【実施例】
【0079】
実施例73:[Aib2, A6c7, Cys(Psu)41]hGIP(1-42)-OH
Liberty Peptide Synthesizer (CEM;米国ノースキャロライナ州マシューズ)上で、0.1
mmoleスケールで、マイクロ波支援Fmoc化学を用いる固相ペプチド合成を用いてペプチドを組み立てた。プレロードされた(Pre-loaded)Fmoc-Gln(Trt)-Wang樹脂(0.59 mmole/g;Novabiochem,米国カリフォルニア州サンディエゴ)を用いてC末端酸ペプチド(C-terminal acid peptide)を生成した。その樹脂(0.17 g)を50 mlコニカルチューブの中に、15 mlのジメチルホルムアミド(DMF)と共に置き、合成機上の樹脂の位置に入れた。次いでその
樹脂を、自動化されたプロセスにより定量的に反応容器に移した。0.1 mmoleスケールで
の合成のための標準的なLiberty合成プロトコルを用いた。このプロトコルには、DMF中の0.1M N-ヒドロキシベンゾトリアゾール(HOBT)を含む20% ピペリジン7 mlを用いた最初の
処理によるN末端のFmoc部分の脱保護が含まれていた。その最初の脱保護の工程は、マイクロ波電力(45ワット、最大温度75℃)および窒素による泡立て(3秒間オン/7秒間オフ)を用いて30秒間であった。次いで反応容器から液体を排出し(drained)、それ
が3分間の期間であること以外は第1の処理と同じである第2のピペリジン処理を行った。次いで樹脂から液体を排出し、DMFで数回、完全に洗浄した。次いでDMF中で0.2Mのストック溶液として調製した保護されたアミノ酸Fmoc-Thr(tBu)-OH(2.5 ml, 5当量)、続いて1.0 mlのDMF中0.45M (4.5当量) HBTU [2-(1H-ベンゾ-トリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート]を添加した。これに続き0.5 mlのNMP
(N-メチルピロリジノン(N-methylpyrrollidinone))中2M (10当量) DIPEA (ジイソプロピルエチルアミン)を添加した。カップリングの工程は、20ワットのマイクロ波電力、7
5℃の最大温度、および同程度の窒素による泡立てを用いて5分間行った。
【0080】
最初のカップリングの工程の後、反応容器から液体を排出して廃棄し、カップリングの工程を繰り返した。次いでサイクル1と同様のサイクル2を開始した。全てのアミノ酸を同様にして導入し、シークエンス全体を通して二重カップリングの方法を用いた。サイクル1〜3、19〜20、25〜26および30〜39は、カップリングの工程のすぐ後にキャッピングの手順を含んでいた。キャッピングは、NMP中の0.015M HOBTを含む0.5M無水酢酸7 mlおよび2M DIPEA溶液2 mlの添加により、多段階マイクロ波プロトコルを用いて行った:50ワットの電力で30秒間(最大温度65℃)、続いて30秒間のマイクロ波電力オフ、続いて第2ラウンドの30秒間のマイクロ波電力オン(50ワット)、次いで再び30秒間のマイクロ波電力無し。次いで樹脂から液体を排出し、DMFで完全に洗浄した
。次のアミノ酸(Advanced Chemtech,米国ケンタッキー州ルイスビル)を用いた:サイク
ル1: Fmoc-Cys(Trt)-OH; サイクル2: Fmoc-Ile-OH; サイクル3: Fmoc-Asn(Trt)-OH; サイクル4: Fmoc-His(Trt)-OH; サイクル5: Fmoc-Lys(Boc)-OH; サイクル6: Fmoc-Trp(Boc)-OH; サイクル7: Fmoc-Asp(OtBu)-OH; サイクル8: Fmoc-Asn(Trt)-OH; サイクル9: Fmoc-Lys(Boc)-OH; サイクル10: Fmoc-Lys(Boc)-OH; サイクル11: Fmoc-Gly-OH; サイクル12: Fmoc-Lys(Boc)-OH; サイクル13: Fmoc-Gln(Trt)-OH; サイクル14: Fmoc-Ala-OH; サイクル15: Fmoc-Leu-OH; サイクル16: Fmoc-Leu-OH; サイクル17: Fmoc-Trp(Boc)-OH; サイクル18: Fmoc-Asn(Trt)-OH; サイクル19: Fmoc-Val-OH; サイクル20: Fmoc-Phe-OH; サイクル21: Fmoc-Asp(OtBu)-OH; サイクル22: Fmoc-Gln(Trt)-OH; サイクル23: Fmoc-Gln(Trt)-OH; サイクル24: Fmoc-His(Trt)-OH; サイクル25: Fmoc-Ile-OH; サイクル26: Fmoc-Lys(Boc)-OH; サイクル27: Fmoc-Asp(OtBu)-OH; サイクル28: Fmoc-Met-OH; サイクル29: Fmoc-Ala-OH; サイクル30: Fmoc-Ile-OH; サイクル31: Fmoc-Tyr(tBu)-Ser(psiMe,Me,Pro)-OH;
サイクル32: Fmoc-Asp(OtBu)-OH; サイクル33: Fmoc-Ser(tBu)-OH; サイクル34: Fmoc-A6c-OH; サイクル35: Fmoc-Phe-OH; サイクル36: Fmoc-Gly-Thr(psiMe,Me,Pro)-OH; サイ
クル37: Fmoc-Glu(OtBu)-OH; サイクル38: Fmoc-Ala-OH;およびサイクル39: Fmoc-Tyr(tBu)-OH。Fmoc-His(Trt)-OHに関するカップリングのプロトコルは、標準的なプロトコルを
少し修正したバージョンであった。最初の2分間マイクロ波電力をオフにし、続いてマイクロ波電力オンで4分間(20ワット;最大温度50℃)行った。一度ペプチドのバックボーンが完成したら、標準的なピペリジン処理を用いてN末端のFmoc基を除去した。次い
で樹脂をDMFで完全に洗浄し、次いで移動用の溶媒としてDMFを用いて50 mlコニカルチュ
ーブに戻した。
【0081】
5 mlの次の試薬で処理することによりその樹脂を脱保護し、樹脂から切り離した:5% TIS、2%水、5% (w/v)ジチオスレイトール(DTT)、88% TFA、および3.5時間混合させた。濾液を45 mlの冷無水エチルエーテルの中に集めた。沈殿物を冷却遠心機において3500 RPMで10分間遠心分離してペレットにした。エーテルをデカントし、ペプチドを新しいエ
ーテル中で再懸濁した。そのエーテルでの仕上げを合計2回行った。最後のエーテルでの洗浄の後、ペプチドを風乾させて残留したエーテルを除去した。ペプチドのペレットを8 mlのアセトニトリル(Acn)、続いて8 mlの脱イオン水中で再懸濁し、完全に溶解させた。
次いでそのペプチド溶液を質量分析により分析した。エレクトロスプレーイオン化を用いた質量分析は5011.7ダルトンの質量を含む主生成物を同定した;これは望まれる線状生成物と一致する。その粗生成物(おおよそ500 mg)を、250 x 4.6 mm C18カラム(Phenomenex;米国カリフォルニア州トーランス)を用いるHPLCにより、30分間にわたる2〜80%アセ
トニトリル(0.1% TFA)の勾配を用いて分析した。分析的HPLCは、34%の純度を有する生成
物を同定した。次いでその粗製のペプチドを、C18逆相カラムを備えた分取HPLC上で、10 ml/分の流速で50分間にわたる10〜60%アセトニトリル(0.1% TFA)を用いて精製した。次いでその精製したペプチドを凍結乾燥すると、15 mgのペプチドが得られた。次いでその線
状のペプチドをN-プロピルマレイミド(Pma)を用いて誘導体化し、システイン側鎖上のプ
ロピルスクシンイミド(Psu)誘導体を生成した。精製した線状ペプチドを、炭酸アンモニ
ウムを用いてpH 6.5に調節した水の中で5 mg/mlにした(brought up)。5当量のPmaを、30秒間一定して攪拌しながら添加した。次いでその誘導体化したペプチドの溶液を質量分析により分析した。エレクトロスプレーイオン化を用いた質量分析は、5150.7ダルトンの質量を含む主生成物を同定した;これは望まれるPsu誘導体化生成物と一致する。次いで
その生成物を分取HPLCにより前回と同様の勾配を用いて再精製した。その精製された生成物を、純度に関してHPLCにより(95.10%)、および質量分析により(5150.9ダルトン)分析し、続いて凍結乾燥した。
【0082】
実施例103:[Orn1(N-C(O)-(CH2)12-CH3), A6c7]hGIP(1-42)-OH
Liberty Peptide Synthesizer (CEM;米国ノースキャロライナ州マシューズ)上で、0.1
