【実施例】
【0166】
以下、具体的な実施例、比較例を挙げて本発明を説明するが、本発明は以下の実施例に限定されるものではない。
実施例、比較例においては以下の方法により測定及び評価を行った。
【0167】
<(1)SiHの反応率の算出>
サンプリングした反応溶液(後述する実施例、比較例中のオルガノポリシロキサン合成における反応溶液であって、反応開始から72時間経過後の溶液)0.05gを重水素化クロロホルム溶媒1gに溶解して測定試料とした。
この測定試料を用いて、400MHz(日本分光社製α−400)の、
1H NMRの測定を積算回数100回にて行い、得られた結果を解析した。
SiHの反応率は、反応前と反応後のSi−CH
3に由来する0.2ppmのピークとSiHに由来する4.6ppmのピークとの面積比を求め、下記式に従い、算出した。
SiHの反応率が98%以上である場合を◎、90%以上98%未満である場合を○、90%未満である場合を×と評価した。
SiHの反応率(%)=[((X1−Y1)/X1]×100
X1:反応前のピーク面積比
(反応前のSiHのピーク面積)/(反応前のSi−CH
3のピーク面積)
Y1:反応後のピーク面積比
(反応後のSiHのピーク面積)/(反応後のSi−CH
3のピーク面積)
【0168】
<(2)分子構造の同定>
後述する実施例、比較例において作製したオルガノポリシロキサン(A1)〜(A17)のサンプル20mgに対して、1gの割合で重水素化クロロホルム溶媒に溶解した溶液を測定試料とした。この測定試料を用いて、日本分光社製α−400で
1H NMRの測定を積算回数200回にて行い、得られた結果を解析した。
サンプル0.3gに対して、1gの割合で重水素化クロロホルム溶媒に溶解した溶液を測定試料とした。この測定試料を用いて、日本分光社製α−400で
13C NMRの測定を積算回数20000回にて行い、得られた結果を解析した。
サンプル0.15gに対して、1gの割合で重水素化クロロホルム溶媒に溶解し、Cr(acac)
3をシリコーンに対して8質量%添加した溶液を測定試料とした。この測定試料を用いて、日本分光社製α−400で
29Si NMRの測定を積算回数4000回にて行い、得られた結果を解析した。
1H NMR、
13C NMR及び
29Si NMRにより得られた結果を解析して、オルガノポリシロキサン(A1)〜(A17)の分子構造を同定した。
【0169】
<(3)(メタ)アクリロキシ基の官能基当量の算出>
後述する実施例、比較例において作製したオルガノポリシロキサン(A1)〜(A17)のサンプル30mgに対して、1gの割合で重水素化クロロホルム溶媒に溶解した溶液を測定試料とした。この測定試料を用いて、日本分光社製α−400で
1H NMRの測定を積算回数200回にて行い、得られた結果を解析してオルガノポリシロキサン1分子中の平均組成を求めた。
サンプル0.15gに対して、1gの割合で重水素化クロロホルム溶媒に溶解し、Cr(acac)
3をシリコーンに対して8質量%添加した溶液を測定試料とした。この測定試料を用いて、日本分光社製α−400で
29Si NMRの測定を積算回数4000回にて行い、得られた結果を解析してオルガノポリシロキサン1分子中の平均組成を求めた。
1H NMR及び
29Si NMRにより得られた結果を解析して、(メタ)アクリロキシ基の官能基当量(官能基1モル当たりの質量)を算出した。
【0170】
<(4)重量平均分子量の算出>
後述する実施例、比較例において作製したオルガノポリシロキサン(A1)〜(A17)の測定用サンプル100mgに対して、2gの割合でクロロホルム溶媒に溶解し、0.45μmのフィルターにて濾過したものを測定試料溶液とした。
カラム温度40℃にて、溶離液(クロロホルム)を流量1mL/分の条件下で、カラム[カラム構成は、ガードカラムとして東ソー(株)社製TskguardcolumnH時間−H(登録商標)を用い、東ソー(株)製Tskgel(登録商標)G5000H時間、及び東ソー(株)製Tskgel(登録商標)G3000H時間、東ソー(株)製Tskgel(登録商標)G1000H時間の各1本ずつを直列に配置]に通した。また、Polymer Laboratories社製の分子量7,500,000、2,560,000、841,700、320,000、148,000、59,500、28,500、10,850、2,930、580の、分子量既知の単分散ポリポリスチレン標準物質、及びスチレンモノマー(分子量104)のRI検出による溶出時間から求めた検量線を予め作成した。
測定試料溶液の溶出時間と検出強度から、上記の検量線を用いて分子量を算出した。
【0171】
<(5)粘度測定>
後述する実施例、比較例において作製したオルガノポリシロキサン(A1)〜(A17)の測定用サンプルに対し、東機産業社製TVE−22Hを用い、温度25℃における粘度を測定した。
【0172】
<(6)一般式(9)で表される化合物の含有量[WA]に対する一般式(10)で表される化合物の含有量[WB]の比([WB]/[WA])の算出>
[WA]及び[WB]の値は、オルガノポリシロキサンのマトリックス支援イオン化飛行時間型質量分析法(以下、MALDI−TOF/MS)にて測定を行って得られる一般式(9)及び一般式(10)の各々の構造に該当する質量と、ナトリウムの質量23とを合計した質量に該当するピークの強度を表す。
なお、一般式(9)及び一般式(10)の各々の構造に該当する質量とは、前記の構造を構成する元素が同位体を有する場合には、各々の元素の同位体の質量の内、最も存在率の大きな同位体の質量を用いて算出された値のことをいう。
また、一般式(9)及び(10)に相当するピークが複数個存在する場合には、一般式(9)の構造を有する化合物の含有量[WA]及び一般式(10)で表される化合物の含有量[WB]は、各々の構造に相当するピーク強度の合計値とした。
ただし、一般式(9)及び一般式(10)の各々の構造に該当する質量とナトリウムの質量23とを合計した質量に該当するピークの最大強度に対して、3%以下の強度を有するピークの強度は、ピーク強度の合計値の算出からは除外した。
MALDI−TOF/MSの測定方法は以下の方法により行った。
<MALDI−TOF/MSの測定方法>
室温にて0.1gの後述する実施例、比較例において作製したオルガノポリシロキサン(A5)(A6)(A11)(A12)を100mLのテトラヒドロフランに溶解した溶液と、10mgのジスラノールを1mLのテトラヒドロフランに溶解した溶液とを、室温にて体積比で1対1の割合で均一に混合して溶液aを作製した。次いで、10mgのヨウ化ナトリウムを10mLのアセトンに溶解した溶液1μLを乗せたサンプルプレートに溶液aを1μL滴下し、室温にて溶媒を蒸発後、下記測定条件でMALDI−TOF/MSにて測定を行った。
(測定条件)
装置 :島津 AXIMA CFRplus
レーザー :窒素レーザー(337nm)
検出器形式:リニアモード
イオン検出:正イオン(ポジティブモード)
