特許第5855413号(P5855413)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日本触媒の特許一覧

<>
  • 特許5855413-粒状物充填装置 図000002
  • 特許5855413-粒状物充填装置 図000003
  • 特許5855413-粒状物充填装置 図000004
  • 特許5855413-粒状物充填装置 図000005
  • 特許5855413-粒状物充填装置 図000006
  • 特許5855413-粒状物充填装置 図000007
  • 特許5855413-粒状物充填装置 図000008
  • 特許5855413-粒状物充填装置 図000009
  • 特許5855413-粒状物充填装置 図000010
  • 特許5855413-粒状物充填装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5855413
(24)【登録日】2015年12月18日
(45)【発行日】2016年2月9日
(54)【発明の名称】粒状物充填装置
(51)【国際特許分類】
   B01J 8/02 20060101AFI20160120BHJP
   B01J 8/06 20060101ALI20160120BHJP
   B65G 65/40 20060101ALI20160120BHJP
   B65G 69/08 20060101ALI20160120BHJP
【FI】
   B01J8/02 A
   B01J8/06
   B65G65/40 B
   B65G69/08
【請求項の数】4
【全頁数】16
(21)【出願番号】特願2011-223449(P2011-223449)
(22)【出願日】2011年10月7日
(65)【公開番号】特開2013-81898(P2013-81898A)
(43)【公開日】2013年5月9日
【審査請求日】2014年6月10日
(73)【特許権者】
【識別番号】000004628
【氏名又は名称】株式会社日本触媒
(74)【代理人】
【識別番号】100075409
【弁理士】
【氏名又は名称】植木 久一
(74)【代理人】
【識別番号】100129757
【弁理士】
【氏名又は名称】植木 久彦
(74)【代理人】
【識別番号】100115082
【弁理士】
【氏名又は名称】菅河 忠志
(74)【代理人】
【識別番号】100125243
【弁理士】
【氏名又は名称】伊藤 浩彰
(72)【発明者】
【氏名】吉村 龍明
(72)【発明者】
【氏名】弘中 秀幸
(72)【発明者】
【氏名】小野寺 秀夫
【審査官】 原 賢一
(56)【参考文献】
【文献】 特開2006−142297(JP,A)
【文献】 特開2002−370714(JP,A)
【文献】 特開2003−265944(JP,A)
【文献】 特開2000−037621(JP,A)
【文献】 特開2012−101189(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 4/00−4/04,8/00−8/46
B65G 65/30−65/48,69/00−69/34
(57)【特許請求の範囲】
【請求項1】
固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、
並列に配置された複数のホッパーと、
各ホッパーの出側に各々設けられた搬送路と、
各搬送路の出側に各々設けられた投入部とを有し、
前記投入部は、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続して形成され
上側円筒の軸が下側円筒の軸より前記搬送路からみて遠位側に位置することを特徴とする粒状物充填装置。
【請求項2】
前記ホッパーは前記搬送路の上流側に位置する後側壁を有し、後側壁は、その下方が上方より前記搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの前記搬送路への投影ベクトルLが前記搬送路の下流方向に対して非平行となる部分を有している請求項に記載の粒状物充填装置。
【請求項3】
前記搬送路の底面には粉状物をふるい落とす孔が形成されている請求項1または2に記載の粒状物充填装置。
【請求項4】
上側円筒の内径は下側円筒の内径の2.5倍以下である請求項1〜3のいずれか一項に記載の粒状物充填装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固定床多管式反応器に触媒等の粒状物を充填するための装置に関するものである。
【背景技術】
【0002】
従来、固定床多管式反応器に触媒等の粒状物を供給し、反応器の各反応管に粒状物を充填するための粒状物充填装置が知られている。例えば、特許文献1には、複数のホッパーと、各ホッパーの出側に各々設けられたトラフ状の搬送路を有し、バイブレーターによりトラフ状の搬送路を振動させることにより、粒状物が搬送路を搬送され、搬送路の先端に形成された開口から反応器の各反応管に供給される粒状物充填装置が開示されている。特許文献2には、複数のホッパーと、各ホッパーの出側に各々設けられた搬送路と、各搬送路の出側に各々設けられた傾斜面のシュートを有する粒状物充填装置であって、搬送路の底面にはコンベアが備えられ、コンベアにより粒状物が搬送路を搬送され、シュートを通って反応器の各反応管に供給される粒状物充填装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−37621号公報