mmoleスケールで、マイクロ波支援Fmoc化学を用いる固相ペプチド合成を用いてペプチドを組み立てた。プレロードされたFmoc-Gln(Trt)-Wang樹脂(0.59 mmole/g;Novabiochem,米国カリフォルニア州サンディエゴ)を用いてC末端酸ペプチドを生成した。その樹脂(0.17 g)を50 mlコニカルチューブの中に、15 mlのジメチルホルムアミド(DMF)と共に置き、合成機上の樹脂の位置に入れた。次いでその樹脂を、自動化されたプロセスにより定量的に反応容器に移した。0.1 mmoleスケールでの合成のための標準的なLiberty合成プロトコルを用いた。このプロトコルには、DMF中の0.1M N-ヒドロキシベンゾトリアゾール(HOBT)を含む20% ピペリジン7 mlを用いた最初の処理によるN末端のFmoc部分の脱保護が含まれている。その最初の脱保護の工程は、マイクロ波電力(45ワット、最大温度75℃)および窒素による泡立て(3秒間オン/7秒間オフ)を用いて30秒間であった。次いで反応容器から液体を排出し、それが3分間の期間であること以外は第1の処理と同じである第2のピペリジン処理を行った。次いで樹脂から液体を排出し、DMFで数回、完全に洗浄
した。次いでDMF中で0.2Mのストック溶液として調製した保護されたアミノ酸Fmoc-Thr(tBu)-OH(2.5 ml, 5当量)、続いて1.0 mlのDMF中0.45M (4.5当量) HBTU [2-(1H-ベンゾ-トリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート]を添加した。これに続き0.5 mlのNMP (N-メチルピロリジノン(N-methylpyrrollidinone))中2M
(10当量) DIPEA (ジイソプロピルエチルアミン)を添加した。カップリングの工程は、20ワットのマイクロ波電力、75℃の最大温度、および同程度の窒素による泡立てを用いて5分間行った。
【0083】
最初のカップリングの工程の後、反応容器から液体を排出して廃棄し、カップリングの工程を繰り返した。次いでサイクル1と同様のサイクル2を開始した。全てのアミノ酸を同様にして導入し、シークエンス全体を通して二重カップリングの方法を用いた。サイクル1〜3、19〜20、25〜26および30〜39は、カップリングの工程のすぐ後にキャッピングの手順を含んでいた。キャッピングは、NMP中の0.015M HOBTを含む0.5M無水酢酸7 mlおよび2M DIPEA溶液2 mlの添加により、多段階マイクロ波プロトコルを用いて行った:50ワットの電力で30秒間(最大温度65℃)、続いて30秒間のマイクロ波電力オフ、続いて第2ラウンドの30秒間のマイクロ波電力オン(50ワット)、次いで再び30秒間のマイクロ波電力無し。次いで樹脂から液体を排出し、DMFで完全に洗浄した
。次のアミノ酸(Advanced Chemtech,米国ケンタッキー州ルイスビル)を用いた:サイク
ル1: Fmoc-Thr(tBu)-OH; サイクル2: Fmoc-Ile-OH; サイクル3: Fmoc-Asn(Trt)-OH; サイクル4: Fmoc-His(Trt)-OH; サイクル5: Fmoc-Lys(Boc)-OH; サイクル6: Fmoc-Trp(Boc)-OH; サイクル7: Fmoc-Orn(Mtt)-OH; サイクル8: Fmoc-Asn(Trt)-OH; サイクル9: Fmoc-Lys(Boc)-OH; サイクル10: Fmoc-Lys(Boc)-OH; サイクル11: Fmoc-Gly-OH; サイクル12: Fmoc-Lys(Boc)-OH; サイクル13: Fmoc-Gln(Trt)-OH; サイクル14: Fmoc-Ala-OH; サイクル15: Fmoc-Leu-OH; サイクル16: Fmoc-Leu-OH; サイクル17: Fmoc-Trp(Boc)-OH; サイクル18: Fmoc-Asn(Trt)-OH; サイクル19: Fmoc-Val-OH; サイクル20: Fmoc-Phe-OH; サイクル21: Fmoc-Asp(OtBu)-OH; サイクル22: Fmoc-Gln(Trt)-OH; サイクル23: Fmoc-Gln(Trt)-OH;