積算回数 :500回
【0173】
<(7)耐熱黄変性>
後述する実施例、比較例において作製した硬化物の測定用サンプルとして、厚さ3mmの硬化物を用い、コニカミノルタ社製、分光測色計CM−3600d(商品名)でYI(黄色度)を測定した。
次に、当該硬化物をアルミホイルに包み、空気下で150℃、150時間加熱処理を行った。その後、再びコニカミノルタ社製、分光測色計CM−3600d(商品名)でYI(黄色度)を測定した。
この加熱処理前後におけるYIの変化をΔYIとし、ΔYIが1.0未満を◎、1.0以上3.0未満を○、3.0以上を×と評価した。
【0174】
<(8)耐光性>
後述する実施例、比較例において作製した硬化物の測定用サンプルとして、厚さ3mmの硬化物を用い、コニカミノルタ社製、分光測色計CM−3600d(商品名)でYI(黄色度)を測定した。
次に、当該硬化物を50℃一定にした恒温乾燥機中にセットし、365nmバンドパスフィルターを備えたUV照射装置(ウシオ電機社製、商品名:SP−7)を用いて、365nmにおける照度4W/cm
2で100時間照射した。
その後、再びコニカミノルタ社製分光測色計CM−3600d(商品名)でYI(黄色度)を測定した。このUV照射前後におけるYIの変化をΔYIとし、ΔYIが1.0未満を◎、1.0以上3.0未満を○、3.0以上を×と評価した。
【0175】
<(9)耐冷熱衝撃性>
20mm×20mm×2mmの平板の中央に10mmφ深さ1mmの窪みの施したポリフタルアミド樹脂(ソルベイ社製アモデル4122)の成形体であるハウジング材内に5mm×5mm×0.2mmのシリコンチップを配置した。
次に、実施例1〜17、比較例1〜6で作製した硬化性樹脂組成物を注型し、加熱又は光硬化して、シリコンチップを封止する硬化物(封止材)を形成させ、光半導体装置の試験片を得た。
得られた試験片をエスペック社製小型冷熱衝撃装置TSE−11で室温〜−40℃(15分)〜120℃(15分)〜室温を1サイクルとして、剥離が発生するまでの回数を目視で観察した。
100回サイクル以上剥離が発生しなかったものを◎、50回以上100回未満で剥離が発生したものを○、50回未満で剥離が発生したものを×とした。
【0176】
<(10)硬度>
後述する実施例、比較例において作製した硬化物の測定用サンプルとして、長さ35mm×幅8mm×厚さ2mmの硬化物を用い、アントンパール社製MCR−301で−120℃から150℃(昇温速度2℃/分)における動的粘弾性を測定した。
硬度は30℃におけるG’(貯蔵弾性率)の数値が、10
7以上であるとき◎、10
6以上10
7未満であるとき○、10
6未満であるとき×と評価した。
【0177】
<(11)密着性>
20mm×20mm×2mmの平板の中央に10mmφ、深さ1mmの窪みが形成されたポリフタルアミド樹脂(ソルベイ社製アモデル4122)の型枠内に、実施例1〜17、比較例1〜6で作製した硬化性樹脂組成物を注型し、加熱又は光硬化して試験片を得た。
得られた試験片をエスペック社製小型冷熱衝撃装置TSE−11で室温〜−40℃(15分)〜120℃(15分)〜室温を1サイクルとして、剥離が発生するまでの回数を目視で観察した。
100回サイクル以上剥離が発生しなかったものを◎、50回以上100回未満で剥離が発生したものを○、50回未満で剥離が発生したものを×とした。
【0178】
<(12)ガスバリア性>
後述する実施例、比較例において作製した硬化物の測定用サンプルとして、厚さ0.2mmの100mm×100mmの硬化物を用い、イリノイ社製、酸素透過率測定装置Model8001にて、温度23℃、乾燥条件化にて酸素透過率を測定した。酸素透過率が500cc/m
2/day未満を◎、500cc/m
2/day以上1000cc/m
2/day未満を○、1000cc/m
2/day以上を×と評価した。
【0179】
〔実施例1〕
<不飽和結合含有基を有するオルガノポリシロキサン(A1)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン27g(0.1モル)、
(b1)成分として下記平均組成式(B1−1)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン242g(0.3モル)、
(c)成分として6−ビニルビシクロ[2.2.1]ヘプト−2−エン101g(0.9モル)、
トルエン1600g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 … (B1−1)
なお、前記平均組成式(B1−1)中、Meは、メチル基を表す(本明細書中の実施例、及び比較例において示す平均組成式においても同様とする。)。
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は98%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(40)で表される不飽和結合含有基を有するオルガノポリシロキサン(A1)350gを得た。
得られた不飽和結合含有基を有するオルガノポリシロキサン(A1)は、(メタ)アクリロキシ基を有していなかったが、不飽和結合含有基の官能基当量は694g/molであり、GPC測定から算出した重量平均分子量は37500であり、25℃における粘度は2800mPa・sであった。
【0180】
【化53】
【0181】
前記式(40)中、mは平均10の整数を示し、nは平均8の整数を示す。
【0182】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−17.2ppm
M1:+8.8ppm
T:−66.2ppm
D2:−19.8ppm
D3:−21.2ppm
a/(b+c)の値は0.78であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0183】
<硬化物の製造と特性評価>
不飽和結合含有基を有するオルガノポリシロキサン(A1)100質量部に、tert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0184】
〔実施例2〕
<メタアクリロキシ基含有オルガノポリシロキサン(A2)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン27g(0.1モル)、
(b1)成分として下記平均組成式(B1−2)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン242g(0.3モル)、
(c)成分として3−ブテニルメタクリレート118g(0.9モル)、