【特許文献2】特開2006−142297号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
粒状物充填装置においては、粒状物を複数の反応管に均一に供給できることが性能として求められる。つまり、粒状物はホッパーから反応管までスムーズに運ばれることが必要とされる。しかし、粒状物充填装置では、粒状物の搬送の途中で粒状物によるブリッジが形成される場合があり、その場合、粒状物を複数の反応管に均一に供給することが困難となる。
【0005】
本発明は前記事情に鑑みてなされたものであり、その目的は、粒状物によるブリッジの形成が起こりにくく、粒状物を複数の反応管に均一に供給することができる粒状物充填装置を提供することにある。
【課題を解決するための手段】
【0006】
前記課題を解決することができた本発明の粒状物充填装置とは、固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、並列に配置された複数のホッパーと、各ホッパーの出側に各々設けられた搬送路とを有しており、ホッパーが搬送路の上流側に位置する後側壁を有し、後側壁は、その下方が上方より搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有しているところに特徴を有する。ホッパーの後側壁がこのように形成されていれば、粒状物は後側壁の内側面から受けるベクトルHの垂直抗力が搬送路の下流側に位置する前側壁に向かいにくくなり、粒状物が後側壁と前側壁との間でブリッジを形成しにくくなる。その結果、粒状物がホッパーからスムーズに搬送路に供給され、粒状物が反応管に均一に供給されやすくなる。
【0007】
ホッパーは、搬送路の下流側に位置する前側壁が略垂直に形成されていることが好ましい。このように前側壁が形成されていれば、粒状物が後側壁と前側壁との間でブリッジを形成しにくくなる。
【0008】
後側壁は、水平断面がV字状またはU字状に形成されていることが好ましい。このように後側壁が形成されていれば、後側壁のホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分が、後側壁の水平断面において後側壁の大部分を占めることとなり、粒状物が後側壁と前側壁との間でブリッジを形成しにくくなる。
【0009】
本発明はまた、固定床多管式反応器の各反応管に粒状物を供給する粒状物充填装置であって、並列に配置された複数のホッパーと、各ホッパーの出側に各々設けられた搬送路と、各搬送路の出側に各々設けられた投入部とを有し、投入部が、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続して形成されている粒状物充填装置を提供する。投入部がこのように形成されていれば、投入部内で粒状物の落下速度に差が生じて、投入部内で粒状物がブリッジを形成しにくくなる。その結果、粒状物が反応管に均一に供給されやすくなる。
【0010】
投入部が、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続して形成されている粒状物充填装置においても、ホッパーの後側壁が、その下方が上方より搬送路の下流側に位置するように傾斜しているとともに、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有していることが好ましい。
【0011】
投入部は、上側円筒の軸が下側円筒の軸より搬送路からみて遠位側に位置することが好ましい。このように投入部が形成されていれば、粒状物が投入部内でブリッジをより形成しにくくなる。
【0012】
搬送路の底面には粉状物をふるい落とす孔が形成されていることが好ましい。搬送路の底面に粉状物をふるい落とす孔を設けることにより、反応管には粒状物のみが供給されやすくなる。その結果、反応管の圧力損失を均一化させることが容易になる。
【発明の効果】
【0013】
本発明の粒状物充填装置は、ホッパーや投入部で粒状物によるブリッジの形成が起こりにくく、粒状物を複数の反応管に均一に供給しやすくなる。
【図面の簡単な説明】
【0014】
図1】本発明の粒状物充填装置の側面図の一例を表す。
図2図1に示した粒状物充填装置の上面図を表す。
図3図1に示した粒状物充填装置のホッパーと搬送路の一部の斜視図を表す。
図4図3に示したホッパーの拡大図を表す。
図5】ホッパーの他の例を表す。
図6図6(a)は図2に示した粒状物充填装置の投入部と搬送路の一部の拡大図を表し、図6(b)は、図1に示した粒状物充填装置の投入部と搬送路の一部の拡大図を表す。
図7図7(a)は投入部と搬送路の一部の上面図の他の例を表し、図7(b)はその側面図を表す。
図8図8(a)は投入部と搬送路の一部の上面図の他の例を表し、図8(b)はその側面図を表す。
図9】ホッパーの参考例を表す。
図10図10(a)は投入部と搬送路の一部の上面図の参考例を表し、図10(b)はその側面図を表す。
【発明を実施するための形態】
【0015】