サイクル24: Fmoc-His(Trt)-OH; サイクル25: Fmoc-Ile-OH; サイクル26: Fmoc-Lys(Boc)-OH; サイクル27: Fmoc-Asp(OtBu)-OH; サイクル28: Fmoc-Met-OH; サイクル29: Fmoc-Ala-OH; サイクル30: Fmoc-Ile-OH; サイクル31: Fmoc-Tyr(tBu)-Ser(psiMe,Me,Pro)-OH; サイクル32: Fmoc-Asp(OtBu)-OH; サイクル33: Fmoc-Ser(tBu)-OH; サイクル34: Fmoc-A6c-OH; サイクル35: Fmoc-Phe-OH; サイクル36: Fmoc-Gly-Thr(psiMe,Me,Pro)-OH; サイクル37: Fmoc-Glu(OtBu)-OH; サイクル38: Fmoc-Ala-OH;およびサイクル39: Boc-Tyr(tBu)-OH。Fmoc-His(Trt)-OHに関するカップリングのプロトコルは、標準的なプロトコルを少し修正したバージョンであった。最初の2分間マイクロ波電力をオフにし、続いてマイクロ波電力オンで4分間(20ワット;最大温度50℃)行った。一度ペプチドのバックボーンが完成したら、樹脂を12 mlのジクロロメタン(DCM)中1%トリフルオロ酢酸(TFA) / 5%トリイソプロピルシラン(TIS)で5分間、N
2の散布の程度(sparge rate)を5秒間のオンおよび10秒間のオフで処理した。次いで樹脂から液体を排出し、再度DCM中1% TFA / 5% TISで5分間処理した。オルニチン側鎖からMtt部分を効果的に除去するため、これを合計
7回行った。その樹脂をDCMを用いて数回、完全に洗浄し、次いでオルニチンのδN上の
残留したTFA塩を中和するために標準的なピペリジン処理により処理した。DMF中0.2M溶液として調製したミリスチン酸(CH
3-(CH
2)
12-COOH; AldRiCH,米国ミズーリ州セントルイス)を、標準的なアミノ酸のカップリングのプロトコルを用いてオルニチン側鎖にカップリ
ングさせた。次いで樹脂をDMFで完全に洗浄し、次いで移動用の溶媒としてDMFを用いて50
mlコニカルチューブに戻した。
【0084】
5 mlの次の試薬で処理することによりその樹脂を脱保護し、樹脂から切り離した:5% TIS、2%水、5% (w/v)ジチオスレイトール(DTT)、88% TFA、および3.5時間混合させた。濾液を45 mlの冷無水エチルエーテルの中に集めた。沈殿物を冷却遠心機において3500 RPMで10分間遠心分離してペレットにした。エーテルをデカントし、ペプチドを新しいエ
ーテル中で再懸濁した。そのエーテルでの仕上げを合計2回行った。最後のエーテルでの洗浄の後、ペプチドを風乾させて残留したエーテルを除去した。ペプチドのペレットを8 mlのアセトニトリル(Acn)、続いて8 mlの脱イオン水中で再懸濁し、完全に溶解させた。
次いでそのペプチド溶液を質量分析により分析した。エレクトロスプレーイオン化を用いた質量分析は5205.1ダルトンの質量を含む主生成物を同定した;これは望まれる線状生成物と一致する。その粗生成物(おおよそ500 mg)を、250 x 4.6 mm C18カラム(Phenomenex;米国カリフォルニア州トーランス)を用いるHPLCにより、30分間にわたる2〜80%アセ
トニトリル(0.1% TFA)の勾配を用いて分析した。分析的HPLCは、50%の純度を有する生成
物を同定した。次いでそのペプチドを、C18カラムを備えた分取HPLC上で、同様の溶離勾
配を用いて精製した。その精製された生成物を、純度に関してHPLCにより(96.10%)、および質量分析により(5204.6ダルトン)再分析し、続いて凍結乾燥させた。凍結乾燥の後、6.2 mgの精製された生成物が得られ、これは1.2%の収率を表している。
【0085】
本明細書で開示されたPEG化されたGIP化合物は、実質的に実施例15の化合物の合成に関して記述された手順に従って、出発物質として実施例15において用いられたN-プロピルマレイミドの代わりにPEG-マレイミドを用いることにより合成することができる。
【0086】
当業者は、本発明の他のペプチドを、前記の実施例において開示された合成手順に類似した合成手順を用いて調製することができる。本明細書において例示した化合物に関する物理的データを表1に示す。
【0087】
表1
【0088】
【表1-1】
【0089】
【表1-2】
【0090】
【表1-3】
【0091】
機能的アッセイ
A.