トルエン1600g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−2)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(41)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A2)370gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A2)の官能基当量は714g/molであり、GPC測定から算出した重量平均分子量は38200であり、25℃における粘度は2600mPa・sであった。
【0185】
【化54】
【0186】
前記式(41)中、mは平均10の整数を示し、nは平均8の整数を示す。
【0187】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
T:−66.2ppm
D2:−19.8ppm
D3:−21.2ppm
a/(b+c)の値は0.78であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0188】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A2)100質量部に、tert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0189】
〔実施例3〕
<メタアクリロキシ基含有オルガノポリシロキサン(A3)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてテトラキス(ジメチルシロキシ)シラン16g(0.05モル)、
(b1)成分として下記平均組成式(B1−3)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン203g(0.3モル)、
(c)成分として3−ブテニルメタクリレート118g(0.9モル)、
トルエン1500g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−3)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は97%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(42)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A3)330gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A3)の官能基当量は626g/molであり、GPC測定から算出した重量平均分子量は34200であり、25℃における粘度は3500mPa・sであった。
【0190】
【化55】
【0191】
前記式(42)中、mは平均5の整数を示し、nは平均8の整数を示す。
【0192】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
D2:−19.8ppm
D3:−21.2ppm
S:−32.3ppm
a/(b+c)の値は1.08であり、d/aの値は0.08であった。
【0193】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A3)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0194】
〔実施例4〕
<メタアクリロキシ基含有オルガノポリシロキサン(A4)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン41g(0.2モル)、
(b1)成分として下記平均組成式(B1−4)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン125g(0.2モル)、
(c)成分として3−ブテニルメタクリレート76g(0.6モル)、
トルエン864g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−4)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(43)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A4)205gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A4)の官能基当量は600g/molであり、GPC測定から算出した重量平均分子量は19800であり、25℃における粘度は4500mPa・sであった。
【0195】
【化56】
【0196】
前記式(43)中、mは平均15の整数を示し、nは平均8の整数を示す。
【0197】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
D2:−19.8ppm
D3:−21.2ppm
a/(b+c)の値は1.13であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0198】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A4)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0199】
〔実施例5〕
<メタアクリロキシ基含有オルガノポリシロキサン(A5)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン68g(0.3モル)、
(b1)成分として下記平均組成式(B1−5)で表される分子量186のビニルジメチルシロキシ末端ジメチルジシロキサン51g(0.3モル)、
(c)成分として3−ブテニルメタクリレート119g(0.9モル)、
トルエン795g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−5)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(44)、下記一般式(45)及び下記一般式(46)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A5)188gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A5)の官能基当量は350g/molであり、GPC測定から算出した重量平均分子量は16400であり、25℃における粘度は15000mPa・sであった。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A5)の[WB]/[WA]の値は1.7であった。なお、一般式(45)は一般式(9)に相当し、一般式(46)は一般式(10)に相当する。
【0200】
【化57】
【0201】
【化58】
【0202】
【化59】
【0203】
前記式(44)中、mは平均25の整数を示し、nは平均0の整数を示す。
