【文献】
Samsung,DL PHICH Remapping with UL RB Size[online],3GPP TSG-RAN WG1#52b,2008年 4月 4日,R1-081215
【文献】
LG Electronics,Remaining issues on PHICH indexing and PHICH to RE mapping,3GPP TSG-RAN WG1 Meeting #52,2008年 2月11日,R1-080997
【文献】
Qualcomm Europe,Mapping of PHICH Resources from PUSCH and DM-RS Transmission,3GPP TSG-RAN WG1 Meeting #53,2008年 5月 5日,R1-081961
【文献】
Nokia, Nokia Siemens Networks,UL HARQ Operation and Timing,3GPP TSG-RAN WG1 Meetng #52b,2008年 3月31日,R1-081677
【文献】
Nokia, Nokia Siemens Networks,UL HARQ Operation and Timing,3GPP TSG-RAN1 Meeting #52b,2008年 3月31日,R1-081703
(58)【調査した分野】(Int.Cl.,DB名)
前記PHICHリソースの決定に対するインデックスは、対応するアップリンク送信の物理リソースブロックの最も低いインデックスとして定義される、請求項1に記載のPHICH受信方法。
【背景技術】
【0002】
移動通信システムで、ユーザ機器(User Equipment;UE)は、基地局からダウンリンク(Downlink)を通じて情報を受信することができ、ユーザ機器は、アップリンク(Uplink)を通じて情報を伝送することができる。ユーザ機器が伝送または受信する情報には、データ及び様々な制御情報があり、ユーザ機器が伝送または受信する情報の種類や用途によって様々な物理チャネルが存在する。
【0003】
図1は、移動通信システムの一つである3GPP(3rd Generation Partnership Project)LTE(Long Term Evolution)システムに用いられる物理チャネル及びこれらのチャネルを用いた一般的な信号伝送方法を説明するための図である。
【0004】
電源がついたり、新しくセルに進入したりしたユーザ機器は、ステップS101で、基地局と同期を合わせる等の初期セル検索(Initial cell search)作業を行う。このために、ユーザ機器は、基地局から主同期チャネル(P-SCH:Primary Synchronization Channel)及び副同期チャネル(S-SCH:Secondary Synchronization Channel)を受信して基地局と同期を合わせ、セルIDなどの情報を獲得することができる。その後、ユーザ機器は、基地局から物理放送チャネル(Physical Broadcast Channel)を受信してセル内の放送情報を獲得することができる。一方、ユーザ機器は、初期セル検索ステップにおいてダウンリンク参照信号(Downlink Reference Signal:DLRS)を受信してダウンリンクチャネル状態を確認することができる。
【0005】
初期セル検索を終えたユーザ機器は、ステップS102で、物理ダウンリンク制御チャネル(PDCCH:Physical Downlink Control Channel)及び物理ダウンリンク制御チャネル情報による物理ダウンリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)を受信して、より具体的なシステム情報を獲得することができる。
【0006】
一方、基地局との接続を完了していないユーザ機器は、基地局への接続を完了するために、以降、ステップS103乃至ステップS106のようなランダムアクセス手順(Random Access Procedure)を行うことができる。このために、ユーザ機器は、物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)を通じて特定シーケンスをプリアンブルとして伝送し(S103)、物理ダウンリンク制御チャネル及びこれに対応する物理ダウンリンク共有チャネルを通じて当該ランダムアクセスに対する応答メッセージを受信することができる(S104)。ハンドオーバー(Handover)の場合を除く競合ベースのランダムアクセスの場合、以降、追加的な物理ランダムアクセスチャネルの伝送(S105)、及び物理ダウンリンク制御チャネル及びこれに対応する物理ダウンリンク共有チャネル受信(S106)のような衝突解決手順(Contention Resolution Procedure)を行うことができる。
【0007】
上記の手順を行ったユーザ機器は、以降、一般的なアップ/ダウンリンク信号伝送手順として物理ダウンリンク制御チャネル/物理ダウンリンク共有チャネルの受信(S107)、及び物理アップリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)/物理アップリンク制御チャネル(PUCCH:Physical Uplink Control Channel)の伝送(S108)を行うことができる。
【0008】
図2は、ユーザ機器がアップリンク信号を伝送するための信号処理を説明するための図である。
【0009】
アップリンク信号を伝送するために、ユーザ機器のスクランブリングモジュール201は、ユーザ機器特定(UE-specific)スクランブリング信号を用いて伝送信号をスクランブリングすることができる。このようにスクランブリングされた信号は、変調マッパー202に入力されて、伝送信号の種類及び/またはチャネル状態に応じてBPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)または16QAM(Quadrature Amplitude Modulation)方式で複素シンボルに変調される。その後、変調された複素シンボルは、変換プリコーダ203で処理された後、リソース要素マッパー204に入力され、リソース要素マッパー204は、この複素シンボルを実際の伝送に用いられる時間−周波数リソース要素にマッピングすることができる。このように処理された信号は、SC−FDMA信号生成器205を経てアンテナから基地局に伝送することができる。
【0010】
図3は、基地局がダウンリンク信号を伝送するための信号処理を説明するための図である。
【0011】
3GPP LTEシステムで、基地局は、ダウンリンクで一つ以上の符号語(Codeword)を伝送することができる。したがって、一つ以上の符号語はそれぞれ、
図2のアップリンクにおいてと同様に、スクランブリングモジュール301及び変調マッパー302によって複素シンボルとすることができる。その後、複素シンボルは、レイヤーマッパー303により複数のレイヤー(Layer)にマッピングされ、各レイヤーは、プリコーディングモジュール304でチャネル状態に応じて選択された所定プリコーディング行列と乗算されて各伝送アンテナに割り当てられることができる。このように処理された各アンテナ別伝送信号は、それぞれ、リソース要素マッパー305によって伝送に用いられる時間−周波数リソース要素にマッピングされ、以降、OFDM信号生成器306を経て各アンテナから伝送されることができる。
【0012】
移動通信システムにおいて、ユーザ機器がアップリンクで信号を伝送する場合は、基地局がダウンリンクで信号を伝送する場合に比べて、ピーク電力対平均電力比(Peak−to−Average Power Ratio:PAPR)がより問題とされうる。このため、
図2及び
図3で上述したように、アップリンク信号伝送では、ダウンリンク信号伝送に用いられるOFDMA方式ではなく、単一波周波数分割多元接続(Single Carrier−Frequency Division Multiple Access:SC−FDMA)方式が用いられている。
【0013】
図4は、移動通信システムにおいてアップリンク信号伝送のためのSC−FDMA方式とダウンリンク信号伝送のためのOFDMA方式を説明するための図である。
【0014】
アップリンク信号伝送のためのユーザ機器及びダウンリンク信号伝送のための基地局は両方とも、直列−並列変換器(Serial−to−Parallel Converter)401、サブキャリアマッパー403、M−ポイントIDFTモジュール404及びサイクリック・プレフィックス(Cyclic Prefix:CP)付加モジュール406を含む点においては同一である。
【0015】
ただし、SC−FDMA方式で信号を伝送するために、ユーザ機器は、並列−直列変換器(Parallel−to−Serial Converter)405とN−ポイントDFTモジュール402をさらに含み、N−ポイントDFTモジュール402は、IDFTの入力部で連続する(contiguous)入力ポイントにマッピングするようにして、M−ポイントIDFT(またはIFFT)モジュール404のIDFT(またはIFFT)処理の影響をある程度打ち消すことによって伝送信号がシングルキャリア特性を持つようにすることを特徴とする。