本発明の粒状物充填装置は、固定床多管式反応器の各反応管に粒状物を供給するものである。本発明の粒状物充填装置を用いれば、固定床多管式反応器の複数の反応管に触媒等の粒状物を等量供給することが容易になり、複数の反応管に粒状物を均一に充填しやすくなる。
【0016】
本発明の粒状物充填装置は、一般に用いられている固定床多管式反応器を対象に粒状物を充填するのに用いることができる。固定床多管式反応器は、複数の反応管が略鉛直方向に配されていることが好ましい。固定床多管式反応器で行われる反応は特に限定されず、反応管に導入する反応原料も特に限定されない。
【0017】
固定床多管式反応器の反応管としては、その断面形状が円形の一般的なものを用いればよい。反応管の内径は特に限定されないが、15mm以上が好ましく、20mm以上がより好ましく、22mm以上がさらに好ましく、また50mm以下が好ましく、40mm以下がより好ましく、38mm以下がさらに好ましい。反応管の長さは、関連機器の能力等に応じて決められるが、1m〜10mの範囲で適宜選定すればよい。
【0018】
粒状物としては、触媒、不活性物質等が挙げられる。好ましくは、粒状物の少なくとも1種として、触媒が使用される。
【0019】
触媒としては、例えば、気相接触酸化反応、アンモ酸化反応、水素化反応、脱水素反応等に用いられる粒状触媒が挙げられる。触媒としては、触媒活性成分をそのまま用いてもよく、触媒活性成分を反応に不活性な粉末状物質と混合して成型した成型触媒を用いてもよく、反応に不活性な担体に触媒活性成分を担持した担持触媒を用いてもよい。
【0020】
不活性物質としては、触媒を固定床多管式反応器に充填するに当たり、触媒を支持するための支持体;触媒の希釈材;反応ガスの予熱層あるいは冷却層等として用いられる物質等が挙げられ、具体例としては、例えば、シリカ、アルミナ、シリカアルミナ、金属(ステンレススチール、鉄等)、シリコンカーバイト、チタニア、マグネシア、ステアタイト、陶器、磁器、各種セラミック等から形成される耐火物等が挙げられる。不活性物質とは、反応原料や目的生成物等に対して一般的に不活性な物質を意味する。
【0021】
粒状物の形状は特に限定されず、例えば、円柱状、リング状、球状、不定形等が挙げられる。
【0022】
粒状物の大きさは、反応管に収まる限り特に限定されないが、粒状物の粒径(d)は、充填する反応管の内径(D)との関係において、比率D/dが2/1以上であることが好ましく、2.5/1以上であることがより好ましく、また15/1以下であることが好ましく、10/1以下であることがより好ましい。なお、粒状物の粒径(d)とは、粒状物の形状が球状の場合はその直径を、円柱またはリング状の形状の場合は円形断面または多重円形断面の直径を、その他の形状の場合は、粒状物の任意の2点の距離の中で最長のものを意味する。さらに、粒状物の形状が円柱またはリング状の場合は、断面直径(φ)に対する高さ(h:前記断面に対し垂直方向の長さ)の比h/φが、0.3/1以上3/1以下の範囲となることが好ましい。
【0023】
本発明の粒状物充填装置の構成について、図面を参照しながら説明する。なお、本発明は図面に示された実施態様に限定されるものではない。図1は粒状物充填装置の側面図を表し、図2図1に示した粒状物充填装置の上面図を表し、図3図1に示した粒状物充填装置のホッパーと搬送路の一部の斜視図を表す。
【0024】
粒状物充填装置1は、並列に配置された複数のホッパー11と、各ホッパー11の出側に各々設けられた搬送路2を有している。粒状物は、ホッパー11に貯留されるとともに、ホッパー11の出口から搬送路2に供給され、搬送路2を通って各反応管に供給される。
【0025】
ホッパー11と搬送路2はそれぞれ複数設けられ、1つのホッパー11に対し1つの搬送路2が対応するように設けられている。図では、ホッパーと搬送路はそれぞれ8つ設けられているが、ホッパーと搬送路の数は2つ以上であれば特に限定されない。粒状物充填装置1は、それぞれのホッパー11から一定量の粒状物が搬送路2に供給されるとともに、搬送路2を通って各供給管に一定量の粒状物が供給される。
【0026】
ホッパー11は、粒状物を貯留するとともに、粒状物を各搬送路2に供給する。ホッパー11は上側開口と下側開口を有し、上側開口から粒状物をホッパーに供給し、ホッパー内の粒状物は下側開口から落下することにより搬送路2に供給される。各下側開口の下方には、いずれかの搬送路2が設けられている。
【0027】
ホッパー11は複数が並列に配置されている。具体的には、複数の搬送路2に対応して、複数のホッパー11が並列に配置されている。複数のホッパーはそれぞれ独立して配置されていてもよく、例えば、互いに離間して複数のホッパーが配置されていてもよい。しかし、図3に示すように、複数のホッパー11は互いに隣接して配置されていることが好ましい。このとき、各ホッパー11には、図3に示すように、搬送路2の粒状物の搬送方向(下流方向)Fに略平行な左右側壁14が略垂直(略鉛直)に設けられることが好ましく、この側壁14によって隣接するホッパー11間が区分されることが好ましい。
【0028】
複数のホッパー11は互いに実質的に同一形状を有していることが好ましい。このように複数のホッパーが形成されていれば、それぞれのホッパーから一定量の粒状物が供給されやすくなる。
【0029】