【0204】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
D2:−19.8ppm
a/(b+c)の値は1.04であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0205】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A5)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0206】
〔実施例6〕
<メタアクリロキシ基含有オルガノポリシロキサン(A6)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン201g(0.8モル)、
(b1)成分として下記平均組成式(B1−6)で表される分子量186のビニルジメチルシロキシ末端ジメチルジシロキサン269g(1.4モル)、
(c)成分として3−ブテニルメタクリレート97g(0.7モル)、
トルエン2138g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−6)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(47)、下記一般式(48)及び下記一般式(49)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A6)520gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A6)の官能基当量は1157g/molであり、GPC測定から算出した重量平均分子量は98600であり、25℃における粘度は26000mPa・sであった。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A6)の[WB]/[WA]の値は10.1であった。なお、一般式(48)は一般式(9)に相当し、一般式(49)は一般式(10)に相当する。
【0207】
【化60】
【0208】
【化61】
【0209】
【化62】
【0210】
前記式(47)中、mは平均30の整数を示し、nは平均0の整数を示す。
【0211】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
D2:−19.8ppm
a/(b+c)の値は0.16であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0212】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A6)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0213】
〔実施例7〕
<メタアクリロキシ基含有オルガノポリシロキサン(A7)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン24g(0.1モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン13g(0.05モル)及びテトラメチルシラン0.1g(0.002モル)、
(b1)成分として下記平均組成式(B1−7)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン119g(0.2モル)、
(c)成分として3−ブテニルメタクリレート53g(0.3モル)、
トルエン768g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−7)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(50)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A7)180gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A7)の官能基当量は767g/molであり、GPC測定から算出した重量平均分子量は189800であり、25℃における粘度は45000mPa・sであった。
【0214】
【化63】
【0215】
前記式(50)中、mは平均50の整数を示し、nは平均8の整数を示す。
【0216】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
T:−66.2ppm
D2:−19.8ppm
D3:−21.2ppm
a/(b+c)の値は0.70であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0217】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A7)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0218】
〔実施例8〕
<メタアクリロキシ基含有オルガノポリシロキサン(A8)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン27g(0.1モル)、
(b2)成分として下記平均組成式(B1−8)で表される重量平均分子量760のヒドロキシジメチルシロキシ末端ポリジメチルシロキサン235g(0.3モル)、
(c)成分として3−ブテニルメタクリレート118g(0.9モル)、
トルエン1600g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
HO−Si(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2―OH …(B1−8)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して40ppmとなる量添加した。
脱水素反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は96%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(51)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A8)370gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A8)の官能基当量は703g/molであり、GPC測定から算出した重量平均分子量は34500であり、25℃における粘度は2500mPa・sであった。
【0219】
【化64】
【0220】
前記式(51)中、mは平均10の整数を示し、nは平均8の整数を示す。
【0221】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
T:−66.2ppm
D1及びD2:−19.8ppm
