【国等の委託研究の成果に係る記載事項】(出願人による申告)平成25年度国立研究開発法人新エネルギー・産業技術総合開発機構次世代スマートデバイス開発プロジェクト/車載用障害物センシングデバイスの開発業務委託、産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
前記処理室内の前記溶融金属を加圧しながら冷却する加圧期間の後、加圧を行わない非加圧期間において前記溶融金属の凝固を完了させるように構成されている、請求項1に記載の金属充填装置。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、微小空間に充填される金属材料には様々なものがあり、加圧部材に付着しやすい材料、凝固時にヒケ(冷却凝固に伴う体積減少)が生じる材料、液相温度と固相温度との差が大きい材料、などの充填が難しい材料も含まれる。
【0006】
加圧部材に付着しやすい材料の場合、凝固した金属材料の加圧部材への付着が発生すると、加圧部材から金属材料を剥離させる際に微小空間から金属材料が引き抜かれたり、ウェハに割れ等のダメージを与えたりする可能性がある。この場合、金属充填処理の歩留まり向上の妨げとなる。
【0007】
凝固時にヒケが生じる材料の場合、ヒケにより加圧部材と金属材料との間に形成された真空の空洞に引っ張られて、微小空間から金属材料が引き抜かれたり、ウェハ表面の金属残渣が剥がれたりする可能性がある。この場合にも、金属充填処理の歩留まり向上の妨げとなる。
【0008】
液相温度と固相温度との差が大きい材料の場合、液相温度付近から固相温度に到達するまでの冷却時間が増大するので、長時間、加圧部材による加圧状態を維持し続ける必要がある。そのため、ウェハ1枚当たりの処理時間が増大して金属充填の処理効率を向上させることが困難となる場合がある。
【0009】
以上のような事情から、処理対象物に対する金属充填処理の更なる歩留まりや処理効率の向上を図ることが望まれている。
【0010】
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、金属充填処理の更なる歩留まりや処理効率の向上を図ることが可能な金属充填装置および金属充填方法を提供することである。
【課題を解決するための手段】
【0011】
上記目的を達成するために、この発明による金属充填装置は、処理対象物の表面に開口するように形成された微小空間内に溶融金属を充填する金属充填装置であって、処理対象物を保持する保持部と、微小空間の周囲を取り囲む筒状部材と、筒状部材の内側に処理対象物に向けて進退可能に配置された加圧部材と、保持部または処理対象物と、筒状部材と、加圧部材とにより気密状に形成される処理室内に、溶融金属を供給する金属供給部とを備え、処理室内に供給された溶融金属を加圧部材により加圧しながら冷却し、溶融金属の凝固が完了する前に加圧を停止するように構成され
、溶融金属の液相温度よりも低く、かつ、固相温度よりも高い固相温度側の温度まで溶融金属が冷却された時点で、溶融金属の加圧を停止するように構成されている。なお、「微小空間」とは、処理対象物に形成された100μm程度以下の幅を有する微細な溝や100μm程度以下の孔径を有する微細な貫通孔および非貫通穴を意味する。
【0012】
この発明による金属充填装置では、上記のように、処理室内に供給された溶融金属を加圧部材により加圧しながら冷却し、溶融金属の凝固が完了する前に加圧を停止するように構成する。これにより、微小空間内に充填された溶融金属を加圧しながら冷却する場合でも、溶融金属が完全に固相に変化する(凝固が完了する)前の不完全凝固の段階で加圧部材を溶融金属(処理対象物)から離間させることができる。そのため、加圧部材に付着しやすい金属材料の場合でも、付着強度が弱い段階で加圧部材を離間させて、金属材料や処理対象物に作用する応力を低減することができる。また、凝固時にヒケが生じる金属材料の場合、加圧部材と金属材料との間の空洞が成長しきる凝固完了前のより早い段階で加圧部材を離間させて、空洞部の真空化による加圧部材と溶融金属との吸引密着力を低減することができる。また、液相温度と固相温度との差が大きい金属材料の場合、固相温度よりも低温になる前のより早い段階で加圧を停止して、処理対象物の搬出および次の処理対象物の処理を早期に開始することができる。以上の結果、本発明によれば、金属充填処理の歩留まりや処理効率の向上を図ることができる。
さらに、溶融金属の凝固が完了する前に、確実に加圧を停止することができる。また、凝固がある程度進行した固相温度側の温度まで冷却されてから溶融金属の凝固が完了する前に加圧を停止することにより、溶融金属を充填する加圧が不足することはなく、充填不良の発生を抑制することができる。なお、本明細書において、固相温度は、その温度以下で金属材料が完全に凝固する(固相になる)温度であり、液相温度は、その温度以上で金属材料が完全に溶融する(液相になる)温度である。「固相温度側の温度」とは、たとえば、液相温度と固相温度とを平均した温度([液相温度+固相温度]/2)を境界として、固相温度側にある温度域に含まれる温度である。
