【実施例】
【0057】
以下、上述の実施形態の効果を確認するために平板状のタングステン焼結合金を作製した本発明の実施例1〜28と比較例1〜11について以下に説明する。
【0058】
(実施例1)
本実施例では、上述の本発明に従った平板状のタングステン焼結合金を作製した。すなわち、上記の(1)〜(7)の工程を行うことによって平板状のタングステン焼結合金を作製した。
【0059】
まず、平均粒径が3μmのタングステン粉末を95質量%、平均粒径が4μmのニッケル粉末を3.5質量%、平均粒径が3μmの鉄粉末を1.5質量%の配合割合で含むように準備した((1)原料準備工程)。
【0060】
次に、上記で準備されたタングステン粉末とニッケル粉末と鉄粉末とを、レディゲミキサーを用いて混合して混合物を得た((2)混合工程)。
【0061】
そして、上記で得られた混合物に、冷間等方圧プレス(CIP)を用いて196MPaの圧力を加えて成形して成形体を得た((3)成形工程)。得られた成形体の寸法は、176mm×176mm×8.2mmであった。
【0062】
さらに、上記で得られた成形体を、水素ガス雰囲気炉内にて1460℃の温度で80分間焼結して焼結体を得た((4)焼結工程)。得られた焼結体の寸法は、150mm×150mm×7mmであった。
【0063】
以上のようにして得られた平板状のタングステン焼結合金の断面を観察した光学顕微鏡写真を
図1に示す。
【0064】
その後、得られた平板状のタングステン焼結合金を、25℃の温度にて鍛造機を用いて、厚み方向に30%の変形率で変形させることによって、タングステン焼結合金に歪みを導入した((5)歪導入工程)。歪導入後の平板状のタングステン焼結合金の寸法は、177mm×177mm×5mmであった。
【0065】
歪みが導入された平板状のタングステン焼結合金を、真空炉内にて1200℃の温度で3時間熱処理した((6)熱処理工程)。
【0066】
以上のようにして得られた平板状のタングステン焼結合金の断面を観察した光学顕微鏡写真を
図2に示す。
図2に示すようにタングステン結晶粒が微細化されて、平均粒径が10μm程度であることがわかる。
【0067】
最後に、熱処理された平板状のタングステン焼結合金の試料を、水素ガス雰囲気炉にて1100℃の温度に加熱した後、試料を炉から取り出して即座に10%程度の圧延加工率で圧延加工し、その圧延加工を繰り返して、合計の圧延加工率が80%になるまで圧延加工を行った((7)熱間圧延工程)。熱間圧延加工後の平板状のタングステン焼結合金の寸法は、100mm×1070mm×1mmであった。
【0068】
このようにして平板状のタングステン焼結合金を作製した。
【0069】
(実施例2)
歪導入工程において厚み方向に20%の変形率で変形させることによってタングステン焼結合金に歪みを導入したこと以外は、実施例1と同様にして、厚みが1.1mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は19μm程度であった。
【0070】
(実施例3)
歪導入工程において厚み方向に40%の変形率で変形させることによってタングステン焼結合金に歪みを導入したこと以外は、実施例1と同様にして、厚みが0.9mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は10μm程度であった。
【0071】
(実施例4)
歪導入工程において厚み方向に50%の変形率で変形させることによってタングステン焼結合金に歪みを導入したこと以外は、実施例1と同様にして、厚みが0.7mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は5μm程度であった。
【0072】
(実施例5)
熱処理工程において熱処理温度を900℃にしたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は17μm程度であった。
【0073】
(実施例6)
熱処理工程において熱処理温度を1300℃にしたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は12μm程度であった。
【0074】
(実施例7)
熱処理工程において熱処理温度を1400℃にしたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は19μm程度であった。
【0075】
(実施例8)
熱処理工程において熱処理時間を20分間にしたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は19μm程度であった。
【0076】
(実施例9)
熱処理工程において熱処理時間を1時間にしたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は13μm程度であった。
【0077】
(実施例10)
熱処理工程において熱処理時間を5時間にしたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は16μm程度であった。
【0078】
(実施例11)
熱間圧延工程において合計の圧延加工率が60%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが2.0mmの平板状のタングステン焼結合金を作製した。
【0079】
(実施例12)
熱間圧延工程において合計の圧延加工率が70%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが1.5mmの平板状のタングステン焼結合金を作製した。
【0080】
(実施例13)
熱間圧延工程において、合計の圧延加工率が85%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.7mmの平板状のタングステン焼結合金を作製した。
【0081】
(実施例14)
熱間圧延工程において合計の圧延加工率が90%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.5mmの平板状のタングステン焼結合金を作製した。
【0082】
(実施例15)
焼結工程で得られた焼結体の厚みを14mmにしたことと、熱間圧延工程において合計の圧延加工率が95%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.5mmの平板状のタングステン焼結合金を作製した。
【0083】
(実施例16)
