(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0023】
当業者には、図面中の物体が、平易かつ明快にするために例示されており、必ずしも縮尺通りに描かれているわけではないことが分かる。たとえば、実施形態を理解しやすいようにするために、図面中の一部の物体の寸法は他の物体と比べて拡大されている場合がある。
【0024】
第1層の上への閉じ込め第2層の形成方法であって、前記方法が、
第1表面エネルギーを有する第1層を形成する工程と;
第1層を下塗り材料で処理して下塗り層を形成する工程と;
下塗り層を放射線でパターン様に露光し、露光部と非露光部とをもたらす工程と;
下塗り層を現像して下塗り層をいずれかの非露光部から効果的に除去し、下塗り層のパターンを有する第1層をもたらす工程であって、下塗り層のパターンが第1表面エネルギーよりも高い第2表面エネルギーを有する工程と;
第1層上で液相堆積によって下塗り層のパターン上に第2層を形成する工程と
を含み、
ここで、下塗り材料が式I、
【0026】
(式中:
Ar
1〜Ar
4は、同じもしくは異なるものであり、アリール基であり;
Lは、スピロ基、アダマンチル基、二環式シクロヘキシル、それらの重水素化類似体、およびそれらの置換誘導体からなる群から選択され;
R
1は、それぞれ同じもしくは異なるものであり、D、F、アルキル、アリール、アルコキシ、シリル、および架橋性基からなる群から選択され、ここで、隣接R
1基は結合して芳香環を形成することができ;
R
2は、それぞれ同じもしくは異なるものであり、H、D、およびハロゲンからなる群から選択され;
aは、それぞれ同じもしくは異なるものであり、0〜4の整数であり;
nは、0よりも大きい整数である)
を有する方法が提供される。
【0027】
多くの態様および実施形態が上に説明されてきたが、これらは単に例示的なもので、非限定的なものである。本明細書を読めば、当業者には、その他の態様および実施形態が本発明の範囲から逸脱することなく可能であることが分かるであろう。
【0028】
いずれか1つまたは複数の実施形態のその他の特徴および利益は、以下の詳細な説明から、および特許請求の範囲から明らかとなるであろう。この詳細な説明では、最初に、用語の定義および説明を扱い、続いて、プロセス、下塗り材料、有機電子デバイス、最後に、実施例を扱う。
【0029】
1.用語の定義および説明
以下に説明される実施形態の詳細を扱う前に、一部の用語が定義または説明される。
【0030】
用語「活性な」は、層または材料に言及する場合、電子特性または電気放射特性を示す層または材料を意味することを意図している。電子デバイスにおいて、活性材料は、デバイスの動作を電子的に促進する。活性材料の例としては、電荷が電子か正孔かのどちらかであり得る、電荷を導く、注入する、輸送する、または遮断する材料、および放射線を受け取る場合に放射線を発するかまたは電子−正孔ペアの濃度の変化を示す材料が挙げられるが、これらに限定されるものではない。不活性材料の例としては、平坦化材料、絶縁材料、および環境障壁材料が挙げられるが、これらに限定されるものではない。
【0031】
用語「閉じ込められた(contained)」は、層に言及する場合、層が印刷されるときに、それが閉じ込められていない場合には拡散するという自然の傾向があるにもかかわらず、それが堆積している領域を越えて有意に拡散しないことを意味することを意図している。「化学的閉じ込め」では、層は、表面エネルギー効果によって閉じ込められる。「物理的閉じ込め」では、層は、物理的障壁構造によって閉じ込められる。層は、化学的閉じ込めと物理的閉じ込めとの組み合わせによって閉じ込められてもよい。
【0032】
用語「現像すること」および「現像」は、放射線に露光された材料の領域と放射線に露光されなかった領域との間の物理的差別化、および露光領域か非露光領域かのどちらかの除去を意味する。
【0033】
用語「電極」は、電子構成要素内でキャリアを輸送するために配置構成された部材または構造を意味することを意図している。たとえば、電極は、アノード、カソード、キャパシタ電極、ゲート電極などであってもよい。電極は、トランジスタ、キャパシタ、抵抗器、インダクタ、ダイオード、電子部品、電力供給装置、またはそれらの任意の組み合わせの一部を含んでもよい。
【0034】
用語「フッ素化」は、有機化合物に言及する場合、化合物中の炭素に結合した水素原子の1つまたは複数がフッ素で置換されていることを意味することを意図している。この用語は部分的にフッ素化された物質と完全にフッ素化された物質を含む。
【0035】
用語「層」は、用語「フィルム」と同じ意味で用いられ、所望の領域を覆うコーティングを意味する。この用語はサイズによって限定されない。この領域は、全体デバイスほどに大きいかもしくは実視覚表示などの特異的な機能領域ほどに小さい、または単一サブピクセルほどに小さいものであり得る。層およびフィルムは、蒸着、液相堆積(連続および不連続技術)、ならびに熱転写などの、任意の従来型堆積技術によって形成することができる。層は、高度にパターン化されていてもよいし、または全体的で、パターン化されていなくてもよい。
【0036】
用語「液体組成物」は、材料が溶解して溶液を形成している液体媒体、材料が分散して分散液を形成している液体媒体、または材料が懸濁して懸濁液もしくはエマルジョンを形成している液体媒体を意味することを意図している。
【0037】
用語「液体媒体」は、純液体、液体の組み合わせ、溶液、分散液、懸濁液、およびエマルジョンなどの、液体材料を意味することを意図している。液体媒体は、1つまたは複数の溶剤が存在するかどうかにかかわらず使用される。
【0038】
用語「有機電子デバイス」は、1つまたは複数の有機半導体層または材料を含むデバイスを意味することを意図している。有機電子デバイスとしては:(1)電気エネルギーを放射線に変換するデバイス(たとえば、発光ダイオード、発光ダイオードディスプレイ、ダイオードレーザー、または照明パネル)、(2)電子的過程を用いて信号を検出するデバイス(たとえば、光検出器、光導電セル、フォトレジスタ、光スイッチ、光トランジスタ、光電管、赤外線(「IR」)検出器、またはバイオセンサー)、(3)放射線を電気エネルギーに変換するデバイス(たとえば、光起電力デバイスまたは太陽電池)、(4)1つまたは複数の有機半導体層を含む1つまたは複数の電子部品を含むデバイス(たとえば、トランジスタまたはダイオード)、または項目(1)〜(4)のデバイスの任意の組み合わせが挙げられるが、これらに限定されるものではない。
【0039】
用語「放射する」および「放射」は、そのような放射が光線、波動、または粒子の形態にあるかどうかにかかわらず、任意の形態の熱、全体電磁スペルトル、または原子を構成する粒子などの、任意の形態のエネルギーを加えることを意味する。
【0040】
用語「表面エネルギー」は、材料から単位面積の表面を生成するために必要とされるエネルギーである。表面エネルギーの特徴は、所与の表面エネルギーの液体材料が、十分により低い表面エネルギーの表面をぬらさないことである。低い表面エネルギーの層は、より高い表面エネルギーの層よりもぬらすのがより困難である。
【0041】
本明細書において使用される場合、用語「の上に」は、層、部材、または構造が別の層、部材、または構造に直接隣接しているかまたは接触していることを必ずしも意味しない。追加の、介在する層、部材または構造が存在してもよい。
【0042】
本明細書において使用される場合、用語「含む」、「含むこと」、「含む」、「含むこと」、「有する」、「有すること」またはそれらの他の任意の変形は、非排他的な包含を扱うことを意図している。たとえば、ある一連の要素を含むプロセス、方法、物品、または装置は、それらの要素のみに必ずしも限定されるわけではなく、そのようなプロセス、方法、物品、または装置に関して明示されないかまたは固有のものでもない他の要素を含むことができる。本明細書の開示される主題の代替的実施形態は、ある種の特徴または要素から本質的になると記載され、その実施形態においては、動作の原理または実施形態の際立った特性を実質的に変えるであろう特徴または要素はその中に存在しない。本明細書の記載される主題のさらなる代替的実施形態は、ある種の特徴または要素からなると記載され、その実施形態においては、またはその実体のない変形形態においては、具体的に記述されたまたは記載された特徴または要素のみが存在する。
【0043】
さらに、それとは反対を明記されない限り、「または」は、包含的な「または」を意味し、排他的な「または」を意味するものではない。たとえば、条件AまたはBは、Aが真であり(または存在し)Bが偽である(または存在しない)、Aが偽であり(または存在せず)Bが真である(または存在する)、ならびにAおよびBの両方が真である(または存在する)のいずれか1つによって満たされる。
【0044】
また、本明細書に記載される要素および成分を説明するために「a」または「an」も使用されている。これは便宜的に、かつ、本発明の範囲の一般的な意味を与えるために行われているにすぎない。この記述は、1つまたは少なくとも1つを含むと読まれるべきであり、それがそうでないことを意味することが明らでない限り単数形は複数形も含んでいる。
【0045】
元素の周期表中の縦列に対応する族の番号は、CRC Handbook of Chemistry and Physics,81版(2000−2001)に見られるような「新表記法(New Notation)」の規則を使用している。
【0046】