インビトロhGIP受容体結合アッセイ
ヒトの組換えGIP受容体を発現しているCHO-K1クローン細胞を、氷冷した50mM トリ
ス-HCl中でBrinkman Polytron(設定6、15秒)を用いてホモジナイズし、次いで39,000 gでの10分間の遠心分離を2回、間で新しい緩衝液に再懸濁して行うことにより、イ
ンビトロ受容体結合アッセイのための膜を調製した。そのアッセイに関して、洗浄した膜調製物の部分量(aliquots)を、50mM トリス-HCl、0.1 mg/mlバシトラシン、および0.1% BSA中0.05nM [
125I]GIP (おおよそ2200 Ci/mmol)と共に25℃で100分間保温した。最
終的なアッセイ体積は0.5 mlであった。Brandel濾過マニホールドを用いてGF/Cフィルタ
ー(0.5%ポリエチレンイミンに予め浸したもの)を通して急速に濾過することにより、保温を終了させた。次いでそれぞれのチューブおよびフィルターを、5 ml部分量の氷冷した緩衝液で3回洗浄した。特異的な結合は、結合した全ての放射性リガンドから1000nMのGIPの存在下で結合した放射性リガンドを引いたものとして定義された。本明細書で例示した化合物に関するインビトロhGIP受容体結合のデータを表2に示す。
【0092】
B.
ヒトおよびラットの血漿内半減期アッセイ
GIPペプチド(50 μL 1 mg/ml)を450μLの血漿(ヒトまたはラット)に添加し、短時
間ボルテックスし(vertexed)、37℃で保温した。0、1、2、3、4、8、24、32、48、56、72時間の時点のような様々な時点において50 μLを分離し、マイクロ遠心チューブの中で5 μLのギ酸および150 μLのアセトニトリルと混合し、ボルテックスし(vertexed)、10K rpmで10分間遠心分離した。上清を注入バイアルに移し、LC-MSにより分析した。LC-MSシステムはESIプローブを有するAPI4000質量分析器で構成されていた。
正イオンモードおよび完全スキャン検出を用いた。HPLCでの分離を、Luna 3μ C8 (2), 2
x 30 mmカラム上で、90% Aから90% Bまでの勾配を用いて、0.3 ml/分の流速において1
0分間で実施した。緩衝液Aは水中1%ギ酸であり、緩衝液Bは1%ギ酸アセトニトリルであった。本明細書で例示した化合物に関するヒトおよびラットの血漿内半減期のデータを表2に示す。
【0093】
表2
【0094】
【表2-1】
【0095】
【表2-2】
【0096】
【表2-3】
【0097】
表2においてリストしたデータと比較して、PCT公開WO 00/58360において開示されている化合物[Pro
3]hGIP(1-42)-OHに関するインビトロhGIP受容体結合の
データならびにヒトおよびラットの血漿内半減期のデータを上記と同じ実験条件下で測定し、それぞれ170.8 nMならびに10.8時間および0.8時間であった。
【0098】
C.