搬送路2は、ホッパー11から供給された粒状物を各反応管に移送するための通路である。粒状物は、搬送路2の上流側から下流側に搬送され、例えば、図1および図2では粒状物は図の左側から右側に搬送される。なお、本発明において、「上流」、「下流」とは高低を表すものではなく、搬送の方向を表す。つまり、「上流側」とは搬送の始点側を表し、「下流側」とは搬送の終点側を表す。また「下流方向」とは、粒状物が搬送路を搬送される方向であり、搬送路の幅中心線が延びる方向を意味する。
【0030】
搬送路2は、ホッパー11の出口(下側開口)と反応管とを繋ぐように設けられる。すなわち、各搬送路2は、いずれかのホッパー11の出口(下側開口)の下方に設けられるとともに、いずれかの反応管の上方に設けられる。搬送路2は、図3に示すように樋状に形成されることが好ましく、その結果、粒状物が搬送路2を好適に搬送されるようになる。また、各搬送路2は、反応管の内径以上の幅を有していることが好ましい。
【0031】
搬送路2にはコンベア等の搬送手段が設けられていることが好ましい。図1では、搬送路2の底面がコンベア3となっており、コンベア3のベルト4面が略水平に設けられている。なお図1では、コンベア3は搬送路2の上流側に設けられ、それ以降は、搬送路2は下流側が下方に傾斜して設けられている。つまり、図1では、粒状物は、ホッパー11から供給され搬送路2の途中まではコンベア3で下流側に搬送され、それ以降は、自然流下によりさらに下流側に搬送されている。なお、搬送手段はコンベアに限定されず、例えば、バイブレーターにより搬送路が振動することによって粒状物が下流側に搬送されてもよい。また、搬送路は略水平に設けられても、下流側が上方または下方に傾斜して設けられていてもよい。
【0032】
搬送路2は複数が並列に配置されている。図に示すように、各搬送路は直線状に延びていることが好ましく、さらに、それぞれの搬送路が互いに平行に配されていることが好ましい。なお、それぞれの搬送路は互いに非平行に配されてもよく、例えば搬送路が放射状に配されていてもよい。
【0033】
ところで、粒状物充填装置においては、粒状物を複数の反応管に均一に供給できることが性能として求められる。つまり、粒状物はホッパーから反応管までスムーズに運ばれることが必要とされる。しかし、粒状物充填装置では、ホッパー内や、搬送路から反応管に供給される接続部分で、粒状物によるブリッジが形成されやすく、その結果、粒状物がホッパー内や前記接続部分で詰まるおそれがある。
【0034】
そこで本発明の粒状物充填装置では、ホッパーの形状や搬送路と反応管との接続部分の形状を工夫することにより、粒状物によるブリッジの形成を抑制し、粒状物の詰まりを起こりにくくしている。
【0035】
ホッパーの形状について説明する。ホッパー11は、搬送路2の上流側に位置する後側壁12を有し、後側壁12は、その下方が上方より搬送路2の下流側に位置するように傾斜している。ホッパー11の後側壁12が、下方が上方より搬送路2の下流側に位置するように傾斜して設けられていれば、粒状物が搬送路2を下流側に搬送されると、後側壁12を伝って粒状物が搬送路2にスムーズに供給されやすくなる。このとき、後側壁12は粒状物の安息角より大きな傾斜角となるように形成されていることが好ましい。
【0036】
しかし、ホッパー11の後側壁12が上記のように傾斜して設けられていると、粒状物が後側壁12上でホッパー11の下部に押し込まれる形となり、その結果、粒状物がホッパー11内でブリッジを形成しやすくなる。このとき、後側壁12の内側面の法線ベクトルの搬送路2への投影ベクトルが搬送路2の下流方向に対し平行となるように、後側壁12が設けられていると、粒状物はブリッジを形成しやすくなる。このことは次のように説明されると考えられる。
【0037】
図9には、図3に示した粒状物充填装置のホッパーにおいて、後側壁が平面状、すなわち後側壁の内側面の法線ベクトルの搬送路への投影ベクトルが搬送路の下流方向に対し平行となるように後側壁が設けられたホッパーを示した。図9には、搬送路と平行な平面P上に載せられたホッパーが1つ示されている。ホッパー11の後側壁12は、ホッパー11内部に向かう法線ベクトルHの平面Pへの投影ベクトルLが、搬送路の下流方向Fに対して平行となっている。このとき、粒状物は後側壁12の内側面からベクトルHの垂直抗力を受けるが、ベクトルHの平面Pへの投影ベクトルLが搬送路の下流方向Fに対し平行となるように後側壁12が設けられていると、粒状物は搬送路の下流方向Fに沿ってホッパー11内でブリッジを形成しやすくなる。すなわち、粒状物は、ホッパー11の後側壁12と前側壁13との間でブリッジを形成しやすくなる。なお、前側壁13とは、搬送路の下流側に位置するホッパーの側壁を意味する。
【0038】
そこで本発明の粒状物充填装置では、ホッパーの後側壁を、下方が上方よりも搬送路の下流側に位置するように傾斜するように設けるとともに、後側壁が、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有するように形成している。これについて、図4を用いて説明する。
【0039】