特に定義しない限り、本明細書において使用されるすべての技術用語および科学用語は、本発明が属する技術分野の当業者によって一般に理解されている意味と同じ意味を有する。本明細書に記載されるものに類似のまたは同等の方法および材料を本発明の実施形態の実施または試験に使用することができるが、好適な方法および材料は以下に記載される。本明細書に述べられるすべての刊行物、特許出願、特許、およびその他の参考文献は、特定の一節が引用されない限り、それらの全体を参照により援用される。矛盾が生じた場合には、定義を含む、本明細書が優先される。さらに、材料、方法、および実施例は、例示的なものであるにすぎず、限定的であることを意図していない。
【0047】
本明細書に記載されていない範囲の、具体的な材料、処理行為、および回路に関する多くの詳細は従来通りであり、有機発光ダイオードディスプレイ、光検出器、光電池、および半導体部材の技術分野内の教科書およびその他の情報源中に見ることができる。
【0048】
2.プロセス
本明細書に提供されるプロセスにおいて、第1層が形成され、下塗り層が第1層の上に形成され、下塗り層がパターンで放射線に露光され、下塗り層が、下塗り層を非露光部から効果的に除去し、パターン化下塗り層を上に有する第1層をもたらすために現像される。用語「効果的に除去する」および「効果的な除去」とは、下塗り層が非露光部において本質的に完全に除去されることを意味する。下塗り層はまた、露光部において部分的に除去されてもよく、その結果下塗り層の残ったパターンは、元の下塗り層よりも薄い可能性がある。下塗り層のパターンは、第1層の表面エネルギーよりも高い表面エネルギーを有する。第2層は、第1層上の下塗り層のパターンの表面上におよびパターン上に液相堆積によって形成される。
【0049】
相対的な表面エネルギーを測定する一方法は、第1有機層上の所与の液体の接触角を、露光および現像後の下塗り層(本明細書で以下「現像された下塗り層」と言われる)上の同じ液体の接触角と比較することである。本明細書において使用される場合、用語「接触角」は
図1に示される角度Φを意味することを意図している。液体媒体の液滴については、角度Φは、表面の面と、液滴の外側端部から表面までの線との交差部分で定義される。さらに、角度Φは、適用された後に液滴が表面上で平衡位置に達した後に測定される、すなわち「静的接触角」である。接触角は、低下する表面エネルギーとともに増加する。様々な製造業者が接触角を測定できる機器を製造している。
【0050】
ある実施形態においては、第1層は、40℃よりも大きい;ある実施形態においては、50°よりも大きい;ある実施形態においては、60°よりも大きい;ある実施形態においては、70°よりも大きいアニソールとの接触角を有する。ある実施形態においては、現像された下塗り層は、30°未満の;ある実施形態においては、20°未満の;ある実施形態においては、10°未満のアニソールとの接触角を有する。ある実施形態においては、所与の溶剤について、現像された下塗り層との接触角は、第1層との接触角よりも少なくとも20°低く;ある実施形態においては、所与の溶剤について、現像された下塗り層との接触角は、第1層との接触角よりも少なくとも30°低く;ある実施形態においては、所与の溶剤について、現像された下塗り層との接触角は、第1層との接触角よりも少なくとも40°低い。
【0051】
一実施形態においては、第1層は、基材上に堆積した有機層である。第1層は、パターン化するまたは非パターン化であり得る。一実施形態においては、第1層は、電子デバイスにおける有機活性層である。一実施形態においては、第1層は、フッ素化材料を含む。
【0052】
第1層は、蒸着技術、液相堆積技術、および熱転写技術などの、任意の堆積技術によって形成することができる。一実施形態においては、第1層は、液相堆積技術、続いて、乾燥によって堆積される。この場合には、第1材料は、液体媒体に溶解されるかまたは分散される。液相堆積法は、連続法または不連続法であってもよい。連続液相堆積技術としては、スピンコーティング、ロールコーティング、カーテンコーティング、浸漬コーティング、スロット−ダイコーティング、スプレーコーティング、および連続ノズルコーティングが挙げられるが、これらに限定されるものではない。不連続堆積技術としては、インクジェット印刷、グラビア印刷、フレキソ印刷およびスクリーン印刷が挙げられるが、これらに限定されるものではない。一実施形態においては、第1層は、連続液相堆積技術によって堆積される。乾燥工程は、第1材料および任意の下にある材料が損傷されない限り、室温でまたは高温で行うことができる。
【0053】
第1層は次に、下塗り層で処理される。これによって、下塗り材料が下塗り層を形成するために第1層の上におよび第1層と直接接触して適用されることを意味する。下塗り層は、放射線に露光される場合に反応して、非露光下塗り材料と比べて、下にある第1層から除去されることが少ない材料を形成する組成物を含む。この変化は、露光部と非露光部との物理的差別化および現像を可能にするのに十分なものでなければならない。
【0054】
一実施形態においては、下塗り材料は、重合できるかまたは架橋できる。
【0055】
一実施形態においては、下塗り材料は、放射線に露光される場合に下にある領域と反応する。この反応の正確なメカニズムは、使用される材料に依存するであろう。放射線への露光後に、下塗り層は、好適な現像処理によって非露光部において効果的に除去される。ある実施形態においては、下塗り層は、非露光部においてのみ除去される。ある実施形態においては、下塗り層は、露光部においても同様に部分的に除去され、それらの領域においてより薄い層を残す。ある実施形態においては、露光部に残る下塗り層は、厚さが50Å未満である。ある実施形態においては、露光部に残る下塗り層は本質的に、厚さが単分子層である。
【0056】
ある実施形態においては、下塗り材料は重水素化されている。用語「重水素化されている」は、少なくとも1つのHがDで置換されていることを意味することを意図している。用語「重水素化類似体」は、1つまたは複数の利用可能な水素が重水素で置換されている化合物または基の構造類似体を意味する。重水素化化合物または重水素化類似体において、重水素は、天然存在度レベルの少なくとも100倍レベルで存在する。ある実施形態においては、下塗り材料は少なくとも10%重水素化されている。「%重水素化されている」または「%重水素化」とは、百分率として表される、デューテロン対プロトンプラスデューテロンの合計の比を意味する。ある実施形態においては、下塗り材料は、少なくとも20%重水素化されており;ある実施形態においては、少なくとも30%重水素化されており;ある実施形態においては、少なくとも40%重水素化されており;ある実施形態においては、少なくとも50%重水素化されており;ある実施形態においては、少なくとも60%重水素化されており;ある実施形態においては、少なくとも70%重水素化されており;ある実施形態においては、少なくとも80%重水素化されており;ある実施形態においては、少なくとも90%重水素化されており;ある実施形態においては、100%重水素化されている。
【0057】
重水素化下塗り材料は、正孔、電子、励起子、またはそれらの組み合わせによる分解を受けにくいものであり得る。重水素化は、デバイス運転中の下塗り層の分解を潜在的に防ぐことができ、それは順繰りにデバイス寿命の向上をもたらすことができる。一般に、この向上は、その他のデバイス特性を犠牲にすることなく成し遂げられる。さらに、重水素化化合物は頻繁に、非重水素化類似体よりも大きい空気耐性を有する。これは、材料の調製および精製についてならびにこれらの材料を使用する電子デバイスの形成においての両方でより大きいプロセス耐性をもたらすことができる。
【0058】
下塗り層は、任意の公知の堆積プロセスによって適用することができる。一実施形態においては、下塗り層は、それを溶剤に加えることなく適用される。一実施形態においては、下塗り層は蒸着によって適用される。
【0059】
一実施形態においては、下塗り層は、凝縮プロセスによって適用される。下塗り層が気相からの凝縮によって適用され、そして表面層温度が蒸気凝縮中に余りにも高い場合には、下塗り層は、有機基材表面の気孔または自由体積中へ移行することができる。ある実施形態においては、有機基材は、基材材料のガラス転移温度または融点より下の温度に維持される。温度は、流れる液体または気体で冷却されている表面上に第1層を置くことなどの、あるゆる公知の技術によって維持することができる。
【0060】
一実施形態においては、下塗り層は、下塗り層の一様なコーティングを形成するために、凝縮工程の前に一時的な支持体に適用される。これは、液相堆積、蒸着、および熱転写などの、任意の堆積法によって成し遂げることができる。一実施形態においては、下塗り層は、連続液相堆積技術によって一時的な支持体上に堆積される。下塗り層を堆積するための液体媒体の選択は、下塗り材料それ自体の厳密な性質に依存するであろう。一実施形態においては、この材料は、スピンコーティングによって堆積される。コートされた一時的な支持体は次に、凝縮工程向けの蒸気を形成するための加熱源として使用される。
【0061】
下塗り層の適用は、連続プロセスか回分プロセスかのどちらかを利用して成し遂げることができる。たとえば、回分プロセスにおいては、1つまたは複数のデバイスが下塗り層で同時にコートされ、次に放射線源に同時に露光されるであろう。連続プロセスにおいては、ベルトまたはその他のコンベヤー装置上で運搬されるデバイスがステーションを通過し、そのときそれらが下塗り層で連続してコートされ、次にステーションを通過し続け、そこでそれらは、放射源に連続して露光される。このプロセスの一部は、連続的であってもよいが、このプロセスのその他の部分は回分式であってもよい。
【0062】
