特許第5873843号(P5873843)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大阪ガスケミカル株式会社の特許一覧

<>
  • 特許5873843-乳濁液の製造方法 図000013
  • 特許5873843-乳濁液の製造方法 図000014
  • 特許5873843-乳濁液の製造方法 図000015
  • 特許5873843-乳濁液の製造方法 図000016
  • 特許5873843-乳濁液の製造方法 図000017
  • 特許5873843-乳濁液の製造方法 図000018
  • 特許5873843-乳濁液の製造方法 図000019
  • 特許5873843-乳濁液の製造方法 図000020
  • 特許5873843-乳濁液の製造方法 図000021
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5873843
(24)【登録日】2016年1月22日
(45)【発行日】2016年3月1日
(54)【発明の名称】乳濁液の製造方法
(51)【国際特許分類】
   A01N 25/10 20060101AFI20160216BHJP
   A01N 47/12 20060101ALI20160216BHJP
   A01P 3/00 20060101ALI20160216BHJP
   C08F 2/44 20060101ALI20160216BHJP
   C08F 2/24 20060101ALI20160216BHJP
【FI】
   A01N25/10
   A01N47/12 Z
   A01P3/00
   C08F2/44 B
   C08F2/24
【請求項の数】2
【全頁数】40
(21)【出願番号】特願2013-135501(P2013-135501)
(22)【出願日】2013年6月27日
(65)【公開番号】特開2014-94931(P2014-94931A)
(43)【公開日】2014年5月22日
【審査請求日】2015年7月13日
(31)【優先権主張番号】特願2012-227114(P2012-227114)
(32)【優先日】2012年10月12日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】591147694
【氏名又は名称】大阪ガスケミカル株式会社
(74)【代理人】
【識別番号】100103517
【弁理士】
【氏名又は名称】岡本 寛之
(74)【代理人】
【識別番号】100149607
【弁理士】
【氏名又は名称】宇田 新一
(72)【発明者】
【氏名】大島 純治
【審査官】 天野 皓己
(56)【参考文献】
【文献】 特表2008−532978(JP,A)
【文献】 特開2011−079816(JP,A)
【文献】 特表2007−534679(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A01N 25/10
A01N 47/12
A01P 3/00
C08F 2/24
C08F 2/44
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
3−ヨード−2−プロピニルブチルカルバメートを疎水性の重合性ビニルモノマーで溶解することにより、疎水性溶液を調製する工程、
水と乳化剤とポリビニルアルコールとを配合して乳化剤−ポリビニルアルコール水溶液を調製する工程、
前記疎水性溶液を前記乳化剤−ポリビニルアルコール水溶液中に乳化させる工程、および、
乳化された前記疎水性溶液の前記重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、3−ヨード−2−プロピニルブチルカルバメートを含有する平均粒子径1μm未満の重合体を生成する工程を備える、徐放性粒子を含有する乳濁液の製造方法であり、
ミニエマルション重合により得られる前記重合体は、Hansenで定義され、van Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δp,polymerが5.0〜7.0[(J/cm1/2]であり、前記溶解度パラメータδの水素結合力項δh,polymerが8.0〜10.0[(J/cm1/2]であり、