図4には、図3に示した粒状物充填装置1のホッパー11を抜き出して示した。図4には、搬送路2と平行な平面P上に載せられたホッパー11が1つ示されている。図4では、ホッパー11の後側壁12の内側面が水平断面V字状に形成されている。後側壁12は、水平断面がV字状を形成するように2つの平面から構成され、各平面のホッパー11内部に向かう法線ベクトルHの搬送路への投影ベクトルLが、搬送路の下流方向Fに対し非平行となっている。このように後側壁12が形成されていれば、粒状物は後側壁12の内側面から受けるベクトルHの垂直抗力が前側壁13に向かいにくくなり、粒状物が後側壁12と前側壁13との間でブリッジを形成しにくくなる。その結果、粒状物がホッパー11からスムーズに搬送路2に供給され、粒状物が反応管に均一に供給されやすくなる。なお、V字状とは、断面が左右対称のV字状に限らず、断面が左右非対称のV字状も含まれる。すなわち、V字状とは、断面が2つの直線の組み合わせにより形成される任意の形状であればよい。
【0040】
図5には、本発明の粒状物充填装置に備えられるホッパーの他の例を示した。図5(a)には、後側壁12の内側面に、水平断面で底部が切り取られたV字状に形成されたホッパー11を示した。図5(a)のホッパーでは、後側壁12は、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが、搬送路の下流方向に対して非平行となる部分12aと平行となる部分12bとを有している。このように、ホッパー11の後側壁12は、投影ベクトルLが搬送路の下流方向に対して非平行となる部分が全てを占めていなくてもよく、後側壁12の一部のみが、投影ベクトルLが搬送路の下流方向に対して非平行となるように形成されていればよい。
【0041】
図5(b)には、後側壁12の内側面に水平断面でU字状に形成されたホッパーを示した。図5(b)のホッパーにおいても、後側壁12が、ホッパー11内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分を有している。なお、U字状とは、断面形状において底部が曲線状に形成された形状であればよく、例えば、断面形状の一部が曲線に加え直線で構成されていてもよく、断面形状が左右対称であっても左右非対称であってもよい。
【0042】
ホッパーの後側壁12において、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが搬送路の下流方向に対して非平行となる部分12a(以下、「非平行部分」と称する場合がある)は、少なくとも後側壁の下側端部に形成されていることが好ましい。具体的には、非平行部分12aは、後側壁12の下側端12Lを始点として、後側壁12の下側端12Lから上側端12Uに至る1/3以上の部分に形成されることが好ましく、1/2以上の部分に形成されることがより好ましく、後側壁12の下側端12Lから上側端12Uまで形成されることがさらに好ましい。このように非平行部分12aが形成されていれば、粒状物がホッパー内でブリッジを形成することなく、粒状物がホッパーの下側開口から好適に排出されやすくなる。
【0043】
非平行部分12aは、後側壁12の水平断面において内側面の1/2以上を占めるように後側壁12に形成されることが好ましい。より好ましくは、非平行部分12aは、後側壁12の水平断面において内側面の2/3以上を占め、さらに好ましくは3/4以上を占める。例えば、図4に示すように後側壁が水平断面V字状に形成されたり、図5(b)に示すように後側壁が水平断面U字状に形成されていると、非平行部分が後側壁の水平断面において内側面の大部分(あるいは実質的に全体)を占めており、このように非平行部分が形成される態様は特に好ましい。また、後側壁の水平断面において内側面の前記所定割合を占める非平行部分が、上記に説明したように、少なくとも後側壁の下側端部に形成されていることが好ましい。
【0044】
非平行部分は、ホッパー内部に向かう法線ベクトルHの搬送路への投影ベクトルLが前側壁の搬送路へ投影と交わらない部分であることが好ましい。なお、法線ベクトルHは後側壁12の内側面を始点とし、長さは無限長と見なされる。このように非平行部分が規定されれば、粒状物が後側壁と前側壁との間でブリッジをより形成しにくくなる。
【0045】
一方、ホッパーの前側壁13の形状は特に限定されない。例えば、前側壁13は、その下方が上方より搬送路2の上流側に位置するように傾斜して設けられてもよく、さらに後側壁12と同様に非平行部分を有していてもよい。しかし、図1図5に示すように、前側壁13は略垂直に形成されていることが好ましい。なお、略垂直とは水平面を基準とするものであり、略鉛直を意味する。このように前側壁13が形成されていれば、粒状物が後側壁12と前側壁13との間でブリッジを形成しにくくなる。
【0046】
前側壁には、下側端の高さを調整できるようにゲートが設けられていることが好ましい。前側壁の下側端の高さを調整することにより、ホッパーから搬送路に供給される粒状物の量を調整することができる。
【0047】
次に、搬送路と反応管との接続部分の形状について説明する。図1に示すように、各搬送路2の出側には、各々投入部21が設けられている。投入部21は、搬送路2で搬送された粒状物を各反応管に導入するために設けられる。投入部21は、図1に示すように、上側端部が搬送路2の下側に接続して設けられることが好ましく、投入部21の下側端部は反応管に直接接続するか、ホース等を介して反応管に接続していることが好ましい。
【0048】