一実施形態においては、下塗り層は、第2液体組成物から堆積される。液相堆積法は、上に記載されたような、連続法または不連続法であり得る。一実施形態においては、下塗り液体組成物は、連続液相堆積法を用いて堆積される。下塗り層を堆積するための液体媒体の選択は、下塗り材料それ自体の厳密な性質に依存するであろう。
【0063】
下塗り層が形成された後に、それは放射線に露光される。使用される放射線の種類は、上に考察されたような下塗り層の感受性に依存する。露光はパターン様である。本明細書において使用される場合、用語「パターン様」は、材料または層の選択された部分のみが露光されることを示す。パターン様露光は、任意の公知の画像形成技術を用いて達成することができる。一実施形態においては、パターンは、マスクを通して露光することによって達成される。一実施形態においては、パターンは、選択部分のみをラスターレーザーで露光することによって達成される。露光の時間は、使用される下塗り層の具体的な化学性質に依存して、数秒〜数分の範囲であり得る。レーザーが使用される場合、はるかにより短い露光時間が、レーザーの出力に依存して、各個々の領域について用いられる。露光工程は、材料の感受性に依存して、空気中でまたは不活性雰囲気中で実施することができる。
【0064】
一実施形態においては、放射線は、同時のおよび一連の処理を含む、紫外線(10〜390nm)、可視光(390〜770nm)、赤外線(770〜10
6nm)、およびそれらの組み合わせからなる群から選択される。一実施形態においては、放射線は、可視光および紫外線から選択される。一実施形態においては、放射線は、300〜450nmの範囲の波長を有する。一実施形態においては、放射線は、深UV(200〜300nm)である。別の実施形態においては、紫外線は、300〜400nmの波長を有する。別の実施形態においては、放射線は、400〜450nmの範囲の波長を有する。一実施形態においては、放射線は熱放射線である。一実施形態においては、放射線への露光は、加熱によって実施される。加熱工程のための温度および継続時間は、下塗り層の少なくとも1つの物理的特性が、発光領域の任意の下にある層を損傷することなく、変化するようなものである。一実施形態においては、加熱温度は250℃未満である。一実施形態においては、加熱温度は150℃未満である。
【0065】
放射線へのパターン様露光後に、下塗り層は現像される。現像は、任意の公知の技術によって成し遂げることができる。そのような技術は、フォトレジストおよび印刷技術分野において広く用いられてきた。現像技術の例としては、熱の適用(蒸発)、液体媒体での処理(洗浄)、吸収剤材料での処理(吸い取り法)、粘着性材料での処理などが挙げられるが、これらに限定されるものではない。現像工程は、いずれかの露光部における下塗り層の効果的な除去をもたらす。下塗り層はそのとき露光部においては残る。下塗り層はまた、露光部においても部分的に除去される可能性があるが、露光部と非露光部との間の湿潤性の差が存在するために十分に残らなければならない。
【0066】
一実施形態においては、放射線への下塗り層の露光は、溶剤への下塗り層の溶解性または分散性の変化をもたらす。この場合には、現像は、湿式現像処理によって成し遂げることができる。この処理は通常、1種類の領域を溶解させる、分散させるまたは離昇する溶剤での洗浄を含む。一実施形態においては、放射線へのパターン様露光は、下塗り層の露光部の不溶化をもたらし、溶剤での処理は、下塗り層の非露光部の除去をもたらす。
【0067】
一実施形態においては、放射線への下塗り層の露光は、露光部における下塗り層の揮発度を変化させる反応をもたらす。この場合には、現像は、熱現像処理によって成し遂げることができる。この処理は、より揮発性の材料の揮発温度または昇華温度より上の、そして材料が熱的に反応性である温度より下の温度に加熱することを含む。たとえば、重合性モノマーについては、材料は、昇華温度より上の、そして熱重合温度より下の温度で加熱されるであろう。揮発温度に近いまたはそれより下である熱反応性の温度を有する下塗り材料はこの方法で現像できない可能性があることは理解されるであろう。
【0068】
一実施形態においては、放射線への下塗り層の露光は、この材料が溶融する、軟化するまたは流れる温度の変化をもたらす。この場合には、現像は、乾式現像処理によって成し遂げることができる。乾式現像処理は、この要素の最外面を吸収剤表面と接触させてより柔らかい部分を吸収するかまたは吸い上げることを含むことができる。この乾式現像は、それが残る領域の特性にさらに影響を及ぼさない限り、高温で実施することができる。
【0069】
現像工程は、残っている下塗り層の領域と下にある第1層が覆われていない領域とをもたらす。ある実施形態においては、パターン化下塗り層と覆われていない領域とについての所与の溶剤との接触角の差は少なくとも20°;ある実施形態においては、少なくとも30°;ある実施形態においては、少なくとも40°である。
【0070】
第2層が次に、第1層上の下塗り層の現像されたパターンの表面上におよびパターン上に液相堆積によって適用される。一実施形態においては、この第2層は、電子デバイスにおける第2有機活性層である。
【0071】
第2層は、任意の液相堆積技術によって適用することができる。液体媒体中に溶解されたまたは分散された第2材料を含む液体組成物が、現像された下塗り層のパターンの上に適用され、乾燥されて第2層を形成する。液体組成物は、第1層の表面エネルギーよりも大きいが、現像された下塗り層の表面エネルギーとほぼ同じものまたはそれ未満である表面エネルギーを有するように選択される。こうして、液体組成物は現像された下塗り層をぬらすが、下塗り層が除去された領域の第1層からははじかれるであろう。この液体は、処理された第1層領域上へ拡散する可能性があるが、それはディウェッティングし、現像された下塗り層のパターンに閉じ込められるであろう。ある実施形態においては、第2層は、上に記載されたような、連続液相堆積技術によって適用される。
【0072】
本明細書において提供されるプロセスの一実施形態においては、第1層および第2層は有機活性層である。第1有機活性層は第1電極の上に形成され、下塗り層は、この第1有機活性層の上に形成され、現像された下塗り層のパターンを形成するために放射線に露光され、そして展開され、第2有機活性層は、それが下塗り層と同じパターンの上におよびパターンの中にのみ存在するように、第1有機活性層上の現像された下塗り層の上に形成される。
【0073】
一実施形態においては、第1有機活性層は、第1有機活性材料および第1液体媒体を含む第1液体組成物の液相堆積によって形成される。この液体組成物は、第1電極層の上に堆積され、次に層を形成するために乾燥させられる。一実施形態においては、第1有機活性層は、連続液相堆積法によって形成される。そのような方法は、より高い収率およびより低い設備コストをもたらすことができる。
【0074】
一実施形態においては、下塗りは、下塗り材料を第2液体媒体中に含む第2液体組成物の液相堆積によって形成される。第2液体媒体は、それが第1層を損傷しない限り、第1液体媒体と同じものまたはそれとは異なるものであり得る。液相堆積法は、上に記載されたような、連続法または不連続法であり得る。一実施形態においては、下塗り液体組成物は、連続液相堆積法を用いて堆積される。
【0075】
一実施形態においては、第2有機活性層は、第2有機活性材料および第3液体媒体を含む第3液体組成物の液相堆積によって形成される。第3液体媒体は、それが第1層または現像された下塗り層を損傷しない限り、第1および第2液体媒体と同じものまたはそれらとは異なるものであり得る。ある実施形態においては、第2有機活性層は、印刷によって形成される。
【0076】
ある実施形態においては、第3層は、それが第2層の上にだけ、そして第2層と同じパターンで存在するように、第2層の上に適用される。第3層は、第2層について上に記載されたような方法のいずれかで適用することができる。ある実施形態においては、第3層は、液相堆積技術によって適用される。ある実施形態においては、第3有機活性層は、インクジェット印刷および連続ノズル印刷からなる群から選択される印刷法によって形成される。
【0077】
ある実施形態においては、下塗り材料は、第2有機活性材料と同じものである。
【0078】
現像された下塗り層の厚さは、材料の究極的な最終用途に依存することができる。ある実施形態においては、現像された下塗り層は、厚さが100Å未満である。ある実施形態においては、厚さは1〜50Åの範囲に;ある実施形態においては、5〜30Åの範囲にある。
【0079】
3.下塗り材料
下塗り材料は、式I、
【0081】
(式中、
Ar
1〜Ar
4は、同じもしくは異なるものであり、アリール基であり;
Lは、スピロ基、アダマンチル基、二環式シクロヘキシル、それらの重水素化類似体、およびそれらの置換誘導体からなる群から選択され;
R
1は、それぞれ同じもしくは異なるものであり、D、F、アルキル、アリール、アルコキシ、シリル、および架橋性基からなる群から選択され、ここで、隣接R
1基は結合して芳香環を形成することができ;
R
2は、それぞれ同じもしくは異なるものであり、H、D、およびハロゲンからなる群から選択され;
aは、それぞれ同じもしくは異なるものであり、0〜4の整数であり;
nは、0よりも大きい整数である)
を有する。
【0082】
式Iを有する化合物は、n=1の小分子、オリゴマー、またはポリマーであり得る。ある実施形態においては、本化合物は、M
n>20,000のポリマー;ある実施形態においては、M
n>50,000のポリマーである。
【0083】
式Iのある実施形態においては、n=1であり、R
2はハロゲンである。そのような化合物は、ポリマー化合物の形成のためのモノマーとして有用であり得る。ある実施形態においては、ハロゲンはClまたはBrであり;ある実施形態においては、Brである。