前記乳濁液を100目の濾布で濾過したときの濾布上残存物量は、前記徐放性粒子に対して、0.2質量%以下であることを特徴とする、乳濁液の製造方法。
【請求項2】
徐放性粒子に対する3−ヨード−2−プロピニルブチルカルバメートの含有割合が、10〜50質量%であることを特徴とする、請求項1に記載の乳濁液の製造方法
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、徐放性粒子およびその製造方法、詳しくは、3−ヨード−2−プロピニルブチルカルバメートを徐放する徐放性粒子およびその製造方法に関する。
【背景技術】
【0002】
近年、3−ヨード−2−プロピニルブチルカルバメートを含有する徐放性粒子が提案されている。
【0003】
そのような徐放性粒子の製造方法として、以下の方法が提案されている(例えば、特許文献1参照。)。
【0004】
すなわち、特許文献1では、まず、3−ヨード−2−プロピニルブチルカルバメート(IPBC、防かび剤)、メタクリル酸メチルなどの重合性ビニルモノマーおよびジラウロイルパーオキシド(重合開始剤)を配合して、疎水性溶液を調製するとともに、水およびポリビニルアルコール(分散剤)を配合して、水溶液を調製する。
【0005】
その後、疎水性溶液および水溶液を配合して、懸濁液を調製して、その後、攪拌しながら昇温して、懸濁重合を行うことにより、IPBCを含有する徐放性粒子の懸濁液を得ている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2011−79816号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、特許文献1で提案される徐放性粒子は、懸濁重合によって得られることから、メジアン径が1μm以上と大きい。そのため、徐放性粒子が懸濁液中で沈降して、ケーキングを生じる場合がある。
【0008】
また、特許文献1で提案される徐放性粒子は、徐放性粒子内のIPBCの含有割合を増やすと、懸濁液中で経時的にIPBCが針状結晶として析出してしまい、貯蔵安定性が低下する場合がある。
【0009】
本発明の目的は、徐放性は元より、分散性および貯蔵安定性にも優れる徐放性粒子およびその製造方法を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは、上記目的の徐放性粒子およびその製造方法について鋭意検討したところ、3−ヨード−2−プロピニルブチルカルバメートを疎水性の重合性ビニルモノマーで溶解することにより、疎水性溶液を調製し、水と乳化剤とポリビニルアルコール(以下、PVAと略称する)とを配合して乳化剤−PVA水溶液を調製し、疎水性溶液を乳化剤−PVA水溶液中に乳化させ、乳化された疎水性溶液の重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合することにより、徐放性は元より、分散性および貯蔵安定性に優れる徐放性粒子を得ることができるという知見を見出し、さらに研究を進めた結果、本発明を完成するに至った。
【0011】
すなわち、本発明は、
(1) 3−ヨード−2−プロピニルブチルカルバメートを疎水性の重合性ビニルモノマーで溶解することにより、疎水性溶液を調製し、水と乳化剤とPVAとを配合して乳化剤−PVA水溶液を調製し、前記疎水性溶液を前記乳化剤−PVA水溶液中に乳化し、前記重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、平均粒子径1μm未満の重合体を生成することにより得られる徐放性粒子であり、ミニエマルション重合により得られる前記重合体は、Hansenで定義され、van Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δp,polymerが5.0〜7.0[(J/cm1/2]であり、前記溶解度パラメータδの水素結合力項δh,polymerが8.0〜10.0[(J/cm1/2]であることを特徴とする、徐放性粒子、
(2) 徐放性粒子に対する3−ヨード−2−プロピニルブチルカルバメートの含有割合が、10〜50質量%であることを特徴とする、前記(1)に記載の徐放性粒子、