ところで、投入部21が単なる円筒形状であったり、円錐や四角錐の先端に円筒が繋がった形状である場合、投入部21内で粒状物がブリッジを形成して、粒状物が投入部21で詰まりやすくなる。そこで本発明の粒状物充填装置1では、投入部21の形状を工夫して、投入部21で粒状物が詰まりにくくしている。これについて、図6を用いて説明する。
【0049】
図6(a)には、図2の粒状物充填装置1の投入部21と搬送路2の一部の拡大図を示し、図6(b)には、図1の粒状物充填装置1の投入部21と搬送路2の一部の拡大図を示した。すなわち、図6(a)は投入部と搬送路の一部の上面図を表し、図6(b)はその側面図を表す。
【0050】
投入部21は、大口径を有する上側円筒22の下側に小口径を有する下側円筒24が軸をずらして接続して形成されている。このように投入部21が形成されていれば、投入部21内で粒状物の落下速度に差が生じて、投入部21内で粒状物がブリッジを形成しにくくなると考えられる。すなわち、供給路2から投入部21に入った粒状物は、一部は上側円筒22から下側円筒24に直接落下し落下速度が速くなるのに対し、他部は上側円筒22から下側円筒24に落下する際にその間の接続部26に当たって落下速度が遅くなるため、この落下速度の差により粒状物の投入21部内でのブリッジの形成が抑えられると考えられる。その結果、粒状物は反応管に連続的に供給され、粒状物が反応管に均一に充填されやすくなる。
【0051】
図6では、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて遠位側に位置している。このように投入部21が形成されていれば、粒状物が投入部21内でブリッジをより形成しにくくなる。その理由は明確ではないが、次のように考えられる。すなわち、供給路2から投入部21に粒状物が運ばれる際、搬送の勢いにより、投入部21には搬送路2からみて遠位側ほど粒状物が多く導入されやすくなる。このとき、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて遠位側に位置していれば、遠位側により多く導入された粒状物が接続部26に当たって落下の流れが分散し、粒状物が投入部21内でブリッジを形成しにくくなると考えられる。
【0052】
なお、投入部21は、上側円筒22に下側円筒24が軸をずらして接続していて形成されていれば、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて遠位側に必ずしも位置している必要はない。例えば、図7に示すように(図7(a)は投入部と搬送路の一部の上面図の他の例を表し、図7(b)はその側面図を表す)、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて近位側に位置していてもよく、図8に示すように(図8(a)は投入部と搬送路の一部の上面図の他の例を表し、図8(b)はその側面図を表す)、上側円筒22の軸23が下側円筒24の軸25より搬送路2からみて左側または右側に位置してもよい。図7図8に示した投入部21でも、粒状物によるブリッジ形成抑制効果が得られる。
【0053】
参考例として、図10には、大口径を有する上側円筒22と小口径を有する下側円筒24が軸が一致するように接続して形成された投入部を示すが(図10(a)は投入部と搬送路の一部の上面図の参考例を表し、図10(b)はその側面図を表す)、この場合、供給路2から投入部21に導入された粒状物は、多くが上側円筒22と下側円筒24の間の接続部26に当たりやすくなる。従って、投入部21内で粒状物が互いにほぼ同じ速度で落下しやすくなり、投入部21内で粒状物がブリッジを形成しやすくなる。特に、粒状物は、接続部26を基盤としてブリッジを形成しやすくなる。
【0054】
投入部21のより好適な態様について説明する。図6図8に示すように、上側円筒22と下側円筒24の間の接続部26は、断面径が下方に漸減していることが好ましい。このように投入部21が形成されていれば、粒状物が投入部21内を落下する際、接続部26で粒状物が留まりにくくなり、粒状物が投入部21内でブリッジを形成しにくくなる。このとき接続部26は、上側円筒22と下側円筒24の両軸23,25を含む断面において、それぞれの軸23,25に対する最大角度が2°〜40°の範囲(より好ましくは5°〜30°の範囲)となるように形成されていることが好ましい。
【0055】
上側円筒22の内径は下側円筒24の内径の1.1倍以上が好ましく、1.2倍以上がより好ましく、また2.5倍以下が好ましく、2.0倍以下がより好ましい。上側円筒22の内径が下側円筒24の内径の1.1倍以上であれば、粒状物が投入部21内を落下する際、粒状物が接続部26に当たりやすくなり、粒状物が投入部21内でブリッジを形成しにくくなる。上側円筒22の内径が下側円筒24の内径の2.5倍以下であれば、粒状物が投入部21内を落下する際、粒状物が接続部26に留まりにくくなり、粒状物が投入部21内でブリッジを形成しにくくなる。
【0056】
上側円筒22と下側円筒24は次のように位置していることが好ましい。すなわち、上側円筒と下側円筒の軸間距離Xは、上側円筒の半径RUと下側円筒の半径RDの差RU−RDの0.5倍以上であることが好ましく、0.7倍以上であることがより好ましく、0.9倍以上であることがさらに好ましく、RU−RDと実質的に等しいことが特に好ましい。なお、上側円筒と下側円筒の軸間距離XがRU−RDと等しい場合は、上側円筒と下側円筒の軸に垂直な面に対し、下側円筒の投射円が上側円筒の投射円に対し内接することとなる。