D3:−21.2ppm
S:−32.3ppm
a/(b+c)の値は1.33であり、d/aの値は0.09であった。
【0222】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A8)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表1に示す。
【0223】
〔実施例9〕
<メタアクリロキシ基含有オルガノポリシロキサン(A9)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてテトラキス(ジメチルシロキシ)シラン16g(0.05モル)、
(b2)成分として下記平均組成式(B1−9)で表される重量平均分子量760のヒドロキシジメチルシロキシ末端ポリジメチルシロキサン197g(0.3モル)、
(c)成分として3−ブテニルメタクリレート118g(0.9モル)、
トルエン1500g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
HO−Si(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2−OH …(B1−9)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して40ppmとなる量添加した。
脱水素反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は97%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(52)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A9)325gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A9)の官能基当量は617g/molであり、GPC測定から算出した重量平均分子量は33200であり、25℃における粘度は3400mPa・sであった。
【0224】
【化65】
【0225】
前記式(52)中、mは平均5の整数を示し、nは平均8の整数を示す。
【0226】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
T:−66.2ppm
D3:−21.2ppm
S:−32.3ppm
a/(b+c)の値は1.75であり、d/aの値は0.08であった。。
【0227】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A9)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0228】
〔実施例10〕
<メタアクリロキシ基含有オルガノポリシロキサン(A10)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン41g(0.2モル)、
(b2)成分として下記平均組成式(B1−10)で表される重量平均分子量760のヒドロキシジメチルシロキシ末端ポリジメチルシロキサン122g(0.2モル)、
(c)成分として3−ブテニルメタクリレート76g(0.6モル)、
トルエン864g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
HO−Si(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2−OH …(B1−10)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して40ppmとなる量添加した。
脱水素反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は96%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(53)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A10)201gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサンの(A10)の官能基当量は591g/molであり、GPC測定から算出した重量平均分子量は19500であり、25℃における粘度は4200mPa・sであった。
【0229】
【化66】
【0230】
前記式(53)中、mは平均15の整数を示し、nは平均8の整数を示す。
【0231】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
T:−66.2ppm
D3:−21.2ppm
S:−32.3ppm
a/(b+c)の値は1.13であり、d/aの値は0.08であった。
【0232】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A10)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0233】
〔実施例11〕
<メタアクリロキシ基含有オルガノポリシロキサン(A11)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン68g(0.3モル)、
(b2)成分として下記平均組成式(B1−11)で表される分子量166のヒドロキシジメチルシロキシ末端ジメチルジシロキサン45g(0.3モル)、
(c)成分として3−ブテニルメタクリレート119g(0.9モル)、トルエン795g、及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、窒素ガス雰囲気下で攪拌しながら60℃に加温した。
HO−Si(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2−OH …(B1−11)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して40ppmとなる量添加した。
脱水素反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(54)、下記一般式(55)及び下記一般式(56)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A11)183gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A11)の官能基当量は340g/molであり、GPC測定から算出した重量平均分子量は17600であり、25℃における粘度は14500mPa・sであった。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A11)の[WB]/[WA]の値は1.9であった。なお、一般式(55)は一般式(9)に相当し、一般式(56)は一般式(10)に相当する。