【0084】
式Iのある実施形態においては、n=1であり、R
2は、HまたはDである。
【0085】
ある実施形態においては、式Iを有する化合物は重水素化されている。用語「重水素化されている」は、少なくとも1つのHがDで置換されていることを意味することを意図している。用語「重水素化類似体」は、1つまたは複数の利用可能な水素が重水素で置換されている、ある化合物または基の構造類似体を意味する。重水素化化合物または重水素化類似体においては、重水素は、天然存在度レベルの少なくとも100倍レベルで存在する。ある実施形態においては、本化合物は少なくとも10%重水素化されている。「%重水素化されている」または「%重水素化」とは、百分率として表される、デューテロン対プロトンプラスデューテロンの合計の比を意味する。ある実施形態においては、本化合物は少なくとも10%重水素化されており;ある実施形態においては、少なくとも20%重水素化されており;ある実施形態においては、少なくとも30%重水素化されており;ある実施形態においては、少なくとも40%重水素化されており;ある実施形態においては、少なくとも50%重水素化されており;ある実施形態においては、少なくとも60%重水素化されており;ある実施形態においては、少なくとも70%重水素化されており;ある実施形態においては、少なくとも80%重水素化されており;ある実施形態においては、少なくとも90%重水素化されており;ある実施形態においては、100%重水素化されている。
【0086】
重水素化材料は、正孔、電子、励起子、またはそれらの組み合わせによる分解を受けにくいものであり得る。重水素化は、デバイス運転中の化合物の分解を潜在的に防ぐことができ、それは今度はデバイス寿命の向上をもたらすことができる。一般に、この向上は、その他のデバイス特性を犠牲にすることなく成し遂げられる。さらに、重水素化化合物は頻繁に、非重水素化類似体よりも大きい空気耐性を有する。これは、材料の調製および精製についてならびにこれらの材料を使用する電子デバイスの形成においての両方でより大きいプロセス耐性をもたらすことができる。
【0087】
式Iにおいて、L連結基は、2つのアリールアミノ基間の共役切れを提供する。ある実施形態においては、L基は、下に示される、角度αが109.5°の4面体角よりも大きくなる程度の直線性を提供する。
【0089】
ある実施形態においては、αは120°よりも大きく;ある実施形態においては、140°よりも大きく;ある実施形態においては、160°よりも大きい。
【0090】
スピロ基は、単一原子を介して連結された環を持った二環式有機化合物である。環は、本質的に異なるかまたは同一であり得る。連結原子は、スピロ原子と呼ばれる。ある実施形態においては、スピロ原子は、CおよびSiからなる群から選択される。
【0091】
式Iのある実施形態においては、化合物は、下に示されるコア構造の1つを持ったLを有し、
【0093】
ここで、星印は、アリールアミノ基の窒素への結合のポイントを示し、Rは、それぞれ同じもしくは異なるものであり、HまたはR
1である。
【0094】
式Iのある実施形態においては、Ar
1およびAr
2は、縮合環をまったく持たないアリール基である。ある実施形態においては、Ar
1およびAr
2は、式aを有し、
【0096】
式中:
R
10は、それぞれ同じもしくは異なるものであり、D、アルキル、アルコキシ、シロキサンおよびシリルからなる群から選択され;
cは、それぞれ同じもしくは異なるものであり、0〜4の整数であり;
dは、0〜5の整数であり;
mは、1〜5の整数である。
【0097】
ある実施形態においては、Ar
1およびAr
2は、式bを有し、
【0099】
式中:
R
10は、それぞれ同じもしくは異なるものであり、D、アルキル、アルコキシ、シロキサンおよびシリルからなる群から選択され;
cは、それぞれ同じもしくは異なるものであり、0〜4の整数であり;
dは、0〜5の整数であり;
mは、1〜5の整数である。
【0100】
式aおよびbのある実施形態においては、cおよびdの少なくとも1つはゼロではない。ある実施形態においては、m=1〜3である。
【0101】
式Iのある実施形態においては、Ar
1およびAr
2は、フェニル、ビフェニル、テルフェニル、それらの重水素化誘導体、ならびにアルキル、アルコキシ、シリル、および架橋基を持った置換基からなる群から選択される1つまたは複数の置換基を有するそれらの誘導体からなる群から選択される。
【0102】
式Iのある実施形態においては、a=0である。
【0103】
式Iのある実施形態においては、R
1は、DまたはC
1〜10アルキルである。ある実施形態においては、アルキル基は重水素化されている。ある実施形態においては、a=4であり、R
1=Dである。
【0104】
式Iのある実施形態においては、次のもの:(i)重水素化;(ii)角度αは109.5°よりも大きい;(iii)Lは、上に定義されたような基、
【0106】
から選択される;(iv)Ar
1およびAr
2は、フェニル、ビフェニル、テルフェニル、それらの重水素化誘導体、アルキル、アルコキシ、シリル、および架橋基を持った置換基からなる群から選択される1つまたは複数の置換基を有するそれらの誘導体、式aを有する基、ならびに式bを有する基からなる群から選択される;(v)a=0であるかまたはaは0ではなく、R
1は、D、C
1〜10アルキル、または重水素化C
1〜10アルキルである任意の組み合わせが存在することができる。
【0107】
ある実施形態においては、式Iを有する化合物は、式II、
【0109】
(式中:
Ar
1およびAr
2は、同じもしくは異なるものであり、アリール基であり;
Lは、スピロ基、アダマンチル基、二環式シクロヘキシル、それらの重水素化類似体、およびそれらの置換誘導体からなる群から選択され;
Eは、それぞれ同じもしくは異なるものであり、単結合、C(R
3)
2、C(R
4)
2C(R
4)
2、O、Si(R
3)
2、Ge(R
3)
2からなる群から選択され;
R
1は、それぞれ同じもしくは異なるものであり、D、F、アルキル、アリール、アルコキシ、シリル、および架橋性基からなる群から選択され、ここで、隣接R
1基は結合して芳香環を形成することができ;
R
2は、それぞれ同じもしくは異なるものであり、H、D、およびハロゲンからなる群から選択され;
R
3は、それぞれ同じもしくは異なるものであり、アルキルおよびアリールからなる群から選択され、ここで、隣接R
3基は結合して脂肪族環を形成することができ;
R
4は、それぞれ同じもしくは異なるものであり、H、D、およびアルキルからなる群から選択され;
aは、それぞれ同じもしくは異なるものであり、0〜4の整数であり;
nは、0よりも大きい整数である)
でさらに定義される。
【0110】
式IIを有する化合物は、n=1の小分子、オリゴマー、またはポリマーであり得る。ある実施形態においては、本化合物は、M
n>20,000のポリマー;ある実施形態においては、M
n>50,000のポリマーである。
【0111】
式IIのある実施形態においては、n=1であり、R
2はハロゲンである。そのような化合物は、ポリマー化合物の形成のためのモノマーとして有用であり得る。ある実施形態においては、ハロゲンはClまたはBrであり;ある実施形態においては、Brである。
【0112】
式IIのある実施形態においては、n=1であり、R
2は、HまたはDである。
【0113】
ある実施形態においては、式IIを有する化合物は重水素化されている。
【0114】
式IIのある実施形態においては、Lは、下に示される基から選択され、
【0116】
式中、星印は、アリールアミノ基の窒素への結合のポイントを示し、Rは、それぞれ同じもしくは異なるものであり、HまたはR
1である。
【0117】
式IIのある実施形態においては、Ar
1およびAr
2は、縮合環をまったく持たないアリール基である。ある実施形態においては、Ar
1およびAr
2は、上に定義されたような、式aまたは式bを有する。式aおよびbのある実施形態においては、cおよびdの少なくとも1つはゼロではない。ある実施形態においては、m=1〜3である。
【0118】
式IIのある実施形態においては、Ar
1およびAr
2は、フェニル、ビフェニル、テルフェニル、それらの重水素化誘導体、ならびにアルキル、アルコキシ、シリル、および架橋基を持った置換基からなる群から選択される1つまたは複数の置換基を有するそれらの誘導体からなる群から選択される。
【0119】
式Iのある実施形態においては、a=0である。
【0120】
式Iのある実施形態においては、R
1は、DまたはC
1〜10アルキルである。ある実施形態においては、アルキル基は重水素化されている。ある実施形態においては、a=4であり、R
1=Dである。
【0121】
式IIのある実施形態においては、Eは、C(R
3)
2およびC(R
4)
2C(R
4)
2からなる群から選択される。ある実施形態においては、R
3は、フェニル、ビフェニル、およびフルオロアルキルからなる群から選択される。ある実施形態においては、R
4は、HおよびDからなる群から選択される。
【0122】
式IIのある実施形態においては、次のもの:(i)重水素化;(ii)角度αは109.5°よりも大きい;(iii)Lは、上に定義されたような基、
【0124】
から選択される;(iv)Ar
1およびAr
2は、フェニル、ビフェニル、テルフェニル、それらの重水素化誘導体、アルキル、アルコキシ、シリル、および架橋基を持った置換基からなる群から選択される1つまたは複数の置換基を有するそれらの誘導体、式aを有する基、ならびに式bを有する基からなる群から選択される;(v)a=0であるか、またはaは0ではなく、R
1は、D、C