(3) 前記重合性ビニルモノマーは、第1モノマーを50質量%以上含有し、前記第1モノマーは、前記第1モノマーから得られる重合体を構成するモノマー単位の前記溶解度パラメータδの双極子間力項δp,1st monomer unit(s)が5.6〜6.0[(J/cm1/2]であり、前記溶解度パラメータδの水素結合力項δh,1st monomer unit(s)が9.2〜9.9[(J/cm1/2]である第1モノマーを50質量%以上含有することを特徴とする、前記(1)または(2)に記載の徐放性粒子、
(4) 前記第1モノマーは、メタクリル酸メチルおよび/またはエチレングリコールジメタクリレートを含有することを特徴とする、前記(3)に記載の徐放性粒子、
(5) 3−ヨード−2−プロピニルブチルカルバメートを疎水性の重合性ビニルモノマーで溶解することにより、疎水性溶液を調製する工程、水と乳化剤とPVAを配合して乳化剤−PVA水溶液を調製する工程、前記疎水性溶液を前記乳化剤−PVA水溶液中に乳化させる工程、および、乳化された前記疎水性溶液の前記重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、平均粒子径1μm未満の重合体を生成する工程を備える、徐放性粒子の製造方法であり、ミニエマルション重合により得られる前記重合体は、Hansenで定義され、van Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δp,polymerが5.0〜7.0[(J/cm1/2]であり、前記溶解度パラメータδの水素結合力項δh,polymerが8.0〜10.0[(J/cm1/2]であることを特徴とする、徐放性粒子の製造方法、
(6) 疎水性溶液を調製する工程では、油溶性重合開始剤を疎水性溶液に配合し、前記重合性ビニルモノマーをミニエマルション重合する工程では、ミニエマルション重合の開始後、水溶性重合開始剤をさらに配合することを特徴とする、前記(5)に記載の徐放性粒子の製造方法である。
【発明の効果】
【0012】
本発明の徐放性粒子の製造方法は、水と乳化剤とPVAとを配合して調製された乳化剤−PVA水溶液中に乳化された疎水性溶液の重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、3−ヨード−2−プロピニルブチルカルバメートを含有する平均粒子径1μm未満の重合体を生成することにより、本発明の徐放性粒子を得るので、徐放性粒子は、分散性および貯蔵安定性に優れる。
【0013】
さらに、本発明の徐放性粒子では、重合体は、Hansenで定義され、van Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δp,polymerが5.0〜7.0[(J/cm1/2]に、溶解度パラメータδの水素結合力項δh,polymerが8.0〜10.0[(J/cm1/2]に設定されるので、3−ヨード−2−プロピニルブチルカルバメートとの相溶性がより一層顕著に優れている。その結果、重合体において、3−ヨード−2−プロピニルブチルカルバメートが均一に存在するように、重合体が3−ヨード−2−プロピニルブチルカルバメートを含有する。
【0014】
そのため、本発明の徐放性粒子は、優れた徐放性、分散性および貯蔵安定性を有する徐放性粒子として、種々の工業製品に用いることができる。
【0015】
また、3−ヨード−2−プロピニルブチルカルバメートがミニエマルション重合におけるハイドロホーブを兼用することができるので、別途、ハイドロホーブを配合することなく、簡易に、3−ヨード−2−プロピニルブチルカルバメートを含有する平均粒子径1μm未満の重合体を生成することができる。
【図面の簡単な説明】
【0016】
図1図1は、実施例2の徐放性粒子のTEM写真の画像処理図を示す。
図2図2は、実施例2の徐放性粒子のTEM写真の画像処理図を示す。
図3図3は、比較例15の徐放性粒子のSEM写真の画像処理図を示す。
図4図4は、比較例16の徐放性粒子のSEM写真の画像処理図を示す。
図5図5は、実施例1〜実施例4の徐放性試験のグラフを示す。
図6図6は、実施例5〜実施例7の徐放性試験のグラフを示す。
図7図7は、実施例8〜実施例11の徐放性試験のグラフを示す。
図8図8は、実施例12〜実施例14の徐放性試験のグラフを示す。
図9図9は、実施例15〜実施例17の徐放性試験のグラフを示す。
【発明を実施するための形態】
【0017】