【0234】
【化67】
【0235】
【化68】
【0236】
【化69】
【0237】
前記式(54)中、mは平均25の整数を示し、nは平均0の整数を示す。
【0238】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
T:−66.2ppm。
a/(b+c)の値は1.00であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0239】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A11)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0240】
〔実施例12〕
<メタアクリロキシ基含有オルガノポリシロキサン(A12)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン201g(0.8モル)、
(b2)成分として下記平均組成式)(B1−12)で表される分子量166のヒドロキシジメチルシロキシ末端ジメチルジシロキサン240g(1.4モル)、
(c)成分として3−ブテニルメタクリレート97g(0.7モル)、
トルエン2138g、及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、窒素ガス雰囲気下で攪拌しながら60℃に加温した。
HO−Si(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2−OH …(B1−12)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して40ppmとなる量添加した。
脱水素反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は93%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(57)、下記一般式(58)及び下記一般式(59)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A12)490gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサンの(A12)の官能基当量は1094g/molであり、GPC測定から算出した重量平均分子量は99700であり、25℃における粘度は25500mPa・sであった。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A12)の[WB]/[WA]の値は9.6であった。なお、一般式(58)は一般式(9)に相当し、一般式(59)は一般式(10)に相当する。
【0241】
【化70】
【0242】
【化71】
【0243】
【化72】
【0244】
前記式(57)中、mは平均30の整数を示し、nは平均0の整数を示す。
【0245】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
T:−66.2ppm
a/(b+c)の値は0.15であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0246】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A12)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0247】
〔実施例13〕
<メタアクリロキシ基含有オルガノポリシロキサン(A13)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン24g(0.1モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン13g(0.05モル)及びテトラメチルシラン0.1g(0.002モル)、
(b2)成分として下記平均組成式(B1−13)で表される重量平均分子量760のヒドロキシジメチルシロキシ末端ポリジメチルシロキサン116g(0.2モル)、
(c)成分として3−ブテニルメタクリレート53g(0.3モル)、
トルエン768g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
HO−Si(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2−OH …(B1−13)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して40ppmとなる量添加した。
脱水素反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は97%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(60)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A13)170gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A13)の官能基当量は756g/molであり、GPC測定から算出した重量平均分子量は182100であり、25℃における粘度は42300mPa・sであった。
【0248】
【化73】
【0249】
前記式(60)中、mは平均50の整数を示し、nは平均8の整数を示す。
【0250】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
T:−66.2ppm
D3:−21.2ppm
S:−32.3ppm
a/(b+c)の値は1.25であり、d/aの値は0.10であった。
【0251】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A13)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0252】
〔実施例14〕
<メタアクリロキシ基含有オルガノポリシロキサン(A14)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン96g(0.4モル)、
(a2)成分としてメチル1,1,3,3,−テトラメチルジシロキサン107g(0.8モル)、
(b1)成分として下記平均組成式(B1−14)で表される分子量186のビニルジメチルシロキシ末端ジメチルジシロキサン269g(1.4モル)、
(c)成分として3−ブテニルメタクリレート97g(0.7モル)、
トルエン2138g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
CH
2=CHSi(Me)