1〜10アルキル、または重水素化C
1〜10アルキルである;(vi)Eは、C(R
3)
2およびC(R
4)
2C(R
4)
2からなる群から選択される;(vii)R
3は、フェニル、ビフェニル、およびフルオロアルキルからなる群から選択される;(viii)R
4は、HおよびDからなる群から選択される任意の組み合わせが存在することができる。ある実施形態においては、式Iを有する化合物は、式III、
【0126】
(式中、
Ar
1およびAr
2は、同じもしくは異なるものであり、アリール基であり;
Lは、スピロ基、アダマンチル基、二環式シクロヘキシル、それらの重水素化類似体、およびそれらの置換誘導体からなる群から選択され;
R
1は、それぞれ同じもしくは異なるものであり、D、F、アルキル、アリール、アルコキシ、シリル、および架橋性基からなる群から選択され、ここで、隣接R
1基は結合して芳香環を形成することができ;
R
2は、それぞれ同じもしくは異なるものであり、H、D、およびハロゲンからなる群から選択され;
R
5は、それぞれ同じもしくは異なるものであり、D、F、アルキル、アリール、アルコキシ、シリル、および架橋性基からなる群から選択され;
R
6〜R
9は、それぞれ同じもしくは異なるものであり、H、D、F、アルキル、アリール、アルコキシ、シリル、および架橋性基からなる群から選択され、ただし、R
6およびR
7の少なくとも1つは、アルキルまたはシリルであり、R
8およびR
9の少なくとも1つは、アルキルまたはシリルであり;
aは、それぞれ同じもしくは異なるものであり、0〜4の整数であり;
bは、それぞれ同じもしくは異なるものであり、0〜2の整数であり;
nは、0よりも大きい整数である)
でさらに定義される。
【0127】
式IIIを有する化合物は、n=1の小分子、オリゴマー、またはポリマーであり得る。ある実施形態においては、本化合物は、M
n>20,000のポリマー;ある実施形態においては、M
n>50,000のポリマーである。
【0128】
式IIIのある実施形態においては、n=1であり、R
2はハロゲンである。そのような化合物は、ポリマー化合物の形成のためのモノマーとして有用であり得る。ある実施形態においては、ハロゲンはClまたはBrであり;ある実施形態においては、Brである。
【0129】
式IIIのある実施形態においては、n=1であり、R
2は、HまたはDである。
【0130】
ある実施形態においては、式IIIを有する化合物は重水素化されている。
【0131】
式IIIのある実施形態においては、Lは、下に示される基から選択され、
【0133】
式中、星印は、アリールアミノ基の窒素への結合のポイントを示し、Rは、それぞれ同じもしくは異なるものであり、HまたはR
1である。
【0134】
式IIIのある実施形態においては、Ar
1およびAr
2は、縮合環をまったく持たないアリール基である。ある実施形態においては、Ar
1およびAr
2は、上に定義されたような式aまたは式bを有する。式aおよびbのある実施形態においては、cおよびdの少なくとも1つはゼロではない。ある実施形態においては、m=1〜3である。
【0135】
式IIIのある実施形態においては、Ar
1およびAr
2は、フェニル、ビフェニル、テルフェニル、それらの重水素化誘導体、ならびにアルキル、アルコキシ、シリル、および架橋基を持った置換基からなる群から選択される1つまたは複数の置換基を有するそれらの誘導体からなる群から選択される。
【0136】
式IIIのある実施形態においては、すべてのa=0である。
【0137】
式IIIのある実施形態においては、aは0ではなく、R
1は、DまたはC
1〜10アルキルである。ある実施形態においては、アルキル基は重水素化されている。ある実施形態においては、すべてのa=4であり、R
1=Dである。
【0138】
式IIIのある実施形態においては、すべてのb=0である。
【0139】
式IIIのある実施形態においては、bは0ではなく、R
2は、DまたはC
1〜10アルキルである。ある実施形態においては、アルキル基は重水素化されている。ある実施形態においては、すべてのb=2であり、R
2=Dである。
【0140】
式IIIのある実施形態においては、R
6=R
8=アルキルまたは重水素化アルキルである。ある実施形態においては、R
7=R
9=アルキルまたは重水素化アルキルである。
【0141】
式IIIのある実施形態においては、次のもの:(i)重水素化;(ii)角度αは109.5°よりも大きい;(iii)Lは、上に定義されたような基、
【0143】
から選択される;(iv)Ar
1およびAr
2は、フェニル、ビフェニル、テルフェニル、それらの重水素化誘導体、アルキル、アルコキシ、シリル、および架橋基を持った置換基からなる群から選択される1つまたは複数の置換基を有するそれらの誘導体、式aを有する基、ならびに式bを有する基からなる群から選択される;(v)a=0であるか、またはaは0ではなく、R
1は、D、C
1〜10アルキル、または重水素化C
1〜10アルキルである;(vi)b=0であるか、またはbは0ではなく、R
2は、D、C
1〜10アルキル、または重水素化C
1〜10アルキルである;(vii)R
6=R
8=アルキルかまたは重水素化アルキルである;(viii)R
7=R
9=アルキルまたは重水素化アルキルであるの任意の組み合わせが存在することができる。
【0144】
式Iを有する化合物の幾つかの非限定的な例は、下に示される。
【0147】
本新規化合物は、C−CまたはC−N結合を生成するであろう任意の技術を用いて製造することができる。Suzuki,Yamamoto,Stille,およびPd−またはNi−触媒C−Nカップリングなどの、様々なそのような技術は公知である。重水素化化合物は、重水素化前駆体材料を使用して類似の方法でまたは、より一般的には、非重水素化化合物を、三塩化アルミニウムもしくはエチルアルミニウムジクロリドなどの、ルイス酸H/D交換触媒の存在下に、d6−ベンゼンなどの、重水素化溶媒で処理することによって調製することができる。例示的な調製は、実施例において示される。
【0148】
本化合物は、溶液処理技術を用いて層を形成することができる。用語「層」は、用語「フィルム」と同じ意味で用いられ、所望の領域を覆うコーティングを意味する。この用語はサイズによって限定されない。この領域は、全体デバイスほどに大きいかもしくは実視覚表示などの特異的な機能領域ほどに小さい、または単一サブピクセルほどに小さいものであり得る。層およびフィルムは、蒸着、液相堆積(連続および不連続技術)、ならびに熱転写などの、任意の従来型堆積技術によって形成することができる。連続堆積技術としては、スピンコーティング、グラビアコーティング、カーテンコーティング、浸漬コーティング、スロット−ダイコーティング、スプレーコーティング、および連続ノズルコーティングが挙げられるが、これらに限定されるものではない。不連続堆積技術としては、インクジェット印刷、グラビア印刷、およびスクリーン印刷が挙げられるが、これらに限定されるものではない。
【0149】
4.有機電子デバイス
本方法は、電子デバイスにおけるその適用の観点からさらに説明されるが、それはそのような適用に限定されない。
【0150】
図2は、2つの電気接触層の間に置かれた少なくとも2つの有機活性層を含む、例示的な電子デバイス、有機発光ダイオード(OLED)ディスプレイである。電子デバイス100は、アノード層110から放射層140への正孔の注入を促進する1つまたは複数の層120および130を含む。一般に、2つの層が存在する場合、アノードに隣接した層120は正孔注入層と呼ばれ、緩衝層と呼ばれることもある。放射層に隣接した層130は正孔輸送層と呼ばれる。任意選択の電子輸送層150は、放射層140とカソード層160との間に置かれる。有機層120〜150は、個々におよびまとめてデバイスの有機活性層と言われる。デバイス100の用途に依存して、放射層140は、印加電圧によって活性化される発光層(発光ダイオードまたは発光電気化学セル中など)、放射エネルギーに応答し、そして印加バイアス電圧を使用してまたは使用せずに信号を発生する材料の層(光検出器中など)であり得る。このデバイスは、システム、駆動方法、および実用性モードに関して限定されない。下塗り層はこの図では示されていない。
【0151】
マルチカラーデバイスのためには、放射層140は、少なくとも3つの異なる色の異なる領域で構成される。異なる色の領域は、別個の着色領域を印刷することによって形成することができる。あるいは、それは、全体の層を形成し、そして層の異なる領域を異なる色の放射性材料でドープすることによって成し遂げることができる。そのような方法は、たとえば、米国特許出願公開第2004−0094768号明細書に記載されている。
【0152】
ある実施形態においては、本明細書に記載される新規方法は、第2層が特定の領域に閉じ込められている、デバイスにおける任意の連続ペアの有機層のために用いることができる。第1有機活性層および第2有機活性層が上に置かれた電極を含む有機電子デバイスの製造方法は、
第1表面エネルギーを有する第1有機活性層を電極の上に形成する工程と;
第1有機活性層を下塗り材料で処理して下塗り層を形成する工程と;
下塗り層を放射線でパターン様に露光し、露光部と非露光部とをもたらす工程と;
下塗り層を現像して下塗り層を非露光部から除去し、下塗り層のパターンを有する第1活性有機層をもたらす工程であって、下塗り層のパターンが第1表面エネルギーよりも高い第2表面エネルギーを有する工程と;
第1有機活性層上の下塗り層のパターン上に液相堆積によって第2有機活性層を形成する工程と
を含み、
ここで、下塗り材料は、上記のような、式Iを有する。
【0153】