【0016】
一方、ダウンリンクを通じてアップリンクデータ伝送(PUSCH:Physical uplink shared channel)に対するACK(ACKnowlegement)/NACK(Negative ACKnowledgment)を伝送するチャネルを3GPP LTEシステムにおいてPHICH(Physical Hybrid−ARQ Indicator Channel)という。
図5は、3GPP LTEシステムにおけるPHICHの伝送過程を説明する図である。
【0017】
LTEシステムは、アップリンクで単一ユーザMIMO(Single User MIMO:SU−MIMO)を使用しないから、一つのユーザ機器のPUSCH伝送、すなわち、単一データストリーム(single data stream)または符号語(codeword)に対する1ビット(bit)ACK/NACKのみがPHICHを通じて伝送される。1ビットACK/NACKは、符号化率(code rate)が1/3である反復符号化(repetition coding)を用いて3ビットに符号化され(501段階)、BPSK(Binary Phase Shift Keying)を用いて3個の変調シンボルを生成する(502段階)。該変調されたシンボルは、標準サイクリック・プレフィックス(normal Cyclic Prefix)の場合は、拡散係数(Spreading Factor;SF)として4を用い、拡張サイクリック・プレフィックス(extended CyclicPrefix)の場合には、SFとして2を用いて拡散される(503段階)。拡散に使用する直交シーケンス(orthogonal sequence)の個数は、I/Q(In−phase/Quadrature)多重化概念が適用されて、SF×2個となる。したがって、SF×2個の直交シーケンスを用いて拡散されたSF×2個のPHICHが1個のPHICHグループと定義され、任意のサブフレームに存在するPHICHグループは、レイヤーマッピング(layer mapping)(504段階)及びプリコーディング過程を経た後に、リソースマッピング(resource mapping)過程(505段階)を経て伝送される。
【0018】
任意のユーザ機器またはリレーノード(relay node)のアップリンクデータ伝送に対して、セル、基地局またはリレーノードのダウンリンクPHICHチャネルリソースを割り当てる方法において、物理アップリンク共有チャネル(Physical Uplink Shared Channel;PUSCH)の伝送に使用される一つ以上の物理リソースブロック(Physical Resource Block:PRB)の最も低いPRBインデックス(index)値と該当のチャネル伝送のために使用されるデータ信号復調用参照信号(Demodulation Reference Signal;DM−RS)のリソースとして設定される巡回シフト(cyclic shift)値を用いて計算する過程を通じて、全PHICHグループのうち、伝送のために使用されるPHICHグループインデックスと該当のPHICHグループ中のPHICHチャネルインデックスが導き出され、これらのインデックス値を用いて、任意のユーザ機器またはリレーノードに伝送されることになるPHICHチャネルが割当てられる。MIMO(Multiple Input Multiple Output)手法は、基地局と端末機において2個以上の送信及び受信アンテナを使用して空間的に多数のデータストリーム(または、符号語)を同時に伝送することによって、システムの容量を大きく増加させることができ、多数の送信アンテナを用いて送信ダイバーシティ(diversity)利得またはビーフォーミング(beamforming)利得を得ることができる手法である。送信ダイバーシティ手法は、多数の送信アンテナを通じて同一のデータ情報を伝送することによって、時間によって高速に変わるチャネル状況において信頼度の高いデータ伝送を可能にするとともに、受信機からチャネル関連フィードバック情報を受信することなく具現できるという利点を有する。ビーフォーミングは、多数の送信アンテナにそれぞれ適宜の重み値を乗じることによって、受信機の受信SINR(Signal to Interference plus Noise Ratio)を増加させるために用いられるもので、一般に、FDD(Frequency Division Duplexing)システムにおいてアップリンク及びダウンリンクのチャネルは独立しているので、適宜のビーフォーミング利得を得るためには信頼性の高いチャネル情報が必要とされ、よって、受信機から別のフィードバック(feedback)を受信して用いる。
【0019】
図6は、空間多重化(Spatial Multiplexing;SM)と空間分割多重接続(Spatial Division Multiple Access;SDMA)を説明するための図である。単一ユーザに対する空間多重化は、SMあるいはSU−MIMOと呼ばれ、MIMOシステムのチャネル容量は送/受信アンテナ個数のうち、最小値に比例して増加する。多重ユーザに対する空間多重化は、空間分割多重接続(SDMA)あるいはマルチユーザMIMO(Multi−User MIMO:MU−MIMO)と呼ばれる。
【0020】
MIMO手法を用いる時に、同時に伝送されるN個のデータストリームを一つのチャネルエンコーディングブロックを用いて伝送する単一符号語(Single CodeWord:SCW)方式と、N個のデータストリームをM(ここで、常に、MはNより小さいまたは等しい)個のチャネルエンコーディングブロックを用いて伝送する多重符号語(Multiple CodeWord:MCW)方式がある。ここで、各チャネルエンコーディングブロックは、独立した符号語を生成し、各符号語は、独立したエラー検出が可能なように設計される。
【0021】
図7は、多重符号語(MCW)を使用するMIMOシステムの送信機構造を示す図である。具体的に、M個のデータパケット(data packet)は、エンコーディング(例えば、
図7のターボエンコーディング)と変調(例えば、
図7のQAM変調)をそれぞれ経てM個の符号語を生成し、各符号語は、独立したHARQプロセスブロックを有するようになる。変調されたM個のデータシンボルは、同時にMIMO端で多重アンテナ手法によってエンコーディングされた後、それぞれの物理アンテナ(Physical Antenna)から伝送される。その後、受信端では、多重アンテナチャネル状況をチャネル品質情報としてフィードバックして、空間多重化率、符号化率及び変調方式を調節することができる。このために、追加的な制御情報が必要とされる。
【0022】
一方、符号語と物理的なアンテナとのマッピング関係は、任意の形態を有することができる。
【0023】
図8は、符号語と物理的なアンテナとのマッピング関係の一例を示す図である。具体的に、
図8は、3GPP TS 36.211における、ダウンリンクで空間多重化率による符号語(CW)対レイヤーのマッピング方法(codeword−to−layer mapping for spatial multiplexing in DL)を示している。
図8に示すように、空間多重化率(すなわち、ランク)が1の場合、一つの符号語が一つのレイヤーにマッピングされ、プリコーディング手法によって1個のレイヤーで生成されたデータは4個の送信アンテナを通じて伝送されるようにエンコーディングされ、空間多重化率が2の場合、2個の符号語が2個のレイヤーにマッピングされ、プリコーダによって4個のアンテナにマッピングされる。
【0024】
また、空間多重化率が3の場合、2個の符号語のうち一つの符号語は、直−並列変換器(S/P)によって2個のレイヤーにマッピングされて、総2個の符号語が3個のレイヤーにマッピングされた後、プリコーダによって4個のアンテナにマッピングされ、空間多重化率が4の場合、2個の符号語のそれぞれが直−並列変換器によってそれぞれ2個のレイヤーにマッピングされて、総4個のレイヤーがプリコーダによって4個のアンテナにマッピングされる例を示している。すなわち、4個の送信アンテナを有する基地局の場合、最大4個のレイヤーを有するとともに4個の独立した符号語を有することができるが、
図8は、符号語の個数を最大2個のみ有するように構成されたシステムである。したがって、
図8に示すシステムでは、各符号語(CW)が独立したHARQプロセスを有する場合、最大2個の独立したHARQプロセスを有することがわかる。
【0025】
現在LTEではPUSCH伝送に対して単一RF及び電力増幅器チェーン(power amplifier chain)を使用することを前提しており、PUSCHに対するダウンリンクPHICHのチャネル割当(assignment)において、ユーザ機器当たり1ビットのACK/NACKを前提として設計されているから、もしPUSCH伝送において多重符号語(multiple codeword)ベースのSU−MIMOが考慮される場合には、チャネル容量及び割当方法において改善が要求される。
【発明を実施するための形態】
【0039】
以下、添付の図面を参照しつつ、本発明の実施例について、本発明の属する技術の分野における通常の知識を有する者が容易に実施できるように詳細に説明する。しかし、本発明は、ここに説明される実施例に限定されず、様々な変形実施が可能である。なお、図面において、本発明を明確に説明するために説明と関連していない部分は省略し、明細書全体を通じて同一の構成要素には同一の図面符号を付ける。