環状AMP刺激の測定
1 x 105個のヒトの組換えGIP受容体を発現しているCHO-K1細胞またはRIN-5Fインス
リノーマ細胞を、24ウェル細胞培養プレート(Corning Incorporate,米国ニューヨーク州コーニング)の中に一夜まいた。そのアッセイに関して、細胞を0.55mM IBMX(Sigma,米国ミズーリ州セントルイス)を含むpH 7.3に調節したハンクス緩衝塩溶液(Sigma,米国ミ
ズーリ州セントルイス)500 μl中で10分間前保温した(preincubated)。次いでGIPまたはそのアナログを、100 nMの濃度で添加した。37℃で30分間の保温の後、プレートを氷上に置き、500 μlの氷冷無水エタノールを添加して反応を止めた。ウェルの内容物
を集め、4℃において2,700 gで20分間遠心分離して細胞破壊片を除去した。上清中のcAMPレベルを放射性免疫測定 (New England Nuclear,米国マサチューセッツ州ボストン)
により決定した。
【0099】
D.正常なラットにおけるインビボでのインスリン分泌の測定
おおよそ275〜300 gの体重を有するオスのスプラーグドーリーラットを実験の対象として用いた。処理の前の日に、クロロハイドレートの下で頚静脈を通して右心房カニューレを挿入した。それぞれのカニューレを100 u/mlヘパリン生理食塩水で満たし、結んだ。化合物またはビヒクル(生理食塩水/0.25% BSA)を投与する前に、おおよそ18時間ラットを絶食させた。実験の日に、化合物の部分量を解かし、室温に戻し、完全にボルテックスした。溶液から生じる化合物のあらゆる兆候に関して注意深くチェックした。化合物/グル
コースの注入の10分前に、500 μlの血液試料を吸い出し、等体積のヘパリン添加生理
食塩水(10 u/ml)と入れ替えた。時間0において、カニューレを通して500 μlの血液試料を吸い出した。次に、ビヒクルまたは化合物の適切な用量のどちらかをカニューレの中に注入し、グルコース(1 g/kg)またはビヒクルの溶液で押し入れた。最後に、500 μlの体
積のヘパリン添加生理食塩水(10 u/ml)を用いて残ったグルコースをカニューレを通して
押し入れた。さらに500 μlの血液試料を、グルコースの投与の2.5、5、10、およ
び20分後に吸い出した;それぞれの直後に500 μlのヘパリン添加生理食塩水(10 u/ml)をカニューレを通して大量瞬時(bolus)静脈内注入した。血漿を血液試料から遠心分離に
より集め、インスリン含有量に関するアッセイまで−20℃で保管した。実施例105、106、118、および119の化合物のインビボでの作用を示す総インスリン分泌の数値を、表3においてまとめる。
【0100】
表3
【0101】
【表3】
【0102】
投与
この発明のペプチドは、医薬的に許容できる塩類の形で提供することができる。その塩類の例には、有機酸(例えば酢酸、乳酸、マレイン酸、クエン酸、リンゴ酸、アスコルビン酸、コハク酸、安息香酸、メタンスルホン酸、トルエンスルホン酸、またはパモ酸(pamoic acid))、無機酸(例えば塩酸、硫酸、またはリン酸)およびポリマー性の酸(例え
ばタンニン酸、カルボキシメチルセルロース、ポリ乳酸、ポリグリコール酸、またはポリ乳酸−ポリグリコール酸のコポリマー類)により形成される塩類が含まれるが、それらに限定されない。本発明のペプチドの塩を作る典型的な方法は当技術では周知であり、標準的な塩交換の方法により成し遂げることができる。従って、本発明のペプチドのTFA塩(TFA塩は分取HPLCを用いてTFAを含む緩衝溶液で溶離することによるペプチドの精製の結果
得られる)は別の塩に、例えばそのペプチドを少量の0.25 N酢酸水溶液中で溶解することにより酢酸塩に変換することができる。得られた溶液をセミ分取(semi-prep)HPLCカラム(Zorbax, 300 SB, C-8)に適用する。そのカラムを(1)0.1N酢酸アンモニウム水溶液で0.5時間、(2)0.25N酢酸水溶液で0.5時間、および(3)4 ml/分の流速における直線勾配(30分間にわたる20%〜100%の溶液B)(溶液Aは0.25 N酢酸水溶液であり;溶液B
はアセトニトリル/水80:20中0.25 N酢酸である)を用いて溶離する。ペプチドを含む画
分を集め、凍結乾燥させる。
【0103】