本新規方法の一実施形態においては、第2有機活性層は放射層140であり、第1有機活性層は、層140の直前に適用されたデバイス層である。多くの場合にデバイスは、アノードで始まって構築される。正孔輸送層130が存在する場合には、下塗り層は層130に適用され、放射層140を適用する前に現像されるであろう。層130が存在しない場合には、下塗り層は層120に適用されるであろう。デバイスがカソードで始まって構築される場合には、下塗り層は、放射層140を適用する前に電子輸送層150に適用されるであろう。
【0154】
本新規方法の一実施形態においては、第1有機活性層は正孔注入層120であり、第2有機活性層は正孔輸送層130である。デバイスがアノード層で始まって構築される実施形態においては、下塗り層は正孔注入層120に適用され、正孔輸送層130を適用する前に現像される。一実施形態においては、正孔注入層は、フッ素化材料を含む。一実施形態においては、正孔注入層は、フッ素化酸ポリマーでドープされた導電性ポリマーを含む。一実施形態においては、正孔注入層は本質的に、フッ素化酸ポリマーでドープされた導電性ポリマーからなる。ある実施形態においては、下塗り層は本質的に、正孔輸送材料からなる。一実施形態においては、下塗り層は本質的に、正孔輸送層と同じ正孔輸送材料からなる。
【0155】
デバイスにおけるこれらの層は、そのような層に有用であることが知られている任意の材料製であり得る。本発明のデバイスは、アノード層110またはカソード層160に隣接することができる支持体または基材(図示せず)を含んでもよい。ほとんどの場合に、支持体はアノード層110に隣接している。支持体は、可撓性であることも剛性であることも、有機であることも無機であることもできる。一般に、ガラスまたは可撓性有機フィルムが支持体として使用される。アノード層110は、カソード層160と比較して正孔を注入するためにより効率的である電極である。アノードは、金属、混合金属、合金、金属酸化物または混合酸化物を含有する材料を含むことができる。好適な材料としては、2族元素(すなわち、Be、Mg、Ca、Sr、Ba)の混合酸化物、11族元素、4族、5族、および6族の元素、ならびに8〜10族の遷移元素が挙げられる。アノード層110が光透過性であるべきである場合には、インジウム・スズ酸化物などの12族、13族、および14族の元素の混合酸化物を使用することができる。本明細書において使用される場合、語句「混合酸化物」は、2族元素または12族、13族、または14族の元素から選択される2つ以上の異なる陽イオンを有する酸化物を意味する。アノード層110用の材料の幾つかの非限定的な具体例としては、インジウム・スズ酸化物(「ITO」)、アルミニウム・スズ酸化物、アルミニウム・亜鉛酸化物、金、銀、銅、およびニッケルが挙げられるが、これらに限定されるものではない。アノードはまた、ポリアニリン、ポリチオフェン、またはポリピロールなどの有機材料を含むことができる。
【0156】
アノード層110は、化学蒸着法もしくは物理蒸着法またはスピンキャスト法によって形成することができる。化学蒸着は、プラズマ化学蒸着(「PECVD」)または金属有機化学蒸着(「MOCVD」)として行うことができる。物理蒸着としては、イオンビームスパッタリングなどのスパッタリング、ならびにeビーム蒸発および抵抗蒸発の任意の形態を挙げることができる。物理蒸着の具体的な形態としては、rfマグネトロンスパッタリングおよび誘導結合プラズマ物理蒸着(「IMP−PVD」)が挙げられる。これらの堆積技術は、半導体製造分野においては周知である。
【0157】
通常、アノード層110は、リソグラフ操作中にパターン化される。このパターンは、要望通りに変わってもよい。これらの層は、たとえば、パターン化マスクまたはレジストを、第1電気接触層材料を適用する前に第1可撓性複合材料バリア構造上に置くことによってパターンで形成することができる。あるいは、これらの層は、全体の層として適用することができ(ブランケット堆積とも呼ばれる)、続いて、たとえば、パターン化されたレジスト層と湿式化学エッチングまたはドライエッチング技術とを使用してパターン化することができる。当技術分野において周知である他のパターン化方法を使用することもできる。電子デバイスが配列内に置かれる場合、アノード層110は典型的には、実質的に同じ方向に伸びる長さを有する実質的に平行のストリップに成形される。
【0158】
正孔注入層120は、放射層への正孔の注入を促進する、およびアノード表面を平坦化してデバイスにおけるショートを防ぐ機能を果たす。正孔注入材料は、ポリマー、オリゴマー、または小分子であってもよく、溶液、分散液、懸濁液、エマルジョン、コロイド状混合物、またはその他の組成物の形態にあってもよい。
【0159】
正孔注入層は、多くの場合プロトン酸でドープされている、ポリアニリン(PANI)またはポリエチレンジオキシチオフェン(PEDOT)などの、ポリマー材料で形成することができる。これらのプロトン酸は、たとえば、ポリ(スチレンスルホン酸)、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)などであり得る。正孔注入層120は、銅フタロシアニンおよびテトラチアフルバレン−テトラシアノキノジメタン系(TTF−TCNQ)などの、電荷移動化合物などを含むことができる。一実施形態においては、正孔注入層120は、導電性ポリマーおよびコロイド形成性ポリマー酸の分散液から製造される。そのような材料は、たとえば、米国特許出願公開第2004/0102577号明細書、同第2004/0127637号明細書、同第2005/0205860号明細書、および国際公開第2009/018009号パンフレットに記載されている。
【0160】
正孔注入層120は、任意の堆積技術によって適用することができる。一実施形態においては、正孔注入層は、上に記載されたような、溶液堆積法によって適用される。一実施形態においては、正孔注入層は、連続溶液堆積法によって適用される。
【0161】
層130は、正孔輸送材料を含む。正孔輸送層用の正孔輸送材料の例は、たとえば、Y.Wang,Kirk−Othmer Encyclopedia of Chemical Technology,Fourth Edition,Vol.18,p.837−860,1996にまとめられている。正孔輸送小分子および正孔輸送ポリマーの両方を使用することができる。一般に使用される正孔輸送分子としては:4,4’,4’’−トリス(N,N−ジフェニル−アミノ)−トリフェニルアミン(TDATA);4,4’,4’’−トリス(N−3−メチルフェニル−N−フェニル−アミノ)−トリフェニルアミン(MTDATA);N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’−ビフェニル]−4,4’−ジアミン(TPD);4、4’−ビス(カルバゾール−9−イル)ビフェニル(CBP);1,3−ビス(カルバゾール−9−イル)ベンゼン(mCP);1,1−ビス[(ジ−4−トリルアミノ)フェニル]シクロヘキサン(TAPC);N,N’−ビス(4−メチルフェニル)−N,N’−ビス(4−エチルフェニル)−[1,1’−(3,3’−ジメチル)ビフェニル]−4,4’−ジアミン(ETPD);テトラキス−(3−メチルフェニル)−N,N,N’,N’−2,5−フェニレンジアミン(PDA);α−フェニル−4−N,N−ジフェニルアミノスチレン(TPS);p−(ジエチルアミノ)ベンズアルデヒドジフェニルヒドラゾン(DEH);トリフェニルアミン(TPA);ビス[4−(N,N−ジエチルアミノ)−2−メチルフェニル](4−メチルフェニル)メタン(MPMP);1−フェニル−3−[p−(ジエチルアミノ)スチリル]−5−[p−(ジエチルアミノ)フェニル]ピラゾリン(PPRまたはDEASP);1,2−トランス−ビス(9H−カルバゾール−9−イル)シクロブタン(DCZB);N,N,N’,N’−テトラキス(4−メチルフェニル)−(1,1’−ビフェニル)−4,4’−ジアミン(TTB);N,N’−ビス(ナフタレン−1−イル)−N,N’−ビス(フェニル)ベンジジン(α−NPB);および、銅フタロシアニンなどの、ポルフィリン化合物が挙げられるが、これらに限定されるものではない。一般に使用される正孔輸送ポリマーとしては、ポリビニルカルバゾール、(フェニルメチル)ポリシラン、ポリ(ジオキシチオフェン)、ポリアニリン、およびポリピロールが挙げられるが、これらに限定されるものではない。上述のものなどの正孔輸送分子をポリスチレンおよびポリカーボネートなどのポリマーへドープすることによって正孔輸送ポリマーを得ることもまた可能である。
【0162】
ある実施形態においては、正孔輸送層は正孔輸送ポリマーを含む。ある実施形態においては、正孔輸送層は本質的に、正孔輸送ポリマーからなる。ある実施形態においては、正孔輸送ポリマーはジスチリルアリール化合物である。ある実施形態においては、このアリール基は2つ以上の縮合芳香環を有するものである。ある実施形態においては、このアリール基はアセンである。用語「アセン」は、本明細書において使用される場合、2つ以上のオルト縮合ベンゼン環を真っ直ぐの線状配置で含有する炭化水素親成分を意味する。
【0163】
ある実施形態においては、正孔輸送ポリマーはアリールアミンポリマーである。ある実施形態においては、それは、フルオレンモノマーとアリールアミンモノマーとのコポリマーである。
【0164】
ある実施形態においては、このポリマーは架橋性基を有する。ある実施形態においては、架橋は、熱処理および/またはUV線もしくは可視光への露光によって成し遂げることができる。架橋性基の例としては、ビニル、アクリレート、パーフルオロビニルエーテル、1−ベンゾ−3,4−シクロブタン、シロキサン、およびメチルエステルが挙げられるが、これらに限定されるものではない。架橋性ポリマーは、溶液法OLEDの製造において利点を有することができる。堆積の後に不溶性フィルムへ変換することができる層を形成するための可溶性ポリマー材料の適用は、層溶解問題なしの多層溶液処理OLEDデバイスの製造を可能にすることができる。