【0040】
明細書全般において、ある部分がある構成要素を「含む」という記載は、特別な言及がない限り、他の構成要素を排除するという意味ではなく、他の構成要素をさらに含むという意味を有する。また、明細書に記載された「…部」、「…器」、「モジュール」などの用語は、少なくとも一つの機能や動作を処理する単位を意味し、これは、ハードウェア、ソフトウェアまたはハードウェアとソフトウェアとの結合で具現することができる。
【0041】
LTE−A(advanced)システムにおいてSC−FDMA方式に付加されるアップリンク多重接続伝送モードとしてクラスター(clustered)SC−FDMA(または、DFT−s−OFDMA(DFT spreaded OFDMA))が、既存のSC−FDMAに付加して適用されることができる。
図9は、クラスターSC−FDMAにおいて、DFTプロセス出力サンプルが単一キャリアにマッピングされる信号処理過程を示す図である。
図9に示すように、SC−FDMAと異なるクラスターSC−FDMAの最大の特徴は、N−ポイントDFTモジュールの出力部上のN−ポイントサンプルが、M−ポイントIDFT(またはIFFT)の入力部にマッピングされる時、クラスター、すなわち、一連のL個のサンプルグループに分岐して、サンプルグループ別にM−ポイントのIDFT(またはIFFT)入力部に連続しないように(互いに離隔するように)マッピングされうるという点である。これによって、伝送信号上のCM(cubic metric)またはPAPR(Peak to Average Power Ration)が上昇するが、OFDMAに比べては顕著に低いレベルを維持できる一方で、アップリンクスケジューリングの柔軟性を増大させてアップリンク伝送率を増大させることができる。LTE−Aシステムのアップリンクにおいて任意のユーザ機器が伝送パワー観点において最大伝送パワー対して余裕があるか否かによって、任意の方法に基づいてSC−FDMAとクラスターSC−FDMAを適応的に選択して、アップリンク伝送を行うことができる。
【0042】
したがって、本発明で説明するシステムは、アップリンク多重接続伝送モードを支援することができ、以下では、SC−FDMA方式に付加されるアップリンク多重接続伝送モードとしてクラスターSC−FDMAを含むことができるということを前提として本発明を説明する。
【0043】
本発明では、アップリンク多重符号語ベースのSU−MIMO(以下、MCW SU−MIMOと称する。)ベースのシステムにおいて、ダウンリンク伝送されるACK/NACKチャネル(以下、PHICHと称する。)の設計方法と、設計されたチャネル上のアップリンクデータチャネルからのPHICHインデックス割当方法を提案する。また、PHICHチャネル割当に必要である他、MCW SU−MIMOの細部伝送方式を指定するアップリンク承認(uplink grant)PDCCH上のダウンリンク制御情報(downlink control information:DCI)フォーマット上の制御情報を定義して表現する方法を提案する。
【0044】
まず、アップリンク多重符号語ベースのSU−MIMOベースのシステムにおいて、多重符号語に対して単一ACK/NACKを伝送する方法と、多重符号語のそれぞれに対してACK/NACKを伝送する方法を考慮することができ、これら2つの方法によって上記において提案するとした方法の内容が異なってくる。したがって、以下では、これら2つの方法によって上記において提案するとした方法について説明する。
【0045】
1.アップリンクMCWベースのSU−MIMOに対して単一ACK/NACKを伝送する方法
【0046】
以下では、アップリンク多重符号語ベースのSU−MIMOに対して単一ACK/NACKを伝送する方法とこれを前提とする時における、HARQプロセス通知方法、DM−RSの巡回シフトインデックス通知方法及びn個の符号語に対するMCS通知コンテンツの構成方法について説明する。
【0047】
任意のアップリンクデータ伝送においてMCWベースのSU−MIMOを使用する場合、ランク(rank)別符号語対レイヤーマッピング規則(codeword−to−layer mapping rule)によってn(1<=n<=2または1<=n<=4)個の符号語を使用した伝送において、基本的に符号語個数分のHARQプロセスを活性化させることができる。しかし、これによって発生するn個のACK/NACK及びアップリンク承認チャネル上のHARQ処理通知またはUE観点のHARQプロセス数の拡散による既存LTE標準に対する新しい技術的追加事項が発生するによって、LTEとLTE−Aシステム間の逆方向及び順方向の互換性支援が複雑になることがある。
【0048】
図10は、本発明の一実施例によるPHICH伝送を説明するための図である。これを解決するために既存LTEで具現された単一ACK/NACK及びアップリンク承認(Uplink Grant)PDCCH上の単一HARQ及び既存UEアップリンク伝送上のHARQプロセス数をこのアップリンク伝送上でそのまま維持する目的として、任意のUEからMCW SU−MIMOで受信して個別の符号語別にCRCを用いたエラー検出後に、これをSIC(Successive Interference Cancellation)系列複号化(decoding)に活用できるようにすると同時に、
図9に示すように、全体n個の符号語全体に対して一つのACK/NACK情報を再びダウンリンクPHICHで伝送する方式を、本発明で提案する。
【0049】
この場合、該当のACK/NACK情報は、特定目的に応じた任意の方法で生成することができ、例えば、n個の符号語のいずれにおいてもエラーが検出されない場合に、ACK、残りの全場合に対してNACKを生成させることができる。また、これにより、n個の全体符号語に対して一つのHARQプロセスが設定される。これにより、既存のLTEシステム上でのPHICHチャネル設計及びチャネルインデックス割当方法とアップリンクHARQプロセス運用における変化要素がきわめて制限されることがある。本発明の提案事項と関連する実施例として、システム上の任意のキャリアで任意のユーザ機器に割り当てられるHARQプロセスの個数が伝送に用いられる符号語、すなわち、伝送ブロック(transport block)別に8である場合に、上記発明事項を考慮して、該当のアップリンクSU−MIMO伝送を指定するUL承認チャネルの内容(contents)上で考慮できる情報とこれらの個別情報に関連付けてアップリンクSU−MIMOを支援する方法を、下記のように提案する。
【0051】
n個の符号語に対して単一HARQプロセスを指定するフィールドであり、MCW SU−MIMOの場合、n個の符号語に対して、本発明で提案するように一つのHARQプロセスとして運用する場合、0乃至7のうち一つのプロセスインデックスを割り当てることができ、他の方案として考慮できる個別符号語別にHARQを割り当てる場合にも、3ビットで表現しながら任意の基準符号語(reference codeword)のHARQインデックスを指定すると、他のN−1個の符号語は、固定オフセット(offset)に基づいて該当の符号語に対するHARQプロセスインデックスが自動的に算出されるようにすることができる。
【0052】
この場合に、上述したように、一つのACK/NACK情報がダウンリンクで該当の端末に伝送されることから、ACK/NACKの符号語別の独立した割当による端末上位階層バッファー上の空いている(empty)現像が発生しないから、MCW SU−MIMO上での1よりも大きいランク設定状況で、任意の符号語上のヌル(null)伝送が考慮されず、eNB(eVolved NodeB)の上位ランク状況で下位ランク(すなわち、ランク1の単一符号語伝送を誘導する)オーバーライディング(overriding)時にもn個の符号語当たり一つのHARQプロセスを割り当てる場合には、別の符号語を指定する通知が要求されないから、3ビットを割り当てるとに起因するエラーが発生しない。ここで、オーバーライディングとは、一般に、ユーザ機器がPUSCHをMCW SU−MIMO伝送モードを用いて伝送する時、アップリンクチャネル状況についてセル、基地局またはリレーノードがユーザ機器への伝送時に適用するランク値を知らせることを意味する。もし、n個の符号語が一つのACK/NACKで運用されながら個別のHARQプロセスが割り当てられる場合には、3ビットにおいて符号語通知のための付加的なビットがHARQプロセス通知フィールドに追加されたり、別の明白な符号語通知フィールドとして定義されることができる。また、HARQプロセスと関連してアップリンク承認(uplink grant)PDCCHで新しいデータ伝送指示子(New Data Indicator;NDI)が共にシグナリングされることができ、この場合、HARQプロセスが一つ定義されてシグナリングされる時にも、NDIは、符号語別に個別的に設定されることを基本とすることができ、場合によっては、HARQプロセスをMCS SU−MIMO上で一つ定義するという趣旨に合せてて、同様の方法でNDIを一つ定義し、アップリンク承認PDCCHにシグナリングすることができる。