【0013】
上記発明による金属充填装置において、好ましくは、処理室内の溶融金属を加圧しながら冷却する加圧期間の後、加圧を行わない非加圧期間において溶融金属の凝固を完了させるように構成されている。このように構成すれば、溶融金属の凝固が完了する前に加圧を停止する場合にも、充填不良の発生を抑制することができる。
【0014】
この場合において、好ましくは、加圧期間において、溶融金属が冷却されて凝固が完了する前に加圧部材を処理対象物から後退させて加圧を停止し、非加圧期間において、外部環境と略等しい圧力環境で溶融金属を冷却して凝固を完了させるように構成されている。このように構成すれば、加圧部材を処理対象物から離間させた状態で、たとえば大気圧下で溶融金属の凝固を完了させることができるので、処理対象物の搬出や次の処理対象物の処理をより早期に開始することができる。
【0016】
上記発明による金属充填装置において、好ましくは、溶融金属が冷却されて凝固が完了する前に、加圧を停止するとともに処理室を開放するように構成されている。このように構成すれば、溶融金属の凝固が完了する前段階で、処理対象物の搬送(または搬送準備)を開始することができるので、処理効率をさらに向上させることができる。
【0017】
上記発明による金属充填装置において、好ましくは、不活性ガスを供給するガス供給部をさらに備え、加圧を停止した後、溶融金属の凝固が完了するまでの間は、処理対象物が不活性ガス雰囲気に配置されるように構成されている。このように構成すれば、処理対象物の表面に形成される金属材料の残渣膜が酸化されるのを抑制することができる。金属材料の酸化物は、金属の硬度や靭性などの材料特性を変化させるので、金属充填後の残渣膜の除去工程での歩留まりに影響する。そのため、本発明によれば、残渣膜の酸化に伴う材料特性の変化を抑制することができるので、除去工程の歩留まりを向上させることができる。
【0018】
この発明による金属充填方法は、処理対象物の表面に開口するように形成された微小空間内に溶融金属を充填する金属充填方法であって、処理対象物が配置された気密状の処理室内に、溶融金属を供給する工程と、処理室内に充填された溶融金属を加圧部材により加圧しながら冷却する工程と、溶融金属の凝固が完了する前に加圧を停止する工程とを備え
、溶融金属の加圧を停止する工程において、溶融金属の液相温度よりも低く、かつ、固相温度よりも高い固相温度側の温度まで溶融金属が冷却された時点で、溶融金属の加圧を停止する。
【0019】
この発明による金属充填方法では、上記のように、処理室内に充填された溶融金属を加圧部材により加圧しながら冷却する工程と、溶融金属の凝固が完了する前に加圧を停止する工程とを設ける。これにより、微小空間内に充填された溶融金属を加圧しながら冷却する場合でも、溶融金属が完全に固相に変化する(凝固が完了する)前の不完全凝固の段階で加圧部材を溶融金属(処理対象物)から離間させることができる。そのため、金属材料や処理対象物に作用する応力の低減、ヒケ発生時の空洞部の真空化による加圧部材と溶融金属との吸引密着力を低減、および、処理対象物の搬出および次の処理対象物の処理の早期開始を図ることができる。以上の結果、本発明によれば、金属充填処理の更なる歩留まりや処理効率の向上を図ることができる。
さらに、溶融金属の凝固が完了する前に、確実に加圧を停止することができる。また、凝固がある程度進行した固相温度側の温度まで冷却されてから溶融金属の凝固が完了する前に加圧を停止することにより、溶融金属を充填する加圧が不足することはなく、充填不良の発生を抑制することができる。
【0020】
上記発明による金属充填方法において、好ましくは、溶融金属の加圧を停止する工程の後、加圧を行わない非加圧期間において、溶融金属の凝固を完了させる工程をさらに備える。このように構成すれば、溶融金属の凝固が完了する前に加圧を停止する場合にも、充填不良の発生を抑制することができる。
【0021】
上記発明による金属充填方法において、好ましくは、溶融金属を凝固させた後、処理対象物の表面上に残留した金属膜を研磨等により除去する工程をさらに備える。このように構成すれば、たとえば処理対象物上の金属膜(残渣)を除去するために処理対象物を加熱して金属膜を再溶融させる必要がないので、更なる処理効率向上を図ることができる。
【発明の効果】
【0022】
本発明によれば、上記のように、金属充填処理の更なる歩留まりや処理効率の向上を図ることができる。
【発明を実施するための形態】
【0024】
以下、本発明の実施形態を図面に基づいて説明する。
【0025】
[第1実施形態]
まず、
図1〜
図8を参照して、第1実施形態による金属充填装置100について説明する。
【0026】
(金属充填装置の構成)