【0057】
以上のように、本発明の粒状物充填装置では、ホッパーの形状や投入部の形状を工夫することにより、粒状物によるブリッジの形成を抑制し、粒状物の詰まりを起こりにくくしている。本発明の粒状物充填装置は、上記ホッパーと上記投入部の少なくとも1つを備えていればよく、それにより粒状物によるブリッジの形成が抑制され、粒状物を複数の反応管に均一に供給しやすくなる。
【0058】
次に、本発明の粒状物充填装置において、搬送路の好適な態様について説明する。
【0059】
搬送路2の底面がコンベア3により構成されている場合、コンベア3は、無限軌道のベルト4が少なくとも2つのローラー5により支持されて構成され、ベルト4はローラー5の回転により搬送される。このとき、ベルト4が蛇行することなく搬送路2の下流方向にまっすぐ進むようにするために、ベルト4の裏面(ローラー側表面)には、ベルト4の周方向に延びる凸部が設けられ、ローラー5の表面にはローラー5の周方向に延びる凹部が形成されていることが好ましい。ベルト4の裏面に設けられた凸部は、ローラー5の表面の凹部にはまるように形成される。このようにベルト4とローラー5が形成されていれば、ベルト4がローラー5により搬送される際、ベルト4がローラー5の軸方向に対してずれにくくなり、搬送路2の下流方向にまっすぐ進みやすくなる。その結果、コンベア3により粒状物が搬送路2を均一に搬送されるようになる。
【0060】
コンベア3には、搬送路2の底面を構成しないベルト4の部分に、ベルト4の表面と接するようにブラシ6が取りつけられていることが好ましい。図1では、コンベア3の下側に、ベルト4の下面に接するようにブラシ6が取りつけられている。このようにブラシ6が取りつけられていれば、ベルト4がローラー5の回転により搬送されると、ベルト4の表面に付着した粉状物(粒状物の摩耗により生成した粉状物)がブラシ6により連続的に除去されるようになる。その結果、粉状物の吸湿等によるベルト4上への堆積物の生成が抑えられ、反応管には粒状物のみが供給されやすくなる。
【0061】
図2に示すように、搬送路2の底面には粉状物をふるい落とす孔7が形成されていることが好ましい。粉状物が反応管に供給されると反応管の圧力損失が高まりやすくなるため、複数の反応管で圧力損失を均一に揃えることが難しくなり、反応管ごとに反応効率が変化し、反応収率の低下につながる。従って、搬送路2の底面に粉状物をふるい落とす孔7を設けることにより、反応管には粒状物のみが供給されやすくなる。粉状物をふるい落とす孔7としては、例えば、パンチングメタルを採用すればよい。粉粒物をふるい落とす孔7は、粒状物が投入部21に導入される直前、すなわち、搬送路2の下流側に設けられることが好ましい。また、孔7は、粒状物の摩耗により生成する粉状物をふるい落とすだけでなく、粒状物の破砕により生成する破片もふるい落とすように、適度な孔径を有するように形成されていることが好ましい。図1では、粉状物をふるい落とす孔7の下方に、孔から落ちた粉状物を受ける受け皿8が設けられており、粒状物充填装置1はこのように受け皿8が設けられていることが好ましい。
【0062】
搬送路2は、投入部21側の端部が、投入部21の入口に向かって幅が漸減するように形成されていることが好ましい。図2図6図8では、搬送路2の投入部21側の端部はこのように形成されている。投入部21の下側円筒24は、粒状物がスムーズに投入部21から反応管に充填されるようにするために、反応管の径と同じかそれに近い径であることが好ましいが、搬送路2の幅を投入部21の径に合わせて設定すると、搬送路2の粒状物搬送能力が十分確保できなくなり、粒状物の反応管への充填作業に多くの時間がかかりやすくなる。しかし、搬送路2の投入部21側の端部が、投入部21の入口に向かって幅が漸減するように形成されていれば、搬送路2の粒状物搬送量を高くすることができ、粒状物を効率的に反応管に供給できるようになる。また、搬送路2から投入部21に粒状物をスムーズに導入できるようになる。搬送路2の最大幅は、投入部21の上側円筒22の内径の1.1倍以上が好ましく、1.2倍以上がより好ましく、また3.0倍以下が好ましく、2.5倍以下がより好ましい。
【実施例】
【0063】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記の実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0064】
触媒の調製
イオン交換水500部に硝酸コバルト392部、硝酸ニッケル172部を溶解し、溶液Aを調製した。また、硝酸第二鉄95部および硝酸ビスマス137部を61質量%の硝酸80部とイオン交換水300部とからなる硝酸水溶液に溶解し、溶液Bを調製した。別に、加熱したイオン交換水1500部にパラモリブデン酸アンモニウム500部を添加し、撹拌しながら溶解し、溶液Cを調製した。溶液Cに溶液Aと溶液Bを滴下し、混合し、次いで硝酸カリウム2.4部をイオン交換水40部に溶解した水溶液を添加し、懸濁液を得た。得られた懸濁液を加熱、撹拌、蒸発乾固させ、固形物を得た。このようにして得られた固形物を150℃で乾燥後、150μm以下に粉砕し、得られた粉体に適量の硝酸アンモニウムとイオン交換水を加え、混練して、ペースト状物質を得た。このペースト状物質を、外径8mm、内径2mm、長さが8.8mmのリング状に成型し、空気流通下、470℃で8時間焼成して、触媒を得た。この触媒の酸素を除く金属元素組成はMo12Bi1.2Fe1Co5.7Ni2.50.1であった。