焼結工程で得られた焼結体の厚みを20mmにしたことと、歪導入工程において厚み方向に50%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が95%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.5mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は5μm程度であった。
【0084】
(実施例17)
原料準備工程において平均粒径が1μmのタングステン粉末を用い、鉄粉末の代わりに銅粉末を用いたことと、歪導入工程において厚み方向に20%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が60%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが2.2mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は19μm程度であった。
【0085】
(実施例18)
原料準備工程において平均粒径が5μmのタングステン粉末を用い、鉄粉末の代わりに銅粉末を用いたことと、歪導入工程において厚み方向に20%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が70%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが1.7mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は19μm程度であった。
【0086】
(実施例19)
原料準備工程において平均粒径が10μmのタングステン粉末を用い、鉄粉末の代わりに銅粉末を用いたことと、歪導入工程において厚み方向に20%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が90%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.7mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は19μm程度であった。
【0087】
(実施例20)
原料準備工程においてタングステン粉末を85質量%、ニッケル粉末を10.5質量%、鉄粉末を4.5質量%の配合割合で含むように準備したこと、熱間圧延工程において合計の圧延加工率が90%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.5mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は9μm程度であった。
【0088】
(実施例21)
原料準備工程においてタングステン粉末を90質量%、ニッケル粉末を7質量%、鉄粉末を3質量%の配合割合で含むように準備したこと、熱間圧延工程において合計の圧延加工率が90%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.5mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は10μm程度であった。
【0089】
(実施例22)
原料準備工程においてタングステン粉末を98質量%、ニッケル粉末を1.4質量%、鉄粉末を0.6質量%の配合割合で含むように準備したこと、熱間圧延工程において合計の圧延加工率が90%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが0.5mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は10μm程度であった。
【0090】
(実施例23)
原料準備工程において平均粒径が1μmのニッケル粉末を用い、鉄粉末の代わりにコバルト粉末を用いたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は11μm程度であった。
【0091】
(実施例24)
原料準備工程において平均粒径が5μmのニッケル粉末を用い、鉄粉末の代わりにコバルト粉末を用いたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は10μm程度であった。
【0092】
(実施例25)
原料準備工程において平均粒径が10μmのニッケル粉末を用い、鉄粉末の代わりにコバルト粉末を用いたこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は10μm程度であった。
【0093】
(実施例26)
原料準備工程において平均粒径が1μmの鉄粉末を用いたことと、歪導入工程において厚み方向に50%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が60%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は5μm程度であった。
【0094】
(実施例27)
原料準備工程において平均粒径が5μmの鉄粉末を用いたことと、歪導入工程において厚み方向に50%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が60%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は5μm程度であった。
【0095】
(実施例28)
原料準備工程において平均粒径が10μmの鉄粉末を用いたことと、歪導入工程において厚み方向に50%の変形率で変形させることによってタングステン焼結合金に歪みを導入したことと、熱間圧延工程において合計の圧延加工率が60%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが1.0mmの平板状のタングステン焼結合金を作製した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は5μm程度であった。
【0096】
(比較例1)
上記の(1)〜(4)の工程を行うことによって作製された従来のタングステン焼結合金を、研削と研磨により、厚みが1mmになるまで加工した。
【0097】
(比較例2)
上記の(1)〜(4)の工程を行うことによって作製された従来のタングステン焼結合金に対して、(5)(6)の工程を行わずに、焼結直後に圧延加工率が60%になるまで(厚みが2mmになるまで)(7)の熱間圧延工程を行った。その後、圧延加工されたタングステン焼結合金を、研削と研磨により、厚みが1mmになるまで加工した。
【0098】
以上のようにして得られた平板状のタングステン焼結合金の断面を観察した光学顕微鏡写真を