【0165】
架橋性ポリマーの例は、たとえば、米国特許出願公開第2005/0184287号明細書および国際公開第2005/052027号パンフレットに見いだすことができる。
【0166】
ある実施形態においては、正孔輸送層は、9,9−ジアルキルフルオレンとトリフェニルアミンとのコポリマーであるポリマーを含む。ある実施形態においては、正孔輸送層は本質的に、9,9−ジアルキルフルオレンとトリフェニルアミンとのコポリマーであるポリマーからなる。ある実施形態においては、このポリマーは、9,9−ジアルキルフルオレンと4,4’−ビス(ジフェニルアミノ)ビフェニルとのコポリマーである。ある実施形態においては、このポリマーは、9,9−ジアルキルフルオレンとTPBとのコポリマーである。ある実施形態においては、このポリマーは、9,9−ジアルキルフルオレンとNPBとのコポリマーである。ある実施形態においては、このコポリマーは、(ビニルフェニル)ジフェニルアミンおよび9,9−ジスチリルフルオレンまたは9,9−ジ(ビニルベンジル)フルオレンから選択される第3コモノマーから製造される。ある実施形態においては、正孔輸送層は、非平面立体配置で連結されている共役部分を有するトリアリールアミンを含む材料を含む。そのような材料は、モノマーまたはポリマーであり得る。そのような材料の例は、たとえば、国際公開第2009/067419号パンフレットに記載されている。
【0167】
ある実施形態においては、正孔輸送層は、テトラフルオロテトラシアノキノジメタンおよびペリレン−3,4,9,10−テトラカルボン酸−3,4,9,10二無水物などの、p−ドーパントでドープされている。
【0168】
ある実施形態においては、正孔輸送層は、上に記載されたような、式Iを有する材料を含む。ある実施形態においては、正孔輸送層は本質的に、式Iを有する材料からなる。
【0169】
正孔輸送層130は、任意の堆積技術によって適用することができる。一実施形態においては、正孔輸送層は、上に記載されたような、溶液堆積法によって適用される。一実施形態においては、正孔輸送層は、連続溶液堆積法によって適用される。
【0170】
デバイスの用途に依存して、放射層140は、印加電圧によって活性化される発光層(発光ダイオードまたは発光電気化学セル中など)、放射エネルギーに応答し、そして印加バイアス電圧を使用してまたは使用せずに信号を発生する材料の層(光検出器中など)であり得る。一実施形態においては、放射性材料は、有機エレクトロルミネセンス(「EL」)材料である。小分子有機蛍光性化合物、蛍光性およびリン光性の金属錯体、共役ポリマー、およびそれらの混合物を含むが、これらに限定されない、任意のEL材料を本発明のデバイスに使用することができる。蛍光性化合物の例としては、クリセン、ピレン、ペリレン、ルブレン、クマリン、アントラセン、チアジアゾール、それらの誘導体、およびそれらの混合物が挙げられるが、これらに限定されるものではない。金属錯体の例としては、トリス(8−ヒドロキシキノラト)アルミニウム(Alq3)などの、金属キレート化オキシノイド化合物;Petrovらの米国特許第6,670,645号明細書ならびに国際公開第03/063555号パンフレットおよび国際公開第2004/016710号パンフレットに開示されているようなフェニルピリジン配位子、フェニルキノリン配位子、またはフェニルピリミジン配位子を有するイリジウムの錯体などの、シクロメタレート化イリジウムおよび白金エレクトロルミネッセンス化合物、ならびに、たとえば、国際公開第03/008424号パンフレット、国際公開第03/091688号パンフレット、および国際公開第03/040257号パンフレットに記載されている有機金属錯体、ならびにそれらの混合物が挙げられるが、これらに限定されるものではない。ある場合には、小分子蛍光性材料または有機金属材料が、加工特性および/または電子特性を向上させるためにホスト材料とともにドーパントとして堆積される。共役ポリマーの例としては、ポリ(フェニレンビニレン)、ポリフルオレン、ポリ(スピロビフルオレン)、ポリチオフェン、ポリ(p−フェニレン)、それらのコポリマー、およびそれらの混合物が挙げられるが、これらに限定されるものではない。
【0171】
放射層140は、任意の堆積技術によって適用することができる。一実施形態においては、放射層は、上に記載されたような、溶液堆積法によって適用される。一実施形態においては、放射層は、連続溶液堆積法によって適用される。
【0172】
任意選択の層150は、電子輸送を促進する、およびまた緩衝層または層界面での励起子の消光を防止するための閉じ込め層として役立つという両方の機能を果たすことができる。好ましくは、この層は、電子の移動を促進し、かつ、励起子の消光を減少させる。任意選択の電子輸送層150に使用することができる電子輸送材料の例としては、トリス(8−ヒドロキシキノラト)アルミニウム(AlQ)、ビス(2−メチル−8−キノリノラト)(p−フェニルフェノラト)アルミニウム(BAlq)、テトラキス−(8−ヒドロキシキノラト)ハフニウム(HfQ)およびテトラキス−(8−ヒドロキシキノラト)ジルコニウム(ZrQ)などの金属キノレート誘導体などの、金属キレート化オキシノイド化合物;ならびに2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール(TAZ)、および1,3,5−トリ(フェニル−2−ベンズイミダゾール)ベンゼン(TPBI)などのアゾール化合物;2,3−ビス(4−フルオロフェニル)キノキサリンなどのキノキサリン誘導体;4,7−ジフェニル−1,10−フェナントロリン(DPA)および2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(DDPA)などのフェナントロリン類;ならびにそれらの混合物が挙げられる。ある実施形態においては、電子輸送層は、n−ドーパントをさらに含む。n−ドーパント材料は周知である。n−ドーパントとしては、1族および2族金属;LiF、CsF、およびCs
2CO
3などの、1族および2族金属塩;Liキノレートなどの、1族および2族金属有機化合物;ならびにロイコ染料などの、分子n−ドーパント、W
2(hpp)
4(ここで、hpp=1,3,4,6,7,8−ヘキサヒドロ−2H−ピリミド−[1,2−a]−ピリミジンである)およびコバルトセンなどの、金属錯体、テトラチアナフタセン、ビス(エチレンジチオ)テトラチアフルバレン、複素環ラジカルまたはジラジカル、ならびに複素環ラジカルまたはジラジカルのダイマー、オリゴマー、ポリマー、ジスピロ化合物および多環化合物などが挙げられるが、これらに限定されるものではない。
【0173】
電子輸送層150は通常、化学蒸着法または物理蒸着法によって形成される。
【0174】
カソード160は、電子または負電荷キャリアを注入するために特に有効である電極である。カソードは、アノードよりも低い仕事関数を有する任意の金属または非金属であり得る。カソード用の材料は、1族のアルカリ金属(たとえば、Li、Cs)、2族(アルカリ土類)金属、希土類元素およびランタニドなどの、12族金属、およびアクチニドから選択することができる。アルミニウム、インジウム、カルシウム、バリウム、サマリウムおよびマグネシウム、ならびに組み合わせなどの材料を使用することができる。Li含有有機金属化合物、LiF、Li
2O、Cs含有有機金属化合物、CsF、Cs
2O、およびCs
2CO
3をまた、作動電圧を低くするためにカソード層の堆積の前に堆積することができる。この層は電子注入層と言われてもよい。
【0175】
カソード層160は通常、化学蒸着法または物理蒸着法によって形成される。
【0176】
ある実施形態においては、追加の層が有機電子デバイス内に存在してもよい。
【0177】
各機能性層を2つ以上の層で構成できることは理解される。
【0178】
一実施形態においては、異なる層は以下の範囲の厚さを有する:アノード110、100〜5000Å、一実施形態においては100〜2000Å;正孔注入層120、50〜2500Å、一実施形態においては200〜1000Å;正孔輸送層130、50〜2500Å、一実施形態においては200〜1000Å;放射層140、10〜2000Å、一実施形態においては100〜1000Å;電子輸送層150、50〜2000Å、一実施形態においては100〜1000Å;カソード160、200〜10000Å、一実施形態においては300〜5000Å。電子注入層が存在する場合、堆積される材料の量は一般に、1〜100Å、一実施形態においては1〜10Åの範囲にある。層の厚さの望ましい比は、使用される材料の厳密な性質に依存する。
【0179】
ある実施形態においては、電極の上に置かれた第1有機活性層および第2有機活性層を含み、そして第1有機活性層と第2有機活性層との間にパターン化下塗り層をさらに含む有機電子デバイスであって、前記第2有機活性層が、下塗り層が存在する領域のみに存在し、かつ、下塗り層が、上に記載されたような、式Iを有する材料を含むデバイスが提供される。ある実施形態においては、下塗り層は本質的に、式Iを有する材料からなる。ある実施形態においては、第1有機活性層は、導電性ポリマーおよびフッ素化酸ポリマーを含む。ある実施形態においては、第2有機活性層は、正孔輸送材料を含む。ある実施形態においては、第1有機活性層は、フッ素化酸ポリマーでドープされた導電性ポリマーを含み、第2有機活性層は本質的に、正孔輸送材料からなる。
【0180】