2O−(Si(Me)
2O)
8−Si(Me)
2CH=CH
2 …(B1−14)
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(61)及び下記一般式(62)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A14)520gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A14)の官能基当量は1300g/molであり、GPC測定から算出した重量平均分子量は11000であり、25℃における粘度は600mPa・sであった。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A14)は、原料の1分子中に少なくとも1個のSiH基を持つハイドロジェンポリシロキサン成分として(a1)と(a2)を共に用いた。そのことにより、得られたメタアクリロキシ基含有オルガノポリシロキサン(A14)の架橋構造が低下したため、粘度を低下させることができた。
【0253】
【化74】
【0254】
【化75】
【0255】
前記式(61)中、mは平均30の整数を示し、nは平均0の整数を示し、rは平均0の整数を示す。
【0256】
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
D2:−19.8ppm
F2:+7.0ppm
a/(b+c)の値は0.16であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0257】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A14)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0258】
〔実施例15〕
<メタアクリロキシ基含有オルガノポリシロキサン(A2)の製造>
第一段階の反応として、撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン27g(0.1モル)、
(c)成分として3−ブテニルメタクリレート40g(0.3モル)、
トルエン1600g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
第二段階の反応として、上述した第一段階の反応溶液に、(b1)成分として上記平均組成式(B1−1)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン242g(0.3モル)を添加し、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、上記一般式(41)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A2)360gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A2)の官能基当量は714g/molであり、GPC測定から算出した重量平均分子量は38200であり、25℃における粘度は2600mPa・sであった。
Si NMR測定の結果、構成単位に相当する次に示すピークが観察された。
F1:−18.2ppm
M1:+8.8ppm
T:−66.2ppm
D2:−19.8ppm
D3:−21.2ppm
a/(b+c)の値は0.78であった。
S:−32.3ppmのピークは観察されず、d/aの値は0であった。
【0259】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A2)100質量部にtert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0260】
〔実施例16〕
<メタアクリロキシ基含有オルガノポリシロキサン(A2)の製造>
メタアクリロキシ基含有オルガノポリシロキサン(A2)を、実施例2と同様の方法で製造した。
【0261】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A2)100質量部に、1−ヒドロキシ−シクロヘキシル−フェニルケトン(BASFジャパン社製、商品名:IRGACURE184)3質量部、2−メチル−1−[4−メチルチオ−フェニル]−2−モルフォリノプロパン−1−オン(BASFジャパン社製、商品名:IRGACURE907)3質量部を混合し、全体が均一になるまで撹拌後、脱泡して硬化性組成物を得た。
この硬化性組成物を、ガラス板(縦50mm×横50mm×厚さ5mm)上にシリコン製のスペーサー(縦50mm×横50mm×高さ3mm)をセットして型枠とし、スペーサーの内部に硬化性組成物を流し込み、ガラス板で挟んだ。
その後、高圧水銀灯を備えた紫外線照射装置(センエンジニアリング社製)を用いて、積算光量2000mJ/cm
2となるように上記ガラス板側から露光した。
硬化は、温度:23℃、湿度:60%RHの環境で行った。
その後、型枠を外して硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0262】
〔実施例17〕
<メタアクリロキシ基含有オルガノポリシロキサン(A2)の製造>
メタアクリロキシ基含有オルガノポリシロキサン(A2)を、実施例2と同様の方法で製造した。
【0263】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A2)100質量部に、3−メタクリロキシプロピルメチルジメトキシシラン(KBM−502、信越化学製)3質量部と、tert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表2に示す。
【0264】
〔比較例1〕
<メタアクリロキシ基含有オルガノポリシロキサン(A15)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
1,1,3,3,−テトラメチルジシロキサン134g(1.0モル)、
3−ブテニルメタクリレート420g(3.0モル)、
トルエン1600g、
及びハイドロキノンモノメチルエーテル0.05g(重合禁止剤)を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(63)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A15)405gを得た。
得られたメタアクリロキシ基含有オルガノポリシロキサン(A15)の官能基当量は415g/molであり、GPC測定から算出した重量平均分子量は400であり、25℃における粘度は150mPa・sであった。
【0265】
【化76】
【0266】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A15)100質量部に、tert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表3に示す。