図1に示すように、第1実施形態による金属充填装置100は、処理対象物の一例である半導体ウェハ(以下、単にウェハ1という)の表面に開口するように形成されたビアなどの微小空間2(
図2参照)内に導体金属を充填する装置である。充填された導体金属により、シリコン貫通電極(Through−silicon via;TSV)が形成される。
【0027】
ウェハ1は、一般的なシリコンなどの半導体材料から構成されている。ウェハ1は、たとえば約200mm等の所定の直径を有する略円形状であり、複数のチップを切り出すことが可能である。また、ウェハ1は、エッチング処理などの前工程により複数の微小空間2(
図2参照)が形成された状態で、金属充填装置100に搬入される。微小空間2の形状および寸法は特に限定されるものではないが、たとえば直径が数μm、深さが数十μm程度の丸穴である。
【0028】
金属充填装置100は、ウェハ1を保持する保持部11と、微小空間2の周囲を取り囲むように設けられた筒状部材12と、筒状部材12の内側にウェハ1に向けて進退可能に配置された加圧部材13と、溶融金属3を供給する金属供給部14とを備える。保持部11またはウェハ1と、筒状部材12と、加圧部材13とにより、気密状の処理室4が形成される。
【0029】
また、金属充填装置100は、保持部11を昇降させる昇降機構15と、加圧部材13を進退させる加圧機構16と、処理室4内を減圧する減圧部17と、処理室4内に不活性ガスを加圧供給するガス供給部18と、処理室4内に供給された溶融金属3を回収する回収部19と、を備える。さらに、金属充填装置100は、上記の各部の動作を制御する制御部20を備えている。
【0030】
保持部11は、ウェハ1の保持台である。保持部11は、平坦な載置面上に載置されたウェハ1を負圧吸引などにより保持するように構成されている。筒状部材12は、処理室4の周壁を構成するハウジングである。筒状部材12は、内部に空間が形成された中空(筒状)形状を有し、ウェハ1上の微小空間2の形成領域を取り囲むように設けられている。筒状部材12は、一端(下端面)がウェハ1と対向し、上下方向に延びるように設けられている。
【0031】
保持部11は、昇降機構15によって上下方向(筒状部材12に対して近接または離間する方向)に移動可能である。昇降機構15によって保持部11を筒状部材12に向けて上昇させ、ウェハ1の上面を筒状部材12の下端部に当接させることにより、気密状の処理室4が形成される。筒状部材12の下端面にはOリングなどのシール部材12aが設けられ、筒状部材12とウェハ1との間の気密性が確保されている。筒状部材12の内周面にはシール部材12bが設けられ、加圧部材13と筒状部材12との間の気密性が確保されている。シール部材12bは、筒状部材12の上端部近傍と、筒状部材12の下部とに設けられている。下側のシール部材12bは、処理室4の容積を極力小さくする(ウェハ1側に位置する)ように、配管(配管21aおよび配管21b)の上側近傍の位置に配置されている。
【0032】
加圧部材13は、処理室4の容積を変化させるように移動可能なピストンである。加圧部材13は、筒状部材12(シール部材12b)の内側に摺動可能に嵌合されており、筒状部材12の内面に沿って上下に進退移動できるように設けられている。加圧部材13の保持部11と対向する面(下面)には、耐熱性を有する材料により形成された押圧部分13aが設けられている。押圧部分13aのうち溶融金属3と接する領域には、溶融金属3の付着を抑制する表面処理が施されている。付着抑制のための表面処理は、たとえば鏡面加工や、DLC(ダイヤモンドライクカーボン)などの皮膜処理である。加圧部材13は、加圧機構16によって、保持部11(ウェハ1)に対して近接または離間するように移動可能である。加圧部材13は、保持部11に近接する方向に移動されることにより、溶融金属3をウェハ1側に押圧し、溶融金属3に圧力を付与する(加圧する)ことが可能である。
【0033】
図3に示すように、加圧部材13の押圧部分13aの下面には、封止部13bが設けられている。封止部13bは、弾性体からなり、円形のウェハ1の外周に沿う環状形状を有する。処理室4内に溶融金属3が供給された状態で加圧部材13を前進させて封止部13bをウェハ1の表面に当接させることにより、溶融金属3を封止部13bの内側領域に閉じ込めることが可能である。この結果、封止部13bの内側領域に閉じ込められた溶融金属3に、加圧機構16の推力を加圧部材13によって効率的に印加することができ、封止部13bの外側の溶融金属3を処理室4から外部に逃がして、残渣となる余剰金属の量を減少させることが可能である。
【0034】
図1に戻って、金属供給部14は、微小空間2内に充填される金属を、融点(液相温度)よりも高い温度の溶融金属3の状態で保持することが可能な供給容器を含む。金属供給部14は、筒状部材12の下端側の側壁を内側まで貫通する配管21aを介して、処理室4の内部と連通している。また、金属供給部14と処理室4との間の配管21aには、制御弁22aが設けられている。制御弁22aの開閉によって、溶融金属3の供給開始および停止と、供給圧力とを調整することが可能である。制御弁22aの開閉は制御部20により制御される。
