び重量平均分子量測定は、D−6000(日立ハイテクノロジーズ社製)HPLCシステムを用いてゲルろ過法にて実施した。分析条件は、分析カラムにTSKGel G4000PWXL及びTSKGelG6000PWXLゲルろ過カラム(商品名、東ソー社製)を用い、溶離液に0.1M硫酸ナトリウムを使用し、流速1.0mL/分、カラム温度50℃とし、UV検出波長を210nmとした。また、濃度は分子量880kのポリグルタミン酸(明治フードマテリア社製)を標準品として用いて検量線を作成することで算出した。また、重量平均分子量は、プルラン(商品名:Shodex STANDARD P−82、昭和電工社製)を用いて予め重量平均分子量を求めた分子量の異なる複数のポリグルタミン酸(和光純薬工業社製(商品名:162−21411、162−21401)、SIGMA−ALDRICH社製(商品名:P−4886、P−4761)、明治フードマテリア社製(分子量880k))を標準品として用いて測定した。
【0023】
ポリグルタミン酸のカリウム塩の重量平均分子量測定法−2:
分子量が10k前後となる低分子量ポリグルタミン酸のカリウム塩の重量平均分子量測定は、D−6000(日立ハイテクノロジーズ社製)HPLCシステムを用いてゲルろ過法にて実施した。分析条件は、分析カラムにTSKGel G3000PWXLゲルろ過カラム(商品名、東ソー社製)を用い、溶離液に0.1M硫酸ナトリウムを使用し、流速0.8mL/分、カラム温度50℃とし、UV検出波長を210nmとした。重量平均分子量は、プルラン(商品名:Shodex STANDARD P−82、昭和電工社製)を用いて予め重量平均分子量を求めたポリグルタミン酸(明治フードマテリア社製、分子量9k)、ポリーヒドロキシプロリン(SIGMA−ALDRICH社製、分子量4k)を標準品として用い測定した。
【0024】
ポリグルタミン酸塩の金属分析法:
ポリグルタミン酸塩の金属分析は、D−7000(日立ハイテクノロジーズ社製)HPLCシステムを用いてイオンクロマト法にて実施した。分析条件は、ガードカラムにShodex IC YK−G、分析カラムにShodex IC YK−421(いずれも商品名、昭和電工社製)を用い、溶離液を1.5mMクエン酸水溶液とし、流速1.0mL/分、カラム温度40℃で電気伝導度検出器を用いて検出を行なった。標準試料として関東化学社製のナトリウム標準液(1000ppm)及びカリウム標準液(1000ppm)を用い、これらの標準品について10〜100mg/Lの範囲で検量線を作成し、これらの検量線に基づきポリグルタミン酸塩の金属分析を実施した。
【0025】
〔調製例1〕重量平均分子量12,000のポリグルタミン酸カリウム塩の調製
重量平均分子量9,000のポリグルタミン酸のナトリウム塩(明治フードマテリア社製)を初発材料として、10%(w/w)水溶液を500mL作製し、氷冷下にて塩酸を用いてpH2以下に調整した。続いて、生成した酸沈殿物を8,000rpm、5分の遠心分離(商品名:himacCR21GIII、日立工機社製)にて回収し、得られた沈殿物を同量の蒸留水を用いて洗浄し、再度遠心分離に供した。この洗浄操作を2回繰り返し行なった後、得られた沈殿物を300mLの蒸留水に懸濁し、これをpH7以上となるように水酸化カリウム水溶液を用いて中和した。この上記酸処理および水酸化カリウムによる中和処理を再度実施し、得られた中和試料に対して2.5倍量のエタノールを添加し、氷冷下にて一晩放置した。このエタノール添加により生成した沈殿物を14,000rpm、5分の遠心分離(同上)にて回収し、回収試料を減圧乾燥に供して、27.4gの固形物を得た。この試料の重量平均分子量は前述の分析方法により、12,000と算出された。また、この試料はポリグルタミン酸のカルボキシル基量に相当する量のカリウムが検出され、ナトリウムは検出限界以下であったため、実質的にすべてのカルボキシル基の水素原子がカリウムに置換されたものであることが確認された。
【0026】