図3に示す。
【0099】
(比較例3)
歪導入工程において厚み方向に17%の変形率で変形させることによってタングステン焼結合金に歪みを導入したこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、得られた平板状のタングステン焼結合金において割れが発生した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は24.3μm程度であった。
【0100】
(比較例4)
歪導入工程において厚み方向に60%の変形率で変形させることによってタングステン焼結合金に歪みを導入したこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、歪導入工程において割れが発生した。
【0101】
(比較例5)
熱処理工程において熱処理温度を850℃にしたこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、得られた平板状のタングステン焼結合金において割れが発生した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は26μm程度であった。
【0102】
(比較例6)
熱処理工程において熱処理温度を1450℃にしたこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、得られた平板状のタングステン焼結合金において割れが発生した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は37μm程度であった。
【0103】
(比較例7)
熱処理工程において熱処理時間を15分間にしたこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、得られた平板状のタングステン焼結合金において割れが発生した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は24μm程度であった。
【0104】
(比較例8)
熱処理工程において熱処理時間を6時間にしたこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、得られた平板状のタングステン焼結合金において割れが発生した。なお、実施例1と同様にして、熱処理後の平板状のタングステン焼結合金の断面を光学顕微鏡で観察したところ、タングステン結晶粒の平均粒径は22μm程度であった。
【0105】
(比較例9)
熱間圧延工程において合計の圧延加工率が50%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、厚みが2.5mmの平板状のタングステン焼結合金を作製した。
【0106】
(比較例10)
熱間圧延工程において合計の圧延加工率が97%になるまで圧延加工を行ったこと以外は、実施例1と同様にして、平板状のタングステン焼結合金を作製することを試みたが、得られた平板状のタングステン焼結合金において割れが発生した。
【0107】
(比較例11)
上記の実施例1における(1)〜(4)の工程を行うことによって作製された従来のタングステン焼結合金に対して、焼結直後に圧延加工率が65%になるまで(7)の熱間圧延工程を行った場合には、タングステン焼結合金に割れが発生した。
【0108】
(タングステン結晶粒の平均厚みと平均長さの測定)
図4に示すように、実施例1〜28と比較例2、9で得られた平板状のタングステン焼結合金1の平面100が延在する方向と直交する厚みT
0(1mm)の方向に沿った第1の断面101と、平板状のタングステン焼結合金1の平面100が延在する方向と直交する厚みT
0の方向に沿った断面であって第1の断面と直交する第2の断面102とを、走査型電子顕微鏡(SEM)で観察した。
【0109】
具体的には、第1の断面101と第2の断面102のそれぞれにおいて、1000倍で任意の箇所(視野)の写真を撮影し、その箇所から平面100が延在する方向に沿って当該断面内で位置をずらした箇所(視野)の写真を撮影し、順次ずらして得られた7つの視野の写真を平面100が延在する方向に連結して、厚みTが70μm、幅Wが500μmの断面部分の写真を得た。このようにして、第1の断面101から選択された一定の幅W(500μm)と一定の厚みT(70μm)とからなる第1の断面部分と、第2の断面102から選択された一定の幅W(500μm)と一定の厚みT(70μm)とからなる第2の断面部分との写真を得た。その断面部分の走査型電子顕微鏡(SEM)写真の一例(実施例1)を
図5に示す。
【0110】
上記の断面部分を模式的に
図6に示す。
図6に示すように、上記で得られた第1の断面部分101aと第2の断面部分102aの写真において、一定の幅W(500μm)の中心を通り、かつ、一定の厚みT(70μm)の方向に延びる中心線200と交差する複数のタングステン結晶粒G1〜G4の厚みtと長さsとを測定した。これらの測定値の平均値を求めて、タングステン結晶粒の平均厚みと平均長さとした。また、タングステン結晶粒の平均厚みに対する平均長さの比率を算出した。
【0111】
以上のようにして算出されたタングステン結晶粒の平均厚みと平均長さ、平均厚みに対する平均長さの比率を表1に示す。
【0112】
(タングステン焼結合金の引張強度の測定)
実施例1〜28と比較例1、2、9で得られた平板状のタングステン焼結合金から、
図7に示すように厚みTの引張試験片10を作製した。標点間距離は、中心線20を中心にして8mmとした。
【0113】
実施例1と比較例1、2で作製された引張試験片10を、INSTRON社製、型番5867の引張試験機にセットして、真空雰囲気中にて20℃、500℃、800℃、1000℃、1200℃の各試験温度に加熱して(試験温度20℃の場合は加熱しない)、300mm/min.の引張速度で破断するまで引張試験を行った。また、実施例2〜28と比較例9で作製された引張試験片10については、INSTRON社製、型番5867の引張試験機にセットして、真空雰囲気中にて1000℃の試験温度に加熱して、300mm/min.の引張速度で破断するまで引張試験を行った。試験中に示された最大応力の値を引張強度とした。
【0114】
以上のようにして得られた引張強度の測定結果を表1と表2に示す。
【0115】
【表1】
【0116】
【表2】
【0117】
表1から、本発明の実施例1〜28の試料は、1000℃の温度において高い引張強度を示すことがわかる。
【0118】
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。