【0035】
溶融金属3は、たとえば、鉛フリー半田である。鉛フリー半田は、充填に用いられる材料の内では比較的低い融点を有するため取り扱いが容易である。溶融金属3に用いる金属材料としては、微小空間2に充填する目的や充填金属の機能に応じて、Au、Ag、Cu、Pt、Pd、Ir、Al、Ni、Sn、In、Bi、Znやこれらの合金を採用することができるし、上記以外の金属材料を用いてもよい。
【0036】
昇降機構15は、トルクモータなどを含む。加圧機構16は、いわゆる油圧機構などにより構成され、作動油の供給および排出により、加圧部材13を進退させる。昇降機構15および加圧機構16のそれぞれの動作は、制御部20により制御される。
【0037】
減圧部17は、筒状部材12の下端側の側壁を内側まで貫通する配管21bを介して、処理室4の内部と連通している。減圧部17は、真空ポンプを含み、処理室4内の気体を排気して減圧することが可能である。また、減圧部17と処理室4との間の配管21bには、制御弁22bが設けられている。制御弁22bの開閉と減圧部17の動作とが制御部20により制御されることによって、処理室4内を略真空状態まで減圧することが可能である。
【0038】
ガス供給部18は、配管21bに接続された配管21cと、配管21bとを介して、処理室4の内部と連通している。また、ガス供給部18と処理室4との間の配管21cには、制御弁22cが設けられている。ガス供給部18は、制御弁22cを開放することにより不活性ガスを処理室4内に所定圧力で供給することが可能である。制御弁22cの開閉とガス供給部18の動作とは、制御部20により制御される。また、ガス供給部18は、配管21eを介して、処理室4の外部(処理室4を含む各部を覆う外殻あるいはケースの内部)にも不活性ガスを供給することが可能である。これにより、処理室4の内部および外部を不活性ガス雰囲気の状態にすることが可能である。
【0039】
回収部19は、配管21aに接続された配管21dと、配管21aとを介して、処理室4の内部と連通している。また、回収部19と処理室4との間の配管21dには、制御弁22dが設けられている。回収部19は、たとえば、溶融金属3を貯留する回収タンクと、回収タンクに接続された排気装置とを含んで構成される。制御弁22dの開閉と回収部19の動作とが制御部20により制御されることによって、処理室4内の余剰の溶融金属3を回収部19に回収することが可能である。
【0040】
ここで、第1実施形態では、金属充填装置100は、処理室4内に充填された溶融金属3を加圧部材13により加圧しながら冷却し、溶融金属3の凝固が完了する前に加圧を停止するように構成されている。金属充填装置100の加圧冷却および加圧停止の制御は、制御部20により行われる。
【0041】
特に複数の金属材料の合金からなる金属材料を溶融あるいは凝固させる場合、金属材料の液相温度と固相温度との間に温度差が存在する。液相温度と固相温度との間の温度域では、液相と固相とが混じった状態にあり、この状態を半溶融状態とする。
【0042】
例として、
図4ではSn−Pb半田の状態図を示し、
図5ではSn−Bi半田の状態図を示す。いずれの図も、縦軸が温度、横軸が合金の組成を表す。
図4および
図5に示す二元共晶系の合金の場合、固相線31、液相線32および共晶等温線33に囲まれる領域34が、半溶融状態となる領域である。二元共晶系の合金では、共晶点35(共晶組成)を除いて半溶融状態が存在する。すなわち、ある組成に着目して、縦軸方向(温度変化)における状態変化を見ると、
図6に示すように、液相温度と固相温度との間の温度域が、半溶融状態の温度域となる。
【0043】
溶融金属3は、液相温度以上で処理室4内に供給された後、液相温度を下回ると凝固し始める。温度低下とともに凝固が進み、固相温度を下回ると、凝固が完了する。したがって、第1実施形態では、金属充填装置100は、溶融金属3を加圧部材13により加圧しながら冷却し、溶融金属3の温度が固相温度を下回る前に、溶融金属3の加圧を停止する。
【0044】
加圧を停止するタイミングとして、第1実施形態では、溶融金属3の液相温度よりも低く、かつ、固相温度よりも高い固相温度側の温度まで溶融金属3が冷却された時点で、溶融金属3の加圧を停止する。固相温度側の温度は、
図6において、液相温度t1と固相温度t2とを平均した温度t3([t1+t2]/2)を境界として、固相温度t2側にある温度域に含まれる温度である。
【0045】
なお、金属充填装置100は、
図1に示すように、保持部11の温度を検出する温度検出部23a、加圧部材13の温度を検出する温度検出部23b、および、筒状部材12の温度を検出する温度検出部23cを備えている。それぞれの温度検出部は、たとえば熱電対を含み、制御部20に検出温度を出力する。制御部20は、これらの温度検出部のうち、いずれか1つまたは複数の検出温度に基づいて、加圧を停止するか否かを判断する。