【0053】
(2)DM−RS(Demodulation−Reference Signal)の巡回シフトインデックス(cyclic shift index)通知方式
【0054】
DM−RSの巡回シフトインデックスのアップリンクチャネル上の通知方式について、下記の3つ場合を取り上げて説明する。
【0056】
第1場合は、既存のアップリンクSU−MIMOを具現するにあって、伝送アンテナ(一連の仮想アンテナ(virtual antenna)または物理アンテナ(physical antenna))の個数または仮想アンテナの個数または伝送レイヤー数を表すmで定義される(例えば、mは、2または4になることもでき、1または2、若しくは3または4になることもできる。)UEの伝送アンテナ/レイヤー構成(tx antenna/layer configuration)によってp(p<=m)個の受信データ信号列の復調(demodulation)と複号化(decoding)のためのチャネル推定を提供するRSを必要とする。この時、p個のRSのうちq(q<=p)個のRSに対する伝送リソースは、任意のOFDM、SC−FDMAまたはクラスターSC−FDMAシンボル(該シンボルは、TDM方式で一つのOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルとして指定されることもでき、または、複数個のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルとして、RS伝送のために指定されることもできる。)において周波数サブキャリア上のデータ伝送のための領域の長さを有するCAZAC(Constant Amplitude Zero Autocorrelation)系列の基本シーケンス(base sequence)や1RB/2RBの場合に対する低い相関(low correlation)特性のQPSKベースのコンピュータ生成シーケンス(computer−generated sequence)の巡回シフトバージョンとして指定されることができる。
【0057】
この時、使用されるq個の巡回シフトインデックスを通知するに当たって基準となるRSインデックスを3ビットとして通知することができる。残りq−1個の巡回シフトインデックスは、任意の規則にしたがってシステム状況によって可変的に指定されるオフセットまたは固定されたオフセットまたは状況によって適応的に適用される任意の固定された選択法則によって自動的に指定されることによって、UEが使用する巡回シフトインデックスをシグナリング(signaling)する際にオーバーヘッド(overhead)を最小化するという特徴を有する。
【0059】
第2の場合は、上記第1の場合で記述した通り、q個のRSに対する巡回シフトインデックスをシグナリングするに当たって基準となるRSの巡回シフトインデックスの指定値に対して、別のq−1個のRSに対する巡回シフト値の可能な組合を指定したり、任意の情報圧縮規則(information compression rule)を用いて3+α(0<α<3×(q−1))ビットとして全体q個のRSに対する巡回シフトインデックスを指定できる。この時、一例として、αは、基準となるRSの巡回シフトの指定値に対する該当のRSのインデックス上の差分値を表す値(3ビットよりも小さい値)の全体q−1個またはその一部のRSシーケンスに対する和のビット値と定義することができる。
【0061】
第3の場合は、上記第1の場合で記述した通り、q個のRSに、アップリンク承認チャネル上で個別q個のRSに対する巡回シフトを明確に指定する方式である。これにより、アップリンクチャネルの制御情報ペイロード上での全体RS巡回シフト指定フィールドの大きさは、個別巡回シフト指定ビットサイズが3の場合に3×qになることができる。
【0062】
上記の第1場合で、pとqとが同じ場合は、使用される全てのアンテナに対する全てのRSが、一つまたは一つ以上のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルにおいてデータ帯域に対するCAZAC系列のRSシーケンスを使用する場合を意味する。本発明の以下の記述において、アンテナは、仮想アンテナ、物理アンテナ(physical antenna)、伝送レイヤーを包括するものとする。
【0063】
上記の第1場合で、p値とq値が同一でない場合には、任意のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルを通じて伝送されるCAZAC系列のRSシーケンスを直交(orthogonal)するように提供できる巡回シフトの数が限定されることから、既存のスロット当たり一つのOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル上で割り当てる全体p個のRS別巡回シフトが不足する状況で、上記第1の場合と同様に、複数個のRSシーケンスを伝送するOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルを割り当てて、追加的なCAZAC系列RSシーケンスを継続して割り当てることができる。しかし、このような割当方式は、直接的にアップリンクスループット(throughput)を劣化させるため、異なる方式で設計された異なるの形態の方法を通じて生成される異種の低いオーバーヘッド(low overhead)を有するRSが、既存q個のCAZAC系列RSと一緒に使用されることを提案し、この個数をp−qと指定し、0以上の個数に対して具現することができる。この場合、全体的なオーバーヘッドの調節のためにqは0になっても良い。
【0064】
既存TDM(OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル)−CDM(CAZAC)系列と異なる形態のRS設計に対する実施例としてSC−FDMAまたはクラスターSC−FDMAが使用される場合、DFT前段またはIDFT(またはIFFT)後段においてr(r>=1)個のあらかじめ指定された時間領域シンボル位置または任意の伝送シンボル内のタイムサンプル(time sample)領域にRSを挿入する方式を考慮することができる。
【0065】
上記のDFT前段で挿入される場合における時間領域RSは、DFTを経てDFT領域内の周波数領域の全てのサブキャリアに拡散される拡散スペクトラム(spread spectrum)過程を経て、IFFT過程後にチャネルを経る。以降、受信端においてFFT及びIFFTを経た後に、該当のシンボル位置(symbol position)のr個のRSから、データを伝送する帯域上での該当のアンテナに関するチャネル情報を抽出することができる。
【0066】
一方、RSシーケンスをDFTを省いて直接周波数領域にマッピングしてIFFTに経由させる方式と、IFFT後段のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル領域に直接マッピングする方式を適用することができ、この場合、挿入されるOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル上の領域は、全体OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル領域になることもでき、OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル内の一部の時間サンプル(time sample)領域になることもできる。データを伝送するためのOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル内にRSを挿入する場合に、OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル内の固定位置を指定して挿入したり、リソースブロックインデックス及び/またはセルIDから任意の規則により生成される位置に挿入したりすることができる。データと多重化(multiplexing)する観点から追加的なRSのオーバーヘッドを付加する場合、データを伝送するためのシンボルをパンクチャリング(puncturing)したり、または、レートマッチング(rate matching)を用いてRSのマッピングされるリソースを確保することができる。
【0067】
上記アップリンクRS設計方式は、アップリンクSU−MIMOの他に、非空間多重化(non spatial multiplexing)伝送モードにおいても適用することができ、DM−RSの場合、既存TDM−CDMに基づいて設計されたDM−RS伝送OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルが存在する状況で、付加的に他のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルで定義されることもでき、これと違い、既存のTDM−CDMに基づいて設計されたDM−RS伝送OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルを設定する方式を代替する方式で適用されることもできる。上記RS設計方法は、DM−RSの他に、SRSにも適用可能である。