【0065】
試験例1
図1および図2に示した粒状物充填装置を用いて、上記で調製した触媒を固定床多管式反応器の反応管に充填した。粒状物充填装置のホッパーは、図3および図4に示すように、後側壁がその下方が上方より搬送路の下流側に位置するように傾斜するとともに、後側壁が水平断面V字状に形成されていた。後側壁は62°の角度で傾斜していた。投入部は、図6に示すように、大口径を有する上側円筒の下側に小口径を有する下側円筒が軸をずらして接続され、上側円筒の軸が下側円筒の軸より搬送路からみて遠位側に位置するように形成されていた。このとき、上側円筒は内径27mmφであり、下側円筒は内径21mmφであった。固定床多管式反応器は、内径25mm、長さ3000mmの反応管を11,000本備えていた。
【0066】
粒状物充填装置は、8つの搬送路をすべて使用して、触媒を同時に8本の反応管に充填した。各ホッパーには触媒を1L入れ、対応する反応管に搬送時間30秒で触媒を供給した。8本の反応管に触媒を充填したら、別の8本の反応管に同じように触媒を充填し、この触媒充填作業を25回繰り返すことで、200本の反応管に触媒を充填した。
【0067】
試験例1では、ホッパーと投入部で触媒によるブリッジは生じなかった。反応管に触媒を充填後、反応管に充填された触媒の層長(充填層長)と反応管の圧力損失を測定した。その結果、充填層長の分布は平均充填層長の±2%の範囲であり、圧力損失の分布は平均圧力損失の±3%の範囲であった。
【0068】
試験例2
投入部として、図7に示すように上側円筒の軸が下側円筒の軸より搬送路からみて近位側に位置するように形成された投入部を用いた以外は、試験例1と同様にして触媒を反応管に充填した。なお、投入部の上側円筒と下側円筒の内径は試験例1と同じであった。
【0069】
試験例2では、ホッパーでブリッジは生じなかったが、投入部ではブリッジが生じそうになることがあった。しかし、棒で軽く突きながら充填を継続することにより、投入部でもブリッジは生じなかった。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±3%の範囲であり、圧力損失の分布は平均圧力損失の±4%の範囲であった。
【0070】
試験例3
投入部として、図8に示すように上側円筒の軸が下側円筒の軸より搬送路からみて左側または右側に位置するように形成された投入部を用いた以外は、試験例1と同様にして触媒を反応管に充填した。なお、投入部の上側円筒と下側円筒の内径は試験例1と同じであった。
【0071】
試験例3では、ホッパーでブリッジは生じなかったが、投入部ではブリッジが生じそうになることがあった。しかし、棒で軽く突きながら充填を継続することにより、投入部でもブリッジは生じなかった。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±2%の範囲であり、圧力損失の分布は平均圧力損失の±4%の範囲であった。
【0072】
試験例4
ホッパーとして、図9に示すように後側壁が平面状(水平断面直線状)のホッパーを用いた以外は、試験例1と同様にして触媒を反応管に充填した。
【0073】
試験例4では、1回目の触媒充填作業で、5つのホッパーの下側開口付近でブリッジが生じた。そこで、ヘラで触媒を突いて触媒の排出を促したが、搬送路への触媒の排出時間にばらつきが生じた。さらに合計25回の触媒充填作業を行ったが、いずれの場合も複数のホッパーでブリッジが生じた。なお、投入部ではブリッジは生じなかった。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±4%の範囲であり、圧力損失の分布は平均圧力損失の±9%の範囲であった。
【0074】
試験例5
投入部として、図10に示すように上側円筒の軸と下側円筒の軸が一致するように形成された投入部を用いた以外は、試験例1と同様にして触媒を反応管に充填した。なお、投入部の上側円筒と下側円筒の内径は試験例1と同じであった。
【0075】
試験例5では、ホッパーでブリッジは生じなかったが、投入部ではブリッジが形成してしまうことがあった。投入部を棒で軽く突きながら充填を行ったが、ブリッジの形成を抑えることができなかった。そのため、一時的に搬送路のコンベアを停止し、投入部でのブリッジを取り除いた後、充填を再開することで作業を継続したが、中断のために余分の作業時間を要した。反応管への触媒の充填後、反応管の充填層長と圧力損失を測定した結果、充填層長の分布は平均充填層長の±5%の範囲であり、圧力損失の分布は平均圧力損失の±11%の範囲であった。
【産業上の利用可能性】
【0076】
本発明の粒状物充填装置は、固定床多管式反応器の各反応管に触媒等の粒状物を充填するのに用いることができる。
【符号の説明】
【0077】
1: 粒状物充填装置
2: 搬送路
3: コンベア
11: ホッパー
12: 後側壁
13: 前側壁
21: 投入部
22: 上側円筒
24: 下側円筒
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10