【0046】
溶融金属3の冷却は、図示しない水冷管により、溶融金属3の熱が溶融金属3の周囲の加圧部材13、保持部11および筒状部材12に奪われていくことによって進行する。このため、溶融金属3の温度は、これらの周囲の部材よりも低くなることはないと考えてよいので、温度検出部の検出温度が固相温度よりも高い時点で溶融金属3の加圧を停止すれば、確実に溶融金属3の凝固が完了する前に加圧を停止することが可能である。溶融金属3の凝固が完了する前に加圧を停止して加圧部材13をウェハ1から離間させることで、凝固完了時点で既に処理室4からウェハ1を搬出可能な状態にしておくことが可能となる。そのため、処理すべきウェハ1を1枚ずつ処理室4内で加熱、冷却する構成において、凝固完了後、速やかにウェハ1を搬出し、次のウェハ1のための加熱を早期に開始することができるので、より顕著に処理効率を向上させることが可能である。
【0047】
また、第1実施形態では、金属充填装置100は、
図7に示すように、処理室4内の溶融金属3を加圧しながら冷却する加圧期間T1の後、加圧を行わない非加圧期間T2において溶融金属3の凝固を完了させるように構成されている。
【0048】
具体的には、金属充填装置100は、加圧期間T1において、溶融金属3が冷却されて凝固が完了する前に加圧部材13をウェハ1から後退させて加圧を停止する。加圧期間T1では、少なくとも加圧部材13により、処理室4内の圧力が所定の加圧圧力値に維持される。加圧部材13に加えて、ガス供給部18によるガス圧をさらに印加してもよい。
【0049】
また、金属充填装置100は、非加圧期間T2において、外部環境と略等しい圧力環境で溶融金属3を冷却して凝固を完了させるように構成されている。外部環境と略等しい圧力環境とは、強制的な圧力を付与しない状況を意味する。外部環境と略等しい圧力は、金属充填装置100を含む半導体製造装置の装置構成や金属充填装置100の設置環境にもよるが、たとえば大気圧である。第1実施形態において、非加圧期間T2では、加圧部材13による加圧を行わない。
【0050】
(金属充填方法の説明)
次に、
図1〜
図3、
図7および
図8を参照して、第1実施形態による金属充填装置100における金属充填方法について説明する。金属充填装置100の動作制御は、制御部20によって行われる。なお、金属充填装置100の各部については、
図1を参照するものとする。
【0051】
まず、
図8のステップS1において、ウェハ1が保持部11上に載置された後、処理室4が形成される。具体的には、制御部20は、昇降機構15により保持部11を下降させて筒状部材12から離間させる。保持部11には、表面に微小空間2が形成されたウェハ1が、表面を上にした状態で載置される。ウェハ1が保持部11に載置された後、制御部20は、昇降機構15により保持部11を上昇させ、ウェハ1の上面を筒状部材12の下端面(シール部材12a)に当接させて処理室4を形成する。この結果、気密状の処理室4内にウェハ1が保持される。
【0052】
ステップS2において、制御部20は、制御弁22bを開いて減圧部17を作動させ、処理室4内の気体を排気させる。制御部20は、
図7に示すように、処理室4内(すなわち、微小空間2内)を略真空状態まで減圧させる。
【0053】
ステップS3において、制御部20は、減圧部17を停止させ制御弁22bを閉じる一方、制御弁22aを開いて金属供給部14を作動させて処理室4内に溶融金属3を供給する。溶融金属3は、処理室4内に所定の供給圧力で加圧供給される。そのため、
図7に示すように、処理室4内の圧力は、所定の供給圧力に達するまで溶融金属3の供給に伴って上昇する。処理室4内が溶融金属3により満たされると、制御部20は、金属供給部14を停止させて制御弁22aを閉じる。
【0054】
ステップS4において、制御部20は、加圧機構16を制御して加圧部材13をウェハ1に向けて前進させ、処理室4内から余剰の溶融金属3を排出する。
図1および
図3に示したように、封止部13bがウェハ1の上面に当接するまでは、制御部20は、制御弁22dを開放(絞り開放)して、処理室4内の余剰の溶融金属3を回収部19に回収させる。加圧部材13の押し込み(前進)に伴って、処理室4内の圧力は上昇(
図7参照)する。
【0055】
また、加圧部材13の封止部13bがウェハ1の上面に当接すると、制御部20は、制御弁22dを全開放するとともに制御弁22cを開放し、ガス供給部18を作動させて、処理室4内に不活性ガスを加圧供給させる。この結果、処理室4内の溶融金属3のうち、封止部13bの外側に存在する部分(封止部13bの内側領域に閉じ込められた溶融金属を除いた余剰分)が、処理室4内から排出される。なお、処理室4からの余剰の溶融金属3の排出が完了するまで、処理室4の内部の温度は、図示しない加熱機構によって金属材料の液相温度以上に維持される。