本発明の徐放性粒子は、3−ヨード−2−プロピニルブチルカルバメート(以下、単にIPBCという場合がある。)を疎水性の重合性ビニルモノマーで溶解することにより、疎水性溶液を調製し、別途、水と乳化剤とPVAとを配合して乳化剤−PVA水溶液を調製し、続いて、疎水性溶液を乳化剤−PVA水溶液中に乳化し、その後、重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、IPBCを含有する重合体を生成することにより得られる。
【0018】
IPBCは、ヨウ素系の抗生物活性化合物(例えば、防かび剤)である。
【0019】
IPBCは、ミニエマルション重合におけるハイドロホーブ(コスタビライザー)として作用し、具体的には、ミニエマルション重合におけるミニエマルション(後述)の安定化に寄与することにより、オストワルド熟成を防止して、ミニエマルション粒子の肥大化(粒子径の増大)を抑制する。
【0020】
IPBCは、実質的に疎水性であって、例えば、水に対する室温(20〜30℃、より具体的には、25℃)における溶解度が極めて小さく、具体的には、室温の溶解度が、質量基準で、0.015質量部/水100質量部(150ppm)である。
【0021】
また、IPBCは、Krevelen and Hoftyzer法で算出される溶解度パラメータδの双極子間力項δp,IPBCが、3.23であり、溶解度パラメータδの水素結合力項δh,IPBCが、7.83である。
【0022】
なお、溶解度パラメータδの双極子間力項δp,IPBCおよび水素結合力項δh,IPBCは、Hansenで定義され、van Krevelen and Hoftyzer法で算出され、具体的には、特開2011−79816号公報に詳述されている。
【0023】
なお、各項δ(δおよびδ)の添字IPBCは、IPBCを示し、後述する重合体、第1モノマーのモノマー単位(モノマーユニット)および第2モノマーのモノマー単位(モノマーユニット)についても、同様である。
【0024】
重合性ビニルモノマーは、例えば、重合性の炭素−炭素二重結合を少なくとも1つ分子内に有する重合性モノマーであって、重合により得られる重合体の双極子間力項δp,polymerおよび水素結合力項δh,polymerが所望の範囲となるように選択される。
【0025】
重合性ビニルモノマーとしては、例えば、第1モノマーが挙げられる。
【0026】
第1モノマーは、それから得られる重合体を構成するモノマー単位(後述)の溶解度パラメータδの双極子間力項δp,1st monomer unit(s)が、例えば、5.6〜6.0[(J/cm1/2]、好ましくは、5.7〜6.0[(J/cm1/2]であり、溶解度パラメータδの水素結合力項δh,1st monomer unit(s)が、例えば、9.2〜9.9[(J/cm1/2]、好ましくは、9.2〜9.8[(J/cm1/2]である。
【0027】
なお、第1モノマーから得られる重合体を構成するモノマー単位の溶解度パラメータδの双極子間力項δp,1st monomer unit(s)および水素結合力項δh,1st monomer unit(s)を、以下、単に「第1モノマーに基づくモノマー単位の双極子間力項δp,1st monomer unit(s)および水素結合力項δh,1st monomer unit(s)」とそれぞれいう場合がある。第1モノマーに基づくモノマー単位については、後述する。
【0028】
第1モノマーは、重合性ビニルモノマーに主成分として含有される主モノマーであり、例えば、得られる重合体のIPBCに対する相溶性が高くなるように選択される相溶性モノマーが挙げられる。第1モノマーとして、具体的には、メタクリル酸メチル(MMA)、エチレングリコールジメタクレート(EGDMA)などが挙げられ、さらに好ましくは、MMAが挙げられる。
【0029】
具体的には、第1モノマーは、好ましくは、少なくともMMAを必須成分として含有する。
【0030】
第1モノマーは、単独使用または2種以上併用することができる。好ましくは、MMAの単独使用、MMAおよびEGDMAの併用が挙げられ、さらに好ましくは、MMAおよびEGDMAの併用が挙げられる。
【0031】