【0068】
もし、OFDMAまたはクラスターSC−FDMAまたはSC−FDMA伝送方式がアップリンクに適用される場合、リソースブロック(resource block)単位にリソースブロック内の固定された周波数サブキャリア位置にRSが挿入されるパターンを定義することができ、このようなパターンは、セルIDを入力とする任意の関数や規則にしたがって各セルごとに固有に(cell−specific)定義されることができる。上記リソースブロックは、仮想リソースブロック(virtual resource block)と物理リソースブロック(physical resource block)の両概念を含むものである。したがって、送信端のIFFT入力前のシンボルマッピング時にRSを挿入でき、この時のデータを伝送するための一つ以上のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルにRSを挿入する場合に、該RSを、固定位置を指定して挿入したり、リソースブロックインデックス及び/またはセルIDから任意の規則にしたがって生成される位置に挿入することができる。この時、データを伝送するためのシンボルをパンクチャリングしたり、または、レートマッチングを用いてRSのマッピングされるリソースを確保することができる。
【0069】
任意のシステムにおいてp個の要求されるRSのうち、p−q個のRSに対して、既存TDMベースのCAZAC系列のRS伝送方式と異なる方式のRS伝送方式が適用される環境で、任意の目的に応じて、各送信アンテナまたは伝送レイヤー別RS伝送方式及び該当のインデックスを割り当てる方式を考慮することができる。伝送アンテナまたは伝送レイヤー構成(Tx antenna/layer configuration)は端末別に異なることがあるが、例えば、2Txアンテナ構成であるか、2レイヤー伝送である場合、各送信アンテナまたは伝送レイヤー別にアンテナポート(antenna port)インデックスまたはレイヤーポート(layer port)インデックス#iと#(i+1)が指定され(ただし、i>=0)、他の例として、4Txアンテナ構成であるか、4レイヤー伝送である場合、各送信アンテナまたは伝送レイヤー別にアンテナポートインデックスまたはレイヤーポートインデックス#i、#(i+1)、#(i+2)、#(i+3)が指定されることができる。この時、低いアンテナポートインデックスから昇順でq個のアンテナポートに、チャネル推定性能が相対的に高いTDM方式のCAZAC系列のRSを適用し、残りのアンテナポートに対して上記と異なる方式でシーケンスが生成され、物理リソースにマッピングされるRSを適用させる方式を提案する。
【0070】
アップリンク承認チャネルのコンテンツ(content)に関連する他に、SRS設計においてもアップリンク伝送アンテナまたは伝送レイヤー構成にしたがって各アンテナポートまたはレイヤーポート別にSRSが生成されて適用されなければならない。この時、拡張された多重化容量(multiplexing capacity)を提供するために、時間領域で各アンテナポート別SRSの伝送周期を調節して定義することができる。一実施例として、p個の伝送アンテナまたは伝送レイヤーに対して単一アンテナにおけるSRSと同じシーケンス設計環境で同じ多重化容量を提供するという条件下で任意のUEの時間領域のSRSの伝送周期は同一であり、該当のUEの各アンテナまたはレイヤー別に順次にSRSを伝送する方法を適用することができる。これと別にまたは同時に使用できる方法で拡張された容量を提供するSRSコード設計を周波数領域分散くし型(distributed comb)方式と連係して効果的なCDM/FDM多重化容量の支援を考慮することができる。さらにいうと、コードシーケンスレベルで使用可能な巡回シフト(u)の他に、シーケンスレベルスクランブリング(scrambling)が付加された状態で該当のシーケンスの全体または一部の低い相関のルートインデックス(v)を考慮して全体的なコードシーケンスリソースをv倍増加させることができる。ここで、一部の低い相関のルートインデックスにおいて一部とは、アップリンクDM−RSのグループ化(grouping)が考慮される場合、グループ内のベースシーケンスに該当するルートインデックスを意味したり、全的に相関(correlation)の低いルートインデックスを意味し、該当のインデックスはL1/L2制御シグナリング(control signaling)や上位階層シグナリング(higher−layer(RRC) signaling)でUEに伝送される。
【0071】
また、この時、各シーケンス要素(sequence element)がマッピングされる物理リソースであるサブキャリア(subcarrier)が、固定オフセット間隔で分散くし型(distributed comb)方式でマッピングされる場合、チャネル条件またはSRS伝送負荷またはチャネルサウンディング所要時間によってくし型(comb)のオフセット値を調節したり、これと別にまたは同時にSU−MIMOがマッピングされる全体システム帯域(bandwidth)(例えば、20MHz)に対して制限されるサウンディング(sounding)帯域(例えば、5MHz)を指定し、該当の制限された帯域でサウンディング及びパケットスケジューリングをさせて、複数個のアップリンクSU−MIMOに対する仮想サブシステム帯域を分割して使用することによって、周波数領域での多重化容量を支援することができる。上記分散くし型のオフセット値やサウンディング帯域は、L1(第1階層)/L2(第2階層)制御シグナリングや上位階層シグナリング(higher−layer(RRC) signaling)でUEに伝送される。
【0072】
(3)n個の符号語に対するMCS通知コンテンツの構成
【0073】
n個の符号語に対して単一HARQプロセスを指定する状況で一つのMCSを適用するようにsビット(bit)を割り当てて基地局が端末に知らせうる方法、n個の符号語上のエラー検出能力及びアンテナ別チャネル推定能力及び受信基地局における最適PMI(Precoding Matrix Indication)計算状況を考慮して、各符号語別MCSを圧縮することなくs×nビットを割り当ててアップリンク承認チャネル(grant channel)で伝達する方法と、基準符号語に全体MCS値sビットと、残りのN−1符号語に対してsビットに対してδ値だけを減算したsとδの差を表す(s−δ)×(n−1)ビットとを合算して合計s+(s−δ)×(n−1)ビットを割り当てる方式を適用することができる。前記符号語MCS指定方式の選択は、上記のHARQプロセス通知方式の選択と独立してなされることができる。すなわち、MCW SU−MIMO伝送に対して単一HARQプロセス、すなわち、単一ACK/NACK情報帰還方式を適用しながら符号語別MCSを指定する制御情報がアップリンク承認PDCCHを通じて該当のユーザ機器にシグナリングされることができる。
【0074】
以上ではアップリンクMCW SU−MIMOベースのSU−MIMOにおいて、単一ACK/NACKを伝送するという前提下でHARQプロセス通知方法、DM−RSの巡回シフト通知方法、符号語MCS(Modulation and Coding Scheme)通知方法について説明した。
【0075】
以下では、アップリンクMCWベースのSU−MIMOにおいて多重ACK/NACKを伝送する方法を説明し、多重ACK/NACKを伝送する場合に、PHICHリソース割当方法、HARQプロセス通知方法、DM−RSの巡回シフト通知方法、符号語MCS通知方法について説明する。
【0076】
2.アップリンクMCWベースのSU−MIMOに対して多重ACK/NACKを伝送する方法
【0077】
任意のアップリンクデータ伝送において、MCWベースのSU−MIMOを使用する場合、ランク別符号語対レイヤーマッピング規則(codeword−to−layer mapping rule)にしたがってn(1<=n<=2または1<=n<=4)個の符号語を使用した伝送において、既存LTEシステムにおける変化影響(change impact)を前提としながらも、LTE−Aシステム上のアップリンク性能の最適化のために、基本的に符号語の個数分のHARQプロセスを活性化させることができる。すなわち、符号語別伝送に対してダウンリンクACK/NACK情報伝送を定義することができる。以下、本発明では、任意のUEからMCW SU−MIMOで受信して個別符号語別にCRCを用いたエラー検出を行った後に、これをSIC系列複号化に活用可能にすると同時に、全体n個の符号語全体に対して個別のACK/NACK情報を再びダウンリンクPHICHで伝送する方式を提案する。
【0079】