【0056】
次に、ステップS5において、制御部20は、処理室4内に供給された溶融金属3を加圧部材13により加圧しながら冷却する加圧冷却を開始する。すなわち、制御部20は、加圧機構16を制御して加圧部材13をウェハ1の表面に押し付け、加圧部材13とウェハ1との間の溶融金属3を加圧させるとともに、処理室4内の加熱を停止し、溶融金属3の冷却を開始する。この結果、
図7に示したように、加圧部材13の加圧面の圧力(溶融金属3に作用する圧力)が、所定の加圧圧力に維持された状態で、溶融金属3が冷却される。加圧冷却は、上述の通り、金属材料の固相温度よりも高い所定の加圧停止温度になるまでの加圧期間T1の間、継続される。
【0057】
次に、ステップS6において、制御部20は、溶融金属3の凝固完了前に、加圧を停止させる。制御部20は、加圧機構16を制御して加圧部材13をウェハ1からゆっくりと後退させ、加圧部材13をウェハ1から離間させる。この結果、処理室4内は、不活性ガスの雰囲気下で外部環境の圧力(大気圧)と同等の非加圧状態になる。
【0058】
ステップS7において、制御部20は、加圧しない非加圧状態で、溶融金属3の凝固が完了するまで冷却を継続する。すなわち、
図7に示したように、制御部20は、溶融金属3の加圧を停止するステップS6の後、加圧を行わない非加圧期間T2において、溶融金属3の凝固を完了させる。加圧を停止した後、溶融金属3の凝固が完了するまでの非加圧期間T2の間は、ウェハ1が不活性ガス雰囲気に配置される。溶融金属3の温度が固相温度を下回ると、凝固が完了する。この結果、ウェハ1の微小空間2内に凝固した溶融金属3が充填されるとともに、ウェハ1の表面上に金属膜5(
図2参照)が残留する。金属膜5は、加圧部材13の下面の封止部13bの内側領域に閉じ込められた溶融金属3が凝固して形成された残渣である。
【0059】
次に、ステップS8において、制御部20は、処理室4を開放させ、ウェハ1を搬出させる。制御部20は、昇降機構15により保持部11を下降させて筒状部材12から離間させる。保持部11上のウェハ1は、図示しない搬送機構により、次工程に搬送される。
【0060】
ステップS9において、ウェハ1は、図示しない研磨装置に搬送され研磨処理が施される。これによりウェハ1の表面上に残留した金属膜5が研磨により除去される。研磨は、たとえば、CMP(化学機械研磨)やポリッシャーなどの機械研磨であり、ウェハ1の表面に対して行われる。ウェハ1の表面から金属膜5が除去される結果、表面の微小空間2に金属が充填されたウェハ1が得られる。なお、ステップS8とS9との間には、ウェハ1に対する他の処理工程が介在してもよい。
【0061】
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
【0062】
第1実施形態では、上記のように、処理室4内に供給された溶融金属3を加圧部材13により加圧しながら冷却し、溶融金属3の凝固が完了する前に加圧を停止するように構成する。これにより、微小空間2内に充填された溶融金属3を加圧しながら冷却する場合でも、溶融金属3が完全に固相に変化する(凝固が完了する)前の不完全凝固の段階で加圧部材13を溶融金属3(ウェハ1)から離間させることができる。その結果、第1実施形態によれば、金属充填処理の歩留まりや処理効率の向上を図ることができる。
【0063】
たとえば、
図9に示すように、加圧部材13に付着しやすい金属材料の場合、付着部分6を機械的に剥離する必要が生じる。この場合、完全に凝固した後では、ウェハ1に外力F1が作用してダメージを受ける場合や、剥離時に微小空間2内の金属材料に引き抜き方向の外力F2が作用して微小空間2内から金属材料が引き抜かれる場合が生じうる。これに対して、第1実施形態では、凝固が完了する前の付着強度が弱い段階で加圧部材13を離間させて、金属材料やウェハ1に作用する応力を低減することができる。
【0064】
また、
図10に示すように、凝固時にヒケが生じる金属材料の場合、加圧部材13と金属材料(金属膜5)との間に略真空の空洞7が生じる。この場合、空洞7の真空化による吸引密着力F3によって、微小空間2内に充填された金属が引き抜かれるおそれがある。これに対して、第1実施形態では、加圧部材13と金属材料(金属膜5)との間の空洞7が成長しきる凝固完了前のより早い段階で加圧部材13を離間させて、空洞7の真空化による加圧部材13と金属材料(金属膜5)との吸引密着力F3を低減することができる。
【0065】
また、溶融金属3の組成に起因して、
図6に示した液相温度と固相温度との差が大きく(たとえば100℃程度)になる場合には、溶融金属3の凝固が完了するまでの冷却時間が増大する。これに対して、第1実施形態では、固相温度よりも低温になる前のより早い段階で加圧を停止し、加圧部材13を離間させておくことができる。そのため、凝固が完了してから加圧を停止して加圧部材13を離間させる場合と比較して、ウェハ1の搬出および次のウェハ1の処理を早期に開始することができる。