第1モノマーとしてMMAおよびEGDMAのみが併用されて使用される場合におけるMMAの配合割合は、第1モノマーに対して、例えば、50質量%以上、好ましくは、60質量%以上、さらに好ましくは、70質量%以上、さらには、80質量%以上、90質量%以上、95質量%以上、98質量%以上が好ましく、また、100質量%未満でもある。また、第1モノマーとしてMMAおよびEGDMAのみが併用されて使用される場合におけるEGDMAの配合割合は、第1モノマーに対して、例えば、50質量%以下、好ましくは、40質量%以下、さらに好ましくは、30質量%以下、さらには、20質量%以下、10質量%以下、5質量%以下、2質量%以下が好ましく、また、0質量%超でもある。
【0032】
ミニエマルション粒子の表面積(界面面積)のミニエマルション粒子体積に対する比(表面積/体積)は、平均粒子径に反比例し、かつ、ミニエマルション粒子の平均粒子径が1μm未満(後述)であることから、IPBCは水相へ漏出し易くなる傾向にある。特に、IPBCに重合体が相溶状態であっても、得られる重合体の架橋などにより単位体積における重合体密度が高い場合には、重合体に対してIPBCが相溶する量(割合)が低下し、ミニエマルション重合後の冷却中、あるいは、冷却後数日から数ケ月以内にIPBCの結晶が一部析出する場合がある。
【0033】
次に、第1モノマーに基づくモノマー単位の双極子間力項δp,1st monomer unit(s)および水素結合力項δh,1st monomer unit(s)について、第1モノマーとしてMMAが単独使用される場合、および、第1モノマーとしてMMAおよびEGDMAのみが併用されて使用される場合を例示にとってそれぞれ説明する。
【0034】
1.双極子間力項δおよび水素結合力項δの定義
双極子間力項δおよび水素結合力項δの定義は、特開2011−79816号公報に記載の通りであり、具体的には、下記式(1)および(2)でそれぞれ示される。
【0035】
【数1】
【0036】
(式中、Fは、分子間力の双極子間力要素(ポーラー・コンポーネント・オブ・ザ・モーラー・アトラクション・ファンクション(polar component of the molar attraction function)、Vはモル体積である。)
【0037】
【数2】
【0038】
(式中、Eは、分子間力の水素結合力の要素(コントリビューション・オブ・ザ・ハイドロジェン・ボンディング・フォーセズ・ツー・ザ・コーヘシヴ・エナジー(contribution of the hydrogen bonding forces to the cohesive energy)、Vはモル体積である。)
2.第1モノマーとしてMMAが単独使用される場合
(1)ポリメタクリル酸メチル(PMMA)の構造式
MMAの重合体であるPMMAは、下記式(3)で表される。
【0039】
【化1】
【0040】
(式中、nは、重合度を示す。)
(2)双極子間力項δp,monomer unit (=双極子間力項δp,MMA unit
上記式(3)のモノマー単位(−CH−C(CH)COOCH−)において、各原子団に対応するFおよびVを以下に記載する。
−CH:0(J1/2・cm3/2・mol−1
V:33.5(cm・mol)
−CH− F:0(J1/2・cm3/2・mol−1
V:16.1(cm・mol)
>C< F:0(J1/2・cm3/2・mol−1
V:−19.2(cm・mol)
−COO− F:490(J1/2・cm3/2・mol−1
V:18(cm・mol)
従って、モノマー単位の双極子間力項δp,monomer unit(双極子間力項δp,MMA unit)は、下記式(4)に示すように、5.98[(J/cm1/2]と算出される。
【0041】
【数3】
【0042】
なお、上記したモノマー単位の双極子間力項δp,MMA unitは、モノマー単位の繰り返し構造であるポリメタクリル酸メチルの双極子間力項δp,PMMAと同値である。
(3)水素結合力項δh,monomer unit(水素結合力項δh,MMA unit
上記式(3)のモノマー単位(−CH−C(CH)COOCH−)において、各原子団に対応するEを以下に記載する。
−CH:0(J・mol−1
−CH− E:0(J・mol−1
>C< E:0(J・mol−1
−COO− E:7000(J・mol−1
従って、モノマー単位の水素結合力項δh,monomer unit(水素結合力項δh,MMA unit)は、下記式(5)に示すように、9.25[(J/cm1/2]と算出される。
【0043】
【数4】
【0044】
上記したモノマー単位の水素結合力項δh,MMA unitは、モノマー単位の繰り返し構造であるPMMAの水素結合力項δh,PMMAと同値である。
【