〔調製例2〕重量平均分子量240,000のポリグルタミン酸のカリウム塩の調製
重量平均分子量350,000のポリグルタミン酸のナトリウム塩(明治フードマテリア社製)を初発材料として、5%(w/w)水溶液を1L作製し、氷冷下にて塩酸を用いてpH1以下に調整した。続いて、生成した酸沈殿物を8,000rpm、5分の遠心分離(商品名:himacCR21GIII、日立工機社製)にて回収し、得られた沈殿物を同量の蒸留水を用いて洗浄し、再度遠心分離に供した。この洗浄操作を2回繰り返し行なった後、得られた沈殿物を800mLの蒸留水に懸濁し、これをpH7以上となるように水酸化カリウム水溶液を用いて中和した。この上記酸処理および水酸化カリウムによる中和処理を再度実施し、このエタノール添加により生成した沈殿物を14,000rpm、5分の遠心分離(同上)にて回収し、回収試料を減圧乾燥に供して、36.2gの固形物を得た。この試料の重量平均分子量は前述の分析方法により、240,000と算出された。また、この試料はポリグルタミン酸のカルボキシル基量に相当する量のカリウムが検出され、ナトリウムは検出限界以下であったため、実質的にすべてのカルボキシル基の水素原子がカリウムに置換されたものであることが確認された。
【0027】
〔調製例3〕重量平均分子量6,000のポリグルタミン酸のカリウム塩の調製
重量平均分子量9,000のポリグルタミン酸のナトリウム塩(明治フードマテリア社製)を初発材料として、20%(w/w)水溶液を125mL作製し、塩酸を用いてpH1以下に調整した。続いて、このPGA溶液を95℃にて12時間恒温し、生成した酸沈殿物を8,000rpm、5分の遠心分離(商品名:himacCR21GIII、日立工機社製)にて回収し、得られた沈殿物を同量の蒸留水を用いて洗浄し、再度遠心分離に供した。この洗浄操作を2回繰り返し行なった後、得られた沈殿物を300mLの蒸留水に懸濁し、これをpH7以上となるように水酸化カリウム水溶液を用いて中和した。この上記酸処理および水酸化カリウムによる中和処理を再度実施し、得られた中和試料に対して2.5倍量のエタノールを添加し、氷冷下にて一晩放置した。このエタノール添加により生成した沈殿物を14,000rpm、5分の遠心分離(同上)にて回収し、回収試料を減圧乾燥に供して、16.5gの固形物を得た。この試料の重量平均分子量は前述の分析方法により、6,000と算出された。
【0028】
〔試験例1〕ポリグルタミン酸のカリウム塩の血中GIP濃度上昇抑制作用
重量平均分子量12,000及び240,000(それぞれ調製例1及び2で調製)のポリグルタミン酸のカリウム塩と、重量平均分子量9,000及び350,000のポリグルタミン酸のナトリウム塩(明治フードマテリア社製)を用いて下記のように経口投与サンプルを調製した。また、8週齢の雄性マウス(C57BL/6J Jcl:日本クレア社製)を各群10匹ずつ用いて下記のように経口投与試験を行った。
【0029】
〔試験例2〕低分子量のポリグルタミン酸のカリウム塩の血中GIP濃度上昇抑制作用
重量平均分子量6,000(調製例3で調製)のポリグルタミン酸のカリウム塩と、重量平均分子量12,000のポリグルタミン酸のカリウム塩(調製例1で調製)及び重量平均分子量9,000のポリグルタミン酸のナトリウム塩(明治フードマテリア社製)を用いて下記のように経口投与サンプルを調製した。
また、8週齢の雄性マウス(C57BL/6J Jcl:日本クレア社製)を各群7匹ずつ用いて下記のように経口投与試験を行った。
【0030】
経口投与サンプルの調製:
グルコース(関東化学社製)とトリオレイン(Glyceryl trioleate:Sigma社製)をレシチン(卵製、和光純薬社製)とアルブミン(ウシ血清由来、Sigma社製)を用いて乳化し、乳液を調製した。この乳液に、ポリグルタミン酸塩試料を添加し、最終濃度がポリグルタミン酸塩試料5(w/w)%、グルコース5(w/w)%、トリオレイン5(w/w)%、乳化剤(レシチン0.2(w/w)%、アルブミン1.0(w/w)%)となるよう、経口投与サンプルを調製した。なお、コントロールサンプルとして、ポリグルタミン酸塩の代わりに水を添加したサンプルを調製した。