【0066】
また、第1実施形態では、上記のように、処理室4内の溶融金属3を加圧しながら冷却する加圧期間T1の後、加圧を行わない非加圧期間T2において溶融金属3の凝固を完了させる。これにより、溶融金属3の凝固が完了する前に加圧を停止する場合にも、充填不良の発生を抑制することができる。
【0067】
また、第1実施形態では、上記のように、加圧期間T1において、溶融金属3が冷却されて凝固が完了する前に加圧部材13をウェハ1から後退させて加圧を停止し、非加圧期間T2において、外部環境と略等しい圧力環境(大気圧)で溶融金属3を冷却して凝固を完了させる。これにより、加圧部材13をウェハ1から離間させた状態で、大気圧下で溶融金属3の凝固を完了させることができるので、処理室4内で処理を完了させなくてもよく、ウェハ1の搬出や次のウェハ1の処理をより早期に開始することができる。
【0068】
また、第1実施形態では、上記のように、溶融金属3の液相温度よりも低く、かつ、固相温度よりも高い固相温度側の温度まで溶融金属3が冷却された時点で、溶融金属3の加圧を停止する。これにより、溶融金属3の凝固が完了する前に、確実に加圧を停止することができる。また、凝固がある程度進行した固相温度側の温度まで冷却されてから溶融金属3の凝固が完了する前に加圧を停止することにより、溶融金属3を充填する加圧が不足することはなく、充填不良の発生を抑制することができる。
【0069】
また、第1実施形態では、上記のように、加圧を停止した後、溶融金属3の凝固が完了するまでの間(非加圧期間T2)は、ウェハ1が不活性ガス雰囲気に配置されるように構成する。これにより、ウェハ1の表面に形成される金属膜5が酸化されるのを抑制することができる。金属材料の酸化物は、金属の硬度や靭性などの材料特性を変化させるので、金属充填後の金属膜5の除去工程(ステップS9参照)での歩留まりに影響する。そのため、第1実施形態によれば、金属膜5の酸化に伴う材料特性の変化を抑制することができるので、除去工程の歩留まりを向上させることができる。
【0070】
また、第1実施形態では、上記のように、溶融金属3を凝固させた後、ウェハ1の表面上に残留した金属膜5を研磨により除去する。これにより、たとえばウェハ1上の金属膜5(残渣)を除去するためにウェハ1を加熱して金属膜5を再溶融させる必要がないので、更なる処理効率向上を図ることができる。
【0071】
[第2実施形態]
次に、
図11を参照して、第2実施形態による金属充填装置200について説明する。この充填装置200では、上記第1実施形態による金属充填装置100とは異なり、減圧部117により処理室4内の減圧を行いながら処理室4への溶融金属3の供給ができるように構成した例について説明する。なお、第1実施形態と同一の構成については、同一の符号を付すとともに説明を省略する。
【0072】
(金属充填装置の構成)
図11に示すように、第2実施形態による金属充填装置200では、減圧部117が、筒状部材12の上端側の側壁を内側まで貫通する配管121を介して、処理室4の内部と連通している。また、減圧部117と処理室4との間の配管121には、制御弁22bが設けられている。配管121は、溶融金属3の液面よりも十分に上方の位置となるように、筒状部材12の上端近傍に設けられている。これにより、減圧部117による減圧(処理室4内の気体の排気)を継続したままの状態で、金属供給部14から溶融金属3を供給することが可能である。なお、処理室4内への溶融金属3の供給は、液面が配管121の高さに到達する前に停止される。第2実施形態では、溶融金属3を所定の供給圧力で加圧しながら処理室4内に供給する構成ではない。
【0073】
ガス供給部118は、分岐した配管122によって、金属供給部14側の配管21aと、減圧部117側の配管121とにそれぞれ接続されている。ガス供給部118は、配管122と、配管21aおよび配管121とを介して処理室4の内部と連通している。ガス供給部118と配管21aとの間には、制御弁123aが設けられ、ガス供給部118と配管121との間には、制御弁123bが設けられている。
【0074】
回収部119は、配管124を介して、処理室4の内部と連通している。また、回収部119と処理室4との間の配管124には、制御弁22dが設けられている。
【0075】
制御部20は、制御弁123bを開放するとともに他の制御弁123a、22a、22bおよび22dを閉じて、ガス供給部118から処理室4内に不活性ガスを所定圧力で供給させ、加圧部材13とともに溶融金属3を加圧させるように構成されている。また、制御部20は、この状態でさらに制御弁123aおよび22dを開いて、処理室4内の余剰の溶融金属3を回収部119側に送り出して回収させるように構成されている。
【0076】
第2実施形態のその他の構成は、上記第1実施形態と同様である。