ある実施形態においては、正孔注入層および正孔輸送層を上に有するアノードを含む有機電子デバイスの製造方法であって、前記方法が、
アノードの上に正孔注入層を形成する工程であって、前記正孔注入層がフッ素化材料を含み、第1表面エネルギーを有する工程と;
下塗り層を正孔注入層上に直接形成する工程と;
下塗り層を放射線でパターン様に露光し、露光部と非露光部とをもたらす工程と;
下塗り層を現像して下塗り層を非露光部から効果的に除去し、現像された下塗り層のパターンを正孔注入層上にもたらす工程であって、前記現像された下塗り層が第1表面エネルギーより高い第2表面エネルギーを有する工程と;
下塗り層の現像されたパターン上に液相堆積によって正孔輸送層を形成する工程と
を含み、
ここで、下塗り層が、上記のような、式Iを有する材料を含む
方法が提供される。
【0181】
これは、
図3に概略的に示される。デバイス200は、基材(図示せず)上にアノード210を有する。アノード上に正孔注入層220がある。現像された下塗り層は225として示される。正孔注入層220の表面エネルギーは、下塗り層225の表面エネルギーよりも小さい。正孔輸送層230が下塗り層および正孔注入層の上に堆積される場合、それは、正孔注入層の低エネルギー表面をぬらさず、下塗り層のパターンの上にのみ残る。
【0182】
ある実施形態においては、正孔注入層は、フッ素化酸ポリマーでドープされた導電性ポリマーを含む。ある実施形態においては、正孔注入層は本質的に、フッ素化酸ポリマーでドープされた導電性ポリマーからなる。ある実施形態においては、正孔注入層は本質的に、フッ素化酸ポリマーでドープされた導電性ポリマーおよび無機ナノ粒子からなる。ある実施形態においては、これらの無機ナノ粒子は、酸化ケイ素、酸化チタン、酸化ジルコニウム、三酸化モリブデン、酸化バナジウム、酸化アルミニウム、酸化亜鉛、酸化サマリウム、酸化イットリウム、酸化セシウム、酸化第二銅、酸化第二スズ、酸化アンチモン、およびそれらの組み合わせからなる群から選択される。そのような材料は、たとえば、米国特許出願公開第2004/0102577号明細書、同第2004/0127637号明細書、同第2005/0205860号明細書、および国際公開第2009/018009号パンフレットに記載されている。
【0183】
ある実施形態においては、下塗り層は本質的に、式Iを有する材料からなる。
【0184】
ある実施形態においては、正孔輸送層は、トリアリールアミン、カルバゾール類、それらのポリマー類似体、およびそれらの組み合わせからなる群から選択される。ある実施形態においては、正孔輸送層は、ポリマートリアリールアミン、非平面立体配置で連結されている共役部分を有するポリマートリアリールアミン、およびフルオレンとトリアリールアミンとのコポリマーからなる群から選択される。
【0185】
ある実施形態においては、本方法は、正孔輸送層上に液相堆積によって放射層を形成する工程をさらに含む。ある実施形態においては、この放射層は、エレクトロルミネセンスドーパントおよび1つまたは複数のホスト材料を含む。ある実施形態においては、この放射層は、インクジェット印刷および連続ノズル印刷からなる群から選択される液相堆積技術によって形成される。
【実施例】
【0186】
本明細書に記載される概念は、特許請求の範囲に記載される本発明の範囲を限定しない、以下の実施例でさらに説明される。
【0187】
実施例1
本実施例は、化合物CおよびDの調製を例示する。
【0188】
本化合物は、次のスキームに従って調製した:
【0189】
【化20】
【0190】
スピロ−ビスフェノール1は、Chen,W.−F.;Lin,H.−Y.;Dai,S.A.Org.Letters 2004,6,2341によって報告された手順に従って合成した。
【0191】
ジオール1(10.0g、32.4ミリモル)を300mLのジクロロメタンに溶解させ、0Cに冷却した。トリフリック無水物(13.1mL、77.8ミリモル)をゆっくり加え、反応物を一晩室温までゆっくり温めた。生じた混合物を0.5MのHClでクエンチした。層を分離し、有機層を炭酸ナトリウム溶液、水、次にブラインで洗浄した。揮発性物質の蒸発は、淡ピンク固体を81%収率(15g)で生成した。
【0192】
窒素の雰囲気下でバイアルに、ジトリフレート2(3.07g、5.36ミリモル)、4−アミノビフェニル(1.904g、11.3ミリモル)、Pd
2(dba)
3(0.246g、0.268ミリモル)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.297g、0.536ミリモル)およびトルエン(40mL)を装入した。生じた溶液を10分間撹拌し、これにNaO
tBu(1.248g、13.4ミリモル)の添加が続いた。反応物を室温で一晩撹拌し、引き続き85℃に18時間加熱した。室温に冷却した後、生じた濃い溶液をトルエン(約100mL)で希釈し、シリカパッドを通して濾過した。揮発性物質の蒸発およびジクロロメタンとヘキサン(0〜40%)との混合物を溶出液として使用するシリカでの精製は、化合物3を22%収率(0.73g)で生成した。
【0193】
窒素の雰囲気下でバイアルに、ジアミン3(0.73g、1.20ミリモル)、4,4’−ヨードブロモビフェニル(0.902g、2.51ミリモル)、Pd
2(dba)
3(0.044g、0.048ミリモル)、1,1’−ビス(ジフェニホスフィノ)フェロセン(0.053g、0.096ミリモル)およびトルエン(40mL)を装入した。生じた溶液を10分間撹拌し、これにNaO
tBu(0.242g、2.51ミリモル)の添加が続いた。反応物を90℃に22時間加熱した。室温に冷却した後、生じた濃い溶液をトルエン(約100mL)で希釈し、シリカパッドを通して濾過した。揮発性物質の蒸発およびジクロロメタンとヘキサン(40%)との混合物を溶出液として使用するシリカでの精製は、化合物Cを37%収率(0.479g、99%純度)で生成した。
【0194】
化合物Cを、山本条件(Yamamoto conditions)を用いて重合させて化合物D(GPC:Mn=2781、Mw=23,325)を生成した。
【0195】
実施例2
本実施例は、化合物Bの調製を例示する。
【0196】
本化合物は、次のスキームに従って製造した。
【0197】
【化21】
【0198】
窒素の雰囲気下でバイアルに、ジトリフレート2(1.875g、3.27ミリモル)、3−メチルビフェニル−4−アミン(1.26g、6.88ミリモル)、Pd
2(dba)
3(0.150g、0.164ミリモル)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.182g、0.327ミリモル)およびトルエン(30mL)を装入した。生じた溶液を10分間撹拌し、これにNaO
tBu(0.762g、8.19ミリモル)の添加が続いた。反応物を90℃に18時間加熱した。室温に冷却した後、生じた濃い溶液をトルエン(約100mL)で希釈し、シリカパッドを通して濾過した。揮発性物質の蒸発およびジクロロメタンとヘキサン(0〜40%)との混合物を溶出液として使用するシリカでの精製は、化合物6を61%収率(1.28g)で生成した。
【0199】
窒素の雰囲気下でバイアルに、ジアミン6(1.28g、2.00ミリモル)、4−ブロモ−3−メチル−3’−フェニル−ビフェニル(1.943g、6.00ミリモル)、Pd
2(dba)
3(0.044g、0.048ミリモル)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.019g、0.096ミリモル)およびトルエン(30mL)を装入した。生じた溶液を10分間撹拌し、これにNaO
tBu(0.560g、6.0ミリモル)の添加が続いた。反応物を90℃に18時間加熱した。室温に冷却した後、生じた濃い溶液をトルエン(約100mL)で希釈し、シリカパッドを通して濾過した。揮発性物質の蒸発およびジクロロメタンとヘキサン(0〜40%)との混合物を溶出液として使用するシリカでの精製は、化合物Bを44%収率(1.0g)で生成した。
【0200】
説明または実施例において前述したすべての行為が必要なわけではなく、特定の行為の一部は不要である場合があり、1つまたは複数のさらに別の行為が、前述の行為に加えて実施される場合があることに留意されたい。さらに、行為が列挙されている順序は、必ずしもそれらが実施される順序ではない。
【0201】
以上の明細書において、具体的な実施形態に関して本発明の概念を説明してきた。しかし、当業者には、以下の特許請求の範囲に記載されるような本発明の範囲から逸脱することなく種々の修正および変更が行われ得ることが分かるだろう。したがって、本明細書および図面は、限定的な意味ではなく説明的なものであると見なすべきであり、すべてのそのような修正形態は本発明の範囲内に含まれることを意図している。
【0202】
特定の実施形態に関して、利益、その他の利点、および問題に対する解決法を以上に記載してきた。しかし、これらの利益、利点、問題の解決法、およびなんらかの利益、利点、または解決法を発生させたり、より顕著にしたりすることがある任意の特徴は、特許請求の範囲のいずれかまたはすべての決定的に重要な、必要な、または本質的な特徴であるとして解釈されるべきではない。
【0203】
明確にするために、別々の実施形態の状況において本明細書に記載されているある種の特徴はまた、1つの実施形態の中で組み合わせて提供されてもよいことが理解されるべきである。逆に、簡潔にするために、1つの実施形態の状況において記載される種々の特徴はまた、別々にまたは任意の副次的な組み合わせで提供されてもよい。さらに、範囲で述べられる数値の言及には、当該範囲内のそれぞれの値およびすべての値が含まれる。