【0267】
〔比較例2〕
<メタアクリロキシ基含有オルガノポリシロキサン(A16)>
下記一般式(64)で表されるメタアクリロキシ基含有オルガノポリシロキサン(A16)として、信越化学製X22−164Cを用いた。
メタアクリロキシ基含有オルガノポリシロキサン(A16)の官能基当量は2300g/molであり、GPC測定から算出した重量平均分子量は4500であり、25℃における粘度は3600mPa・sであった。
【0268】
【化77】
【0269】
<硬化物の製造と特性評価>
メタアクリロキシ基含有オルガノポリシロキサン(A16)100質量部に、tert−アミルパーオキシ−2−エチルヘキサノアート(化薬アクゾ社製、商品名:トリゴノックス121−50E、50質量%溶液)2.5質量部を窒素下にて混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。硬化性組成物をSUS316製の型枠に流し込み、100℃で4時間、更に150℃で1時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表3に示す。
【0270】
〔比較例3〕
<エポキシ基含有オルガノポリシロキサン(A17)の製造>
撹拌装置、温度計、還流冷却器を取り付けた3.0Lの3つ口フラスコに、
(a1)成分として1,3,5,7−テトラメチルシクロテトラシロキサン53g(0.2モル)、
(a2)成分としてメチルトリス(ジメチルシロキシ)シラン27g(0.1モル)、
(b1)成分として上記平均組成式(B1−1)で表される重量平均分子量780のビニルジメチルシロキシ末端ポリジメチルシロキサン242g(0.3モル)、
(c)成分としてビニルシクロヘキセンオキシド104g(0.9モル)、
トルエン1300g、を添加し、
窒素ガス雰囲気下で攪拌しながら60℃に加温した。
その後、塩化白金酸のイソプロパノール溶液を、白金金属が、付加反応生成物であるオルガノポリシロキサンの重量に対して20ppmとなる量添加した。
ヒドロシリル化反応の開始を確認した後、この反応系を保温、水冷又は空冷によって55〜65℃に保ちながら、72時間攪拌した。
フラスコ内容物の分析を行ったところ、SiH基の反応率は99%であった。
その後、活性炭処理し、揮発成分を留去して、下記一般式(65)で表されるエポキシ基含有オルガノポリシロキサン(A17)310gを得た。
当該エポキシ基含有オルガノポリシロキサン(A17)は、不飽和結合含有基を有していなかった。
得られたエポキシ基含有オルガノポリシロキサン(A17)のGPC測定から算出した重量平均分子量は30500であり、25℃における粘度は5600mPa・sであった。
【0271】
【化78】
【0272】
前記式(65)中、mは平均10の整数を示し、nは平均8の整数を示す。
【0273】
<硬化物の製造と特性評価>
エポキシ基含有オルガノポリシロキサン(A17)100質量部に、メチルヘキサヒドロ無水フタル酸60.5質量部、ジアザビシクロウンデセンオクチル酸塩1質量部を混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性樹脂組成物を得た。
この硬化性樹脂組成物を型枠に流し込み、120℃で1時間、更に150℃で2時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表3に示す。
【0274】
〔比較例4〕
<硬化性樹脂組成物(A18)>
硬化性樹脂組成物(A18)は、光半導体封止材用硬化性樹脂として市販されている、信越化学製KER−2500を用いた。
【0275】
<硬化物の製造と特性評価>
市販のKER−2500AとKER−2500Bを100質量部ずつ混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で1時間、更に150℃で5時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表3に示す。
【0276】
〔比較例5〕
<硬化性樹脂組成物(A19)>
硬化性樹脂組成物(A19)は、光半導体封止材用硬化性樹脂として市販されている、信越化学製ASP−1010を用いた。
【0277】
<硬化物の製造と特性評価>
市販のASP−1010A(商品名、信越化学製)とASP−1010B(商品名、信越化学製)を100質量部ずつ混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で1時間、更に150℃で5時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表3に示す。
【0278】
〔比較例6〕
<硬化性樹脂組成物(A20)>
硬化性樹脂組成物(A20)は、光半導体封止材用硬化性樹脂として市販されている、カネカ製FX−001を用いた。
【0279】
<硬化物の製造と特性評価>
市販のFX−001A(商品名、カネカ製):40質量部とFX−001B(商品名、カネカ製):60質量部を混合し、全体が均一になるまで撹拌し、その後、脱泡して硬化性組成物を得た。
この硬化性組成物をSUS316製の型枠に流し込み、100℃で1時間、150℃で1時間、更に180℃で0.5時間硬化反応を行い、硬化物を得た。
得られた硬化物の特性の評価結果を下記表3に示す。
【0280】
【表1】
【0281】
【表2】
【0282】
【表3】
【0283】
本実施形態のオルガノポリシロキサンは、分子構造中に前記一般式(1)〜(3)で表される構成単位F1、M1、Tのうち、
(i)F1とM1、
(ii)F1とT、
(iii)F1とM1とT、
の、いずれかの組み合わせの構成単位を有する。
構成単位F1、M1、Tを有することにより、耐熱黄変性、耐光性に優れるオルガノポリシロキサンが得られた。
また、構成単位F1からなる架橋構造を形成する部位と、構成単位M1若しくはTを含むシロキサンからなる応力を緩和する部位を、分子構造中に局部的に有することにより、硬度、耐冷熱衝撃性、ガスバリア性を両立することができた。
実施例1〜17によれば、耐熱黄変性、耐光性、耐冷熱衝撃性、硬度、密着性、及びガスバリア性のいずれの点でも、特に光半導体用途において要求されるレベルを十分に満足する透明な硬化物を形成することが可能なオルガノポリシロキサン及びそれを用いた硬化性樹脂組成物が得られた。
比較例1〜6は、上述した本実施形態の構成を具備していないため、耐熱黄変性、耐光性、耐冷熱衝撃性、硬度、密着性、及びガスバリア性のうちの所定の特性や、これらの特性バランスの観点から、実用上、十分な特性が得られなかった。
【0284】
本出願は、2011年3月30日に日本国特許庁へ出願された国際特許出願(PCT/JP2011/058115)に基づくものであり、その内容はここに参照として取り込まれる。