【0077】
(第2実施形態の効果)
第2実施形態でも、上記第1実施形態と同様に、処理室4内に供給された溶融金属3を加圧部材13により加圧しながら冷却し、溶融金属3の凝固が完了する前に加圧を停止するように構成する。これにより、微小空間2内に充填された溶融金属3を加圧しながら冷却する場合でも、溶融金属3が完全に固相に変化する前の段階で加圧部材13を溶融金属3(ウェハ1)から離間させることができるので、金属充填処理の歩留まりや処理効率の向上を図ることができる。
【0078】
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
【0079】
たとえば、上記第1および第2実施形態では、微小空間2の例として、所定深さの丸穴(
図2参照)を示したが、本発明はこれに限られない。本発明では、微小空間は、貫通孔であってもよいし底部を有する非貫通穴であってもよい。微小空間は、直線状、曲線状または屈曲したクランク状などの形状であってよいし、途中で分岐していてもよい。微小空間の開口部分の形状も、円形状、矩形形状その他の多角形状などであってよく、任意である。また、微小空間は、孔以外の溝などの凹部であってよい。
【0080】
また、上記第1および第2実施形態では、処理対象物の例として半導体ウェハ1を示したが、本発明はこれに限られない。本発明では、処理対象物は、溶融金属が充填される微小空間が形成されていればよく、半導体ウェハ以外であってよい。
【0081】
また、上記第1実施形態では、
図8のステップS7において溶融金属3の凝固を完了させてから、処理室4を開放(ステップS8)する例を示したが、本発明はこれに限られない。本発明では、溶融金属3が冷却されて凝固が完了する前に、加圧を停止するとともに処理室4を開放するように構成してもよい。すなわち、ステップS7とステップS8とを並行して行ってもよい。この場合、非加圧状態での溶融金属3の冷却は、処理室4の外部で行ってもよい。
【0082】
たとえば、
図12の変形例に示すように、処理室4とは異なる別の処理室104で凝固を完了させてもよい。この変形例の場合、加圧部材13による加圧を停止した後に、凝固完了前のウェハ1を処理室4から別の処理室104に移送し、処理室104において非加圧状態で溶融金属3の凝固を完了させる。この他、加圧部材13による加圧を停止した直後に処理室4を開放して次の処理工程へのウェハ1の移送を開始し、この移送中に溶融金属3の凝固を完了させてもよい。いずれの場合でも、処理室4の内部温度が金属材料の固相温度よりも下がる前に次のウェハの処理を開始することができるので、金属充填装置の処理効率を向上させることができる。
【0083】
一方、金属材料の種類によっては凝固完了前のウェハ1を処理室4から大気下に搬出するとその温度により酸化が著しく進展する。残留した金属部の酸化物は金属の硬度や靭性を変化させ、除去工程での歩留まりに影響する。これを防止するため非加圧期間T2の期間中、処理室4内に不活性ガスを供給し不活性ガス雰囲気中で冷却することで残渣膜(金属膜5)の酸化を抑制することができる。この場合、冷却時間が長くなり次のウェハの処理を開始するのが遅れるが、加圧部材13を溶融金属3(ウェハ1)から離間させることによる、金属充填処理の歩留まり向上や処理効率向上の効果に変わりは無く、残留した金属膜5の酸化および特性変化を抑制し、研磨の歩留まりを向上させることができる。
【0084】
この金属膜5の酸化抑制の観点からは、
図12の変形例の場合、処理室104内にも不活性ガスを供給し不活性ガス雰囲気中で冷却することが好ましい。これにより、凝固完了前のウェハ1を別の処理室104に移送する構成においても、金属膜5の酸化抑制を図ることが可能である。さらに、
図1に示したように、ガス供給部18から配管21eを介して処理室4の外部(ケース201の内部)にも不活性ガスを供給して、処理室4の外部を不活性ガス雰囲気にしておくことが好ましい。このようにすれば、凝固完了前に処理室4を開放する構成においても、金属膜5の酸化抑制を図ることが可能である。
【0085】
また、上記第1および第2実施形態では、溶融金属3を処理室4内に供給する際に、処理室4内を略真空状態まで減圧した例を示したが、本発明はこれに限られない。
【解決手段】この金属充填装置100は、ウェハ1の表面に開口するように形成された微小空間2内に溶融金属3を充填する金属充填装置であって、ウェハ1を保持する保持部11と、微小空間2の周囲を取り囲む筒状部材12と、筒状部材12の内側にウェハ1に向けて進退可能に配置された加圧部材13と、保持部11またはウェハ1と、筒状部材12と、加圧部材13とにより気密状に形成される処理室4内に、溶融金属3を供給する金属供給部14とを備える。金属充填装置100は、処理室4内に供給された溶融金属3を加圧部材13により加圧しながら冷却し、溶融金属3の凝固が完了する前に加圧を停止するように構成されている。