既存のアップリンク上にMCWベースのSU−MIMOが存在しなかった既存LTEシステムにおいて指定される該当のアップリンク伝送に対するダウンリンクPHICH上のPHICHグループの数は、LTE−Aシステム上で追加にMCWベースのSU−MIMOが存在する状況で、各符号語別にアップリンク伝送に対するACK/NACKが個別的に通知されるべきであるという点を考慮して算定されることが必要である。すなわち、MCW SU−MIMOのアップリンク伝送モードの導入によって、任意のセルまたは基地局またはリレーノードがダウンリンクを通じて伝送しなければならないACK/NACKの情報量は増加しなければならず、PHICHグループの数が、該当のアップリンクシステム帯域(system bandwidth)上で最大限に要求されるPHICHリソースの量に基づいて定数として全てのサブフレームに対して設定されることを考慮する時、LTE−AシステムのUEに対してMCWベースのSU−MIMOが新しく導入されることから、PHICHグループの数が、LTEシステムに比べて2倍または2倍未満の基準レベルの増加されたPHICH要求リソース量に基づいて設計されなければならない。
【0080】
基本的な物理ダウンリンク制御チャネル(Physical Downlink Control Channel;PDCCH)は、各サブフレームのはじめの3個以内のOFDMシンボルに伝送され、これは、ダウンリンク制御チャネルのオーバーヘッドにしたがって1個乃至3個に調整して使用することができる。このように物理ダウンリンク制御チャネルのためのOFDMシンボルの個数を各サブフレームごとに調整するために使用されるチャネルがPCFICH(Physical Control Format Indicator Channel)であり、アップリンクデータチャネルに対するACK/NACK情報を伝送するチャネルは、PHICHである。さらに、ダウンリンクデータ伝送またはアップリンクのデータ伝送のための制御情報を搬送する制御チャネルは、PDCCHである。
【0082】
この場合、既存LTEシステムのUEのアップリンク伝送に対して、上記のように定義される増加されたPHICHグループのうちの一部のPHICHグループ(すなわち、既存LTEシステム上で定義されるPHICH数に基づくPHICHグループ)のみを用いてPHICHチャネルリソースを割り当てるようにすることができる。この時、既存のLTEシステムのUEのPHICHリソース割当の他に、PDCCHリソースマッピングの観点での逆方向互換性を支援する方案として、優先的にセル固有(cell−specific)RRC(Radio Resource Control)パラメータ上でN
gの値を、常に必要な値よりも大きく設定し、LTE−AシステムのUEにも、設定されたN
gの値に基づいて算出されるPHICHグループの中からDL PHICHリソースが割り当てられるようにする。このPHICH割当の際に、既存LTEシステムのUEに対するPHICHチャネル割当との衝突を最小化する規則を適用することができる。これと異なる形式のPHICHグループ数算定方式の様々な実施例を提案する。
【0083】
1)ダウンリンクPHICHグループの第1算定方法
【0084】
ダウンリンクPHICHグループの数は、下記の数学式1を用いて算定することができる。
【0087】
2)ダウンリンクPHICHグループの第2算定方法
【0088】
新しいパラメータとしてN
Cを数学式で導入しない代わりに、既存の上位階層シグナリングによって提供されるN
g値の範囲を拡張し、これに関連するL1パラメータのビットサイズ(bit size)を2ビットから3ビットに拡張してダウンリンクPHICHグループの数を算定する数学式を定義することができ、これは下記の数学式2の通りである。
【0091】
3)ダウンリンクPHICHグループの第3算定方法
【0096】
4)ダウンリンクPHICHグループの第4算定方法
【0100】
アップリンクSU−MIMOまたはキャリア集合が適用されるLTE−A UEに対するN
g値を示すセル固有RRCパラメータは、既存LTEシステムのUEに対する逆方向互換性を考慮して、既存LTEシステムのUEに対するN
g値を示すセル固有RRCパラメータと区別される一連のセル固有RRCパラメータを新しく定義することができる。
【0101】
上記定義されたPHICHグループ数に基づいて、個別PHICHグループのリソースグループ配列、レイヤーマッピング(layer mapping)及びプリコーディング手法について説明するに先立って、LTEシステムの端末及びLTE−Aシステムの端末のLTE−A及びLTE網に対する逆方向互換性及び順方向互換性を支援するために、LTE−Aシステムのダウンリンク伝送アンテナが8個である状況でも、ダウンリンクPDCCH、PCFICH、PHICHは4個の伝送アンテナベースの伝送ダイバーシティ方式を用いて伝送することを提案する。
【0102】
また、これら8個の伝送アンテナ状況でも、1番目及び2番目のOFDMシンボルでのダウンリンクRS伝送に使用される周波数領域におけるサブキャリアリソースの量と周波数領域の位置は、既存LTEシステムにおいてと同様に設定できることを提案する。これにより、PDCCH、PCFICH、PHICHのリソースグループ配列、レイヤーマッピング及びプリコーディング(precoding)方式は、LTE方式と同一に維持しながら互換性(compatibility)を支援することを提案する。
【0107】
上記の選択方式として、P個のRSシーケンスインデックスを昇順でn個選択する方法、1番目から始めて一つおきに昇順で(例えば、1番、3番目、5番目の順で)RSシーケンスn個を選択する方法、任意の関数に基づく規則を用いて選択する方式、ランダム(random)に選択する方式、または1番目、最後、2番目、最後から2番目の順に選択する方式を使用することができる。また、CAZACまたはZC系列のDM−RSシーケンスを生成する方式と任意の別の系列のDM−RSシーケンスを生成する方式によってP個のDM−RSシーケンスを生成する場合、CAZACまたはZC系列のDM−RSシーケンスを生成する方式で生成された巡回シフトインデックスのうち、上記の本発明で紹介された選択方式を用いてn個を選択することができる。
【0128】
以上ではPHICHリソース割当について説明した。以下では、アップリンク多重符号語ベースのSU−MIMOに対して多重ACK/NACKを伝送することを前提とする時における、HARQプロセス通知方法、DM−RSの巡回シフトインデックス通知方法及びn個の符号語に対するMCS通知コンテンツの構成方法について説明する。
【0130】
n個の符号語に対して単一または複数のHARQプロセスを指定するフィールドであり、MCW SU−MIMOである場合に、n個の符号語に対して個別符号語別にHARQを割り当てる場合にも3ビットで表現しながら任意の基準符号語(reference codeword)のHARQインデックスを指定すると、他のN−1個の符号語は、固定オフセットに基づいて該当の符号語に対するHARQプロセスインデックスが自動的に算出されるようにすることができる。3ビットの符号語通知のための付加的なビットがHARQプロセス通知フィールドに追加されたり、別の明白な(explicit)符号語通知フィールドとして定義することができる。
【0131】
(2)DM−RS(Demodulation−Reference Signal)の巡回シフトインデックス通知方式
【0132】
DM−RSの巡回シフトインデックスのアップリンクチャネル上の通知方式について、下記の3つり場合を挙げて説明する。
【0133】
1)第1の場合
第1場合は、既存のアップリンクSU−MIMOを具現するにあって、伝送アンテナ(一連の仮想アンテナ(virtual antenna)または物理アンテナ(physical antenna))の個数または仮想アンテナの個数または伝送レイヤー数を表すmで定義される(例えば、mは、2または4になることもでき、1、2、3または4になることもできる。)UEの伝送アンテナ/レイヤー構成(tx antenna/layer configuration)によってp(p<=m)個の受信データ信号列の復調(demodulation)と複号化(decoding)のためのチャネル推定を提供するRSを必要とする。この時、p個のRSのうちq(q<=p)個のRSに対する伝送リソースは、任意のOFDM、SC−FDMAまたはクラスターSC−FDMAシンボル(該シンボルは、TDMで一つのOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルとして指定されることもでき、または、複数個のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルとしてRS伝送のために指定されることもできる。)において周波数サブキャリア上のデータ伝送のための領域の長さを有するCAZAC(Constant Amplitude Zero Autocorrelation)系列の基本シーケンス(base sequence)や1RB/2RBの場合に対する低い相関(low correlation)特性のQPSKベースのコンピュータ生成シーケンス(computer−generated sequence)の巡回シフトバージョンとして指定されることができる。
【0134】
この時、使用されるq個の巡回シフトインデックスを通知するに当たって基準となるRSインデックスを3ビットとして通知することができる。残りq−1個の巡回シフトインデックスは、任意の規則にしたがってシステム状況によって可変的に指定されるオフセットまたは固定されたオフセットまたは状況によって適応的に適用される任意の固定された選択法則によって自動的に指定されることによって、UEが使用する巡回シフトインデックスをシグナリング(signaling)する際にオーバーヘッド(overhead)を最小化するという特徴を有する。
【0136】
第2の場合は、上記第1の場合で記述した通り、q個のRSに対する巡回シフトインデックスをシグナリングするに当たって基準となるRSの巡回シフトインデックスの指定値に対して、別のq−1個のRSに対する巡回シフト値の可能な組合を指定したり、任意の情報圧縮規則(information compression rule)を用いて3+α(0<α<3×(q−1))ビットとして全体q個のRSに対する巡回シフトインデックスを指定できる。この時、一例として、αは、基準となるRSの巡回シフトの指定値に対する該当のRSのインデックス上の差分値を表す値(3ビットよりも小さい値)の全体q−1個またはその一部のRSシーケンスに対する和のビット値と定義することができる。
【0138】
第3の場合は、上記第1の場合で記述した通り、q個のRSに、アップリンク承認チャネル上で個別q個のRSに対する巡回シフトを明確に指定する方式である。これにより、アップリンクチャネルの制御情報ペイロード上での全体RS巡回シフト指定フィールドの大きさは、個別巡回シフト指定ビットサイズが3の場合に3×qになることができる。
【0139】
上記の第1場合で、pとqとが同じ場合は、使用される全てのアンテナに対する全てのRSが、一つまたは一つ以上のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルにおいてデータ帯域に対するCAZAC系列のRSシーケンスを使用する場合を意味する。本発明の以下の記述において、アンテナは、仮想アンテナ、物理アンテナ、伝送レイヤーを包括するものとする。
【0140】
上記の第1の場合で、p値とq値が同一でない場合には、任意のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルを通じて伝送されるCAZAC系列のRSシーケンスを直交(orthogonal)するように提供できる巡回シフトの数が限定されることから、既存のスロット当たり一つのOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル上で割り当てる全体p個のRS別巡回シフトが不足する状況で、上記第1の場合と同様に、複数個のRSシーケンスを伝送するOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルを割り当てて、追加的なCAZAC系列RSシーケンスを継続して割り当てることができる。しかし、このような割当方式は、直接的にアップリンクスループット(throughput)を劣化させるため、異なる方式で設計された異なる形態の方法を通じて生成される異種の低いオーバーヘッド(low overhead)を有するRSが、既存q個のCAZAC系列RSと一緒に使用されることを提案し、この個数をp−qと指定し、0以上の個数に対して具現することができる。この場合、全体的なオーバーヘッドの調節のためにqは0になっても良い。
【0141】
上記の既存TDM(OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル)−CDM(CAZAC)系列と異なる形態のRS設計に対する実施例としてSC−FDMAまたはクラスターSC−FDMAが使用される場合、DFT前段またはIDFT(またはIFFT)後段においてr(r>=1)個のあらかじめ指定された時間領域シンボル位置または任意の伝送シンボル内のタイムサンプル(time sample)領域にRSを挿入する方式を考慮することができる。
【0142】
上記のDFT前段で挿入される場合における時間領域RSは、DFTを経てDFT領域内の周波数領域の全てのサブキャリアに拡散される拡散スペクトラム(spread spectrum)過程を経て、IFFT過程後にチャネルを経る。以降、受信端においてFFT及びIFFTを経た後に、該当のシンボル位置(symbol position)のr個のRSから、データを伝送する帯域上での該当のアンテナに関するチャネル情報を抽出することができる。
【0143】
一方、RSシーケンスをDFTを省いて直接周波数領域にマッピングしてIFFTに経由させる方式と、IFFT後段のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル領域に直接マッピングする方式を適用することができ、この場合、挿入されるOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル上の領域は、全体OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル領域になることもでき、OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル内の一部の時間サンプル(time sample)領域になることもできる。データを伝送するためのOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル内にRSを挿入する場合に、OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボル内の固定位置を指定して挿入したり、リソースブロックインデックス及び/またはセルIDから任意の規則により生成される位置に挿入したりすることができる。データと多重化(multiplexing)する観点から追加的なRSのオーバーヘッドを付加する場合、データを伝送するためのシンボルをパンクチャリング(puncturing)したり、または、レートマッチング(rate matching)を用いてRSのマッピングされるリソースを確保することができる。
【0144】
上記アップリンクRS設計方式は、アップリンクSU−MIMOの他に、非空間多重化(non spatial multiplexing)伝送モードにおいても適用することができ、DM−RSの場合、既存TDM−CDMに基づいて設計されたDM−RS伝送OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルが存在する状況で、付加的に他のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルで定義されることもでき、これと違い、既存のTDM−CDMに基づいて設計されたDM−RS伝送OFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルを設定する方式を代替する方式で適用されることもできる。上記RS設計方法は、DM−RSの他に、SRSにも適用可能である。
【0145】
もし、OFDMAまたはクラスターSC−FDMAまたはSC−FDMA伝送方式がアップリンクに適用される場合、リソースブロック(resource block)単位にリソースブロック内の固定された周波数サブキャリア位置にRSが挿入されるパターンを定義することができ、このようなパターンは、セルIDを入力とする任意の関数や規則にしたがって各セルごとに固有に(cell−specific)定義されることができる。上記リソースブロックは、仮想リソースブロック(virtual resource block)と物理リソースブロック(physical resource block)の両概念を含むものである。したがって、送信端のIFFT入力前のシンボルマッピング時にRSを挿入でき、この時のデータを伝送するための一つ以上のOFDMまたはSC−FDMAまたはクラスターSC−FDMAシンボルにRSを挿入する場合に、該RSを、固定位置を指定して挿入したり、リソースブロックインデックス及び/またはセルIDから任意の規則にしたがって生成される位置に挿入することができる。この時、データを伝送するためのシンボルをパンクチャリングしたり、または、レートマッチングを用いてRSのマッピングされるリソースを確保することができる。
【0146】
任意のシステムにおいてp個の要求されるRSのうち、p−q個のRSに対して、既存TDMベースのCAZAC系列のRS伝送方式と異なる方式のRS伝送方式が適用される環境で、任意の目的に応じて、各送信アンテナまたは伝送レイヤー別RS伝送方式及び該当のインデックスを割り当てる方式を考慮することができる。伝送アンテナまたは伝送レイヤー構成(Tx antenna/layer configuration)は端末別に異なることがあるが、例えば、2Txアンテナ構成であるか、2レイヤー伝送である場合、各送信アンテナまたは伝送レイヤー別にアンテナポート(antenna port)インデックスまたはレイヤーポート(layer port)インデックス#iと#(i+1)が指定され(ただし、i>=0)、他の例として、4Txアンテナ構成であるか、4レイヤー伝送である場合、各送信アンテナまたは伝送レイヤー別にアンテナポートインデックスまたはレイヤーポートインデックス#i、#(i+1)、#(i+2)、#(i+3)が指定されることができる。この時、低いアンテナポートインデックスから昇順でq個のアンテナポートに、チャネル推定性能が相対的に高いTDM方式のCAZAC系列のRSを適用し、残りのアンテナポートに対して上記と異なる方式でシーケンスが生成され、物理リソースにマッピングされるRSを適用させる方式を提案する。
【0147】
アップリンク承認チャネルのコンテンツ(content)に関連する他に、SRS設計においてもアップリンク伝送アンテナまたは伝送レイヤー構成にしたがって各アンテナポートまたはレイヤーポート別にSRSが生成されて適用されなければならない。この時、拡張された多重化容量(multiplexing capacity)を提供するために、時間領域で各アンテナポート別SRSの伝送周期を調節して定義することができる。一実施例として、p個の伝送アンテナまたは伝送レイヤーに対して単一アンテナにおけるSRSと同じシーケンス設計環境で同じ多重化容量を提供するという条件下で任意のUEの時間領域のSRSの伝送周期は同一であり、該当のUEの各アンテナまたはレイヤー別に順次にSRSを伝送する方法を適用することができる。これと別にまたは同時に使用できる方法で拡張された容量を提供するSRSコード設計を周波数領域分散くし型(distributed comb)方式と連係して効果的なCDM/FDM多重化容量の支援を考慮することができる。さらにいうと、コードシーケンスレベルで使用可能な巡回シフト(u)の他に、シーケンスレベルスクランブリング(scrambling)が付加された状態で該当のシーケンスの全体または一部の低い相関のルートインデックス(v)を考慮して、全体的なコードシーケンスリソースをv倍増加させることができる。ここで、一部の低い相関のルートインデックスにおいて一部とは、アップリンクDM−RSのグループ化(grouping)が考慮される場合、グループ内のベースシーケンスに該当するルートインデックスを意味したり、全的に相関(correlation)の低いものであって、ルートインデックスを使用し、該当のインデックスをL1/L2制御シグナリング(control signaling)や上位階層シグナリング(higher−layer(RRC) signaling)でUEに伝送するものを意味する。
【0148】
また、この時、各シーケンス要素(sequence element)がマッピングされる物理リソースであるサブキャリア(subcarrier)が、固定オフセット間隔で分散くし型(distributed comb)方式でマッピングされる場合、チャネル条件またはSRS伝送負荷またはチャネルサウンディング所要時間によってくし型(comb)のオフセット値を調節したり、これと別にまたは同時にSU−MIMOがマッピングされる全体システム帯域(bandwidth)(例えば、20MHz)に対して制限されるサウンディング(sounding)帯域(例えば、5MHz)を指定し、該当の制限された帯域でサウンディング及びパケットスケジューリングをさせて、複数個のアップリンクSU−MIMOに対する仮想サブシステム帯域を分割して使用することによって、周波数領域での多重化容量を支援することができる。上記分散くし型のオフセット値やサウンディング帯域は、L1(第1階層)/L2(第2階層)制御シグナリングや上位階層シグナリング(higher−layer(RRC) signaling)でUEに伝送される。
【0149】
(3)n個の符号語に対するMCS通知コンテンツの構成
【0150】
n個の符号語に対して単一または複数のHARQプロセスを指定する状況で一つのMCSを適用するようにsビット(bit)を割り当てて基地局が端末に知らせうる方法と違い、n個の符号語上のエラー検出能力及びアンテナ別チャネル推定能力及び受信基地局における最適PMI(Precoding Matrix Indication)計算状況を考慮して、各符号語別MCSを圧縮することなくs×nビットを割り当ててアップリンク承認チャネル(grant channel)で伝達する方法と、基準符号語に全体MCS値sビットと、残りのN−1符号語に対してsビットに対してδ値だけを減算したsとδの差を表す(s−δ)×(n−1)ビットとを合算して合計s+(s−δ)×(n−1)ビットを割り当てる方式を適用することができる。前記符号語MCS指定方式の選択は、上記のHARQプロセス通知方式の選択と独立してなされることができる。すなわち、MCW SU−MIMO伝送に対して、符号語別MCSを指定する制御情報がアップリンク承認PDCCHを通じて該当のユーザ機器にシグナリングされることができる。
【0151】
以上の本発明の全ての提案事項は、端末から基地局への直接伝送の場合の他に、リレー伝送(relay transmission)が具現されている状況における端末からリレーノード、リレーノード間、リレーノードから基地局への伝送手法とこれに対する制御シグナリングでいずれも適用されることができる。
【0152】
図11は、ユーザ機器または基地局に適用可能であり、本発明を行うことのできるデバイスの構成を示すブロック図である。
図11に示すように、デバイス110は、処理ユニット111、メモリーユニット112、RF(Radio Frequency)ユニット113、ディスプレイユニット114及びユーザインターフェースユニット115を含む。物理インターフェースプロトコルの階層は、処理ユニット111で行われる。処理ユニット111は、制御プレーン(plane)とユーザプレーンを提供する。各階層の機能は、処理ユニット111で行うことができる。メモリーユニット112は、処理ユニット111と電気的に連結されており、オペレーティングシステム(operating system)、応用プログラム(application)及び一般ファイルを記憶している。もし、デバイス110がユーザ機器であれば、ディスプレイユニット114は様々な情報を表示することができ、公知のLCD(Liquid Crystal Display)、OLED(Organic Light Emitting Diode)等を用いて具現することができる。ユーザインターフェースユニット115は、キーパッド、タッチスクリーンなどのような公知のユーザインターフェースと結合して構成されることができる。RFユニット113は、処理ユニット111と電気的に連結されて、無線信号を送受信する。
【0153】
本明細書において、本発明の実施例は、基地局と端末間のデータ送受信関係を中心に説明された。ここで、基地局は、端末と直接的に通信を行うネットワークの終端ノード(terminal node)の意味を有する。本文書で、基地局により行われると説明された特定動作は、場合によっては、基地局の上位ノード(upper node)により行われることもできる。
【0154】
すなわち、基地局を含む多数のネットワークノード(network nodes)からなるネットワークにおいて端末との通信のために行われる種々の動作は、基地局または基地局以外の別のネットワークノードにより行われうることは明らかである。ここで、基地局は、eNode B(evolved Node B)、固定局(fixed station)、Node B、アクセスポイント(access point)などの用語に代替可能である。
また、端末(MS:Mobile Station)は、ユーザ機器(UE:User Equipment)に該当するもので、移動端末(Mobile Terminal)、SS(Subscriber Station)、MSS(Mobile Subscriber Station)などの用語に代替可能である。
【0155】
本発明に係る実施例は、様々な手段を通じて具現することができる。例えば、本発明の実施例は、ハードウェア、ファームウェア(firmware)、ソフトウェアまたはそれらの結合などにより具現することができる。ハードウェアによる具現の場合、本発明の一実施例に係る無線通信システムにおけるチャネル品質情報報告方法は、一つまたはそれ以上のASICs(application specific integrated circuits)、DSPs(digital signal processors)、DSPDs(digital signal processing devices)、PLDs(programmable logic devices)、FPGAs(field programmable gate arrays)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサなどにより具現することができる。
【0156】
ファームウェアやソフトウェアによる具現の場合、本発明の一実施例に係る無線通信システムにおけるチャネル品質情報報告方法は、以上で説明された機能または動作を行うモジュール、手順または関数などの形態で具現することができる。ソフトウェアコードはメモリーユニットに記憶されてプロセッサにより駆動されることができる。メモリーユニットは、プロセッサの内部または外部に設けられて、既に公知の様々な手段によりプロセッサとデータを交換することができる。
【0157】
本発明は、本発明の技術的思想及び必須特徴を逸脱し範囲で他の特定の形態に具体化できることは、当業者には自明である。したがって、上記の詳細な説明はいずれの面においても制約的に解釈されてはならず、例示的なものとして考慮されなければならない。本発明の範囲は、添付の請求項の合理的解釈によって決定されなければならず、よって、本発明の等価的範囲内における変更はいずれも、本発明の範囲に含まれる。
特許請求の範囲において引用関係が明示されていない請求項を結合して実施例を構成したり、出願後の補正によって新しい請求項として含めることもできることは明らかである。