【0031】
経口投与試験:
一晩絶食させたマウスをエ−テル麻酔下、眼窩静脈よりヘパリン処理ヘマトクリット毛細管(VITREX社製)を用い、初期採血を行った。その後、経口投与サンプルを経口ゾンデ針にて経口投与し、10分、30分、1時間、2時間後にエーテル麻酔下、眼窩静脈より採血を行った。マウスに対する経口投与量を下記表1に示す。
【0032】
【表1】
【0033】
ヘパリン処理ヘマトクリット毛細管で採取した血液は血漿分離まで氷冷下で保存後、11000rpmにて5分間遠心し、血漿を得た。得られた血漿から、Rat/Mouse GIP(Total)ELISAキット(Linco Research/Millipore co.製、ELISA法)を用いて血中GIP濃度を測定した。
サンプル経口投与後の2時間後までの血中GIP濃度を測定した結果、血中GIPの濃度が最大となるのは投与後10分後であることがわかった。そこで、血中GIP濃度の最大値(投与10分後)と初期値(初期採血時)の差(Δ値)を最大GIP濃度上昇と定義し、コントロール群を100としたときの値を下記表2(試験例1の結果)及び表3(試験例2の結果)に示した。
【0034】
得られた最大GIP濃度上昇の値をもとに、群間の統計学的有意差についても検討し、その結果も表2に示した。分散分析によって有意性(P<0.05)が認められた場合、多重比較検定(Bonferroni/Dunn法)により、コントロール群と各ポリグルタミン酸塩投与群との間、及び類似分子量のナトリウム塩投与群とカリウム塩投与群との間での検定を行い、得られた結果から、P<0.05を有意な差として有意性を判断した。
【0035】
【表2】
【0036】
表2の結果から、重量平均分子量9,000の比較的低分子のポリグルタミン酸のナトリウム塩の投与群では血中GIP濃度の上昇が抑制されていないことがわかった。一方、ポリグルタミン酸のナトリウム塩の重量平均分子量を350,000と4倍程大きくすることにより、コントロール群に比べて血中GIP濃度上昇を45%程度(コントロール比で約55%まで)抑制できるようになることが示されたが、ポリグルタミン酸のカリウム塩を使用すれば、その6分の1程度の重量平均分子量(重量平均分子量12,000)で血中GIP濃度上昇をほぼ同レベルの40%程度も(コントロール比で約60%まで)抑制でき、さらにその重量平均分子量を240,000まで上昇させることで、血中GIP濃度上昇を約60%も(コントロール比で約40%まで)抑制できることがわかった。
【0037】
【表3】
【0038】
表3の結果から、重量平均分子量9,000の比較的低分子のポリグルタミン酸のナトリウム塩の投与群では血中GIP濃度の上昇が抑制されていないことがわかる。一方、重量平均分子量12,000のポリグルタミン酸のカリウム塩では血中GIP濃度上昇を50%程度も抑制でき、上記試験例1の結果が再現された。
また、より低分子量である重量平均分子量6,000のポリグルタミン酸のカリウム塩も重量平均分子量12,000ポリグルタミン酸のカリウム塩と同等のGIP低減作用を有することが明らかとなった。
【0039】
試験例2の結果から、ポリグルタミン酸の塩は血中GIP濃度上昇抑制効果を有し、その中でも、ポリグルタミン酸のカリウム塩が、広い分子量範囲にわたって顕著に優れた血中GIP濃度上昇抑制効果を奏することがわかった。
【0040】
前述のように、GIPは胃酸分泌抑制作用や胃運動抑制作用、インスリン存在下でのグルコースの脂肪細胞への取り込み亢進、インスリン抵抗性の誘引といった働きを担っていることが知られている。そのため、前記ポリグルタミン酸のカリウム塩は、血中GIP濃度の上昇を効果的に抑制することで、消化促進、胃もたれの予防・改善、肥満やインスリン抵抗性の予防・改善に好適に用いることができる。