この発明の組成物中の有効成分の用量は異なっていてよい;しかし、有効成分の量は適切な剤形が得られるようなものである必要がある。選択される用量は、望まれる療法的作用に、投与経路に、および処置の期間に依存する。一般に、この発明の活性に関する有効な用量は1 x 10
-7〜200 mg/kg/日、好ましくは1 x 10
-4〜100 mg/kg/日の範囲であり、それは1回量として、または多数回の用量に分けて投与することができる。
【0104】
この発明の化合物は、経口、非経口(例えば筋内、腹膜内、静脈内または皮下の注射、または埋め込み)、経鼻、膣内、直腸内、舌下、または局所的投与経路により投与することができ、それぞれの投与経路に適した剤形を提供するために医薬的に許容できるキャリヤーと共に配合することができる。
【0105】
経口投与のための固体剤形には、カプセル、錠剤、丸剤、粉末および顆粒が含まれる。その固体剤形において、有効化合物は少なくとも1種類の不活性な医薬的に許容できるキャリヤー、例えばスクロース、ラクトースまたはデンプンと混合される。その剤形はその不活性な希釈剤以外の追加の物質、例えば潤滑剤、例えばステアリン酸マグネシウムも含むことができ、それが通常の慣習である。カプセル、錠剤および丸剤の場合、その剤形は緩衝剤も含んでいてよい。錠剤および丸剤はさらに腸溶コーティングを用いて調製することができる。
【0106】
経口投与のための液体剤形には、当技術で一般的に用いられる不活性な希釈剤、例えば水を含む、医薬的に許容できる乳濁液、溶液、懸濁液、シロップ、エリキシルおよび同様のものが含まれるが、それらに限定されない。その不活性な希釈剤の他に、組成物は補助剤、例えば湿潤剤、乳濁化および懸濁化剤、ならびに甘味料、香味料および香料も含むことができる。
【0107】
非経口投与のためのこの発明に従う製剤には、無菌の水溶液または非水溶液、懸濁液、乳濁液および同様のものが含まれるが、それらに限定されない。非水性溶媒またはビヒクルの例には、プロピレングリコール、ポリエチレングリコール、植物油、例えばオリーブ油およびトウモロコシ油、ゼラチン、ならびに注射可能な有機エステル類、例えばオレイン酸エチルが含まれる。その剤形は補助剤、例えば保存、湿潤、乳濁化および分散剤も含んでいてよい。それらは例えば細菌を保持するフィルターを通す濾過により、組成物中に滅菌剤を組み込むことにより、組成物を照射することにより、または組成物を加熱することにより滅菌されてよい。それらは、滅菌水または何らかの他の無菌の注射可能な媒体に使用の直前に溶解することができる無菌の固体組成物の形で製造することもできる。
【0108】
直腸内または膣内投与のための組成物は好ましくは坐剤であり、それは有効物質に加えて賦形剤、例えばカカオ脂(coca butter)または坐剤ワックスを含んでいてよい。
【0109】
経鼻または舌下投与のための組成物も、当技術で周知の標準的な賦形剤を用いて調製される。
【0110】
さらに、この発明の化合物は徐放性組成物、例えば下記の特許および特許出願において記述されている徐放性組成物で投与することができる。米国特許第5,672,659号は、生理活性薬剤およびポリエステルを含む徐放性組成物を教示する。米国特許第5,595,760号は、生理活性薬剤をゲル化可能な(gelable)形で含む徐放性組成物を教示
する。米国特許第5,821,221号は、生理活性薬剤およびキトサンを含むポリマー性徐放性組成物を教示する。米国特許第5,916,883号は、生理活性薬剤およびシクロデキストリンを含む徐放性組成物を教示する。PCT公開WO99/38536は、生理活性薬剤の吸収性徐放性組成物を教示する。PCT公開WO00/04916は、療
法薬、例えばペプチドを含む微粒子を水中油プロセスで作るためのプロセスを教示する。PCT公開WO00/09166は、療法薬、例えばペプチドおよびリン酸化ポリマーを含む複合体を教示する。PCT公開WO00/25826は、療法薬、例えばペプチドおよび重合可能ではないラクトンを含むポリマーを含む複合体を教示する。
【0111】
別途定義しない限り、本明細書で用いられる全ての技術的および科学的な用語はこの発明が属する技術の当業者に一般的に理解されているものと同じ意味を有する。また、本明細書で言及された全ての刊行物、特許出願、特許および他の参考文献をそれぞれそのまま本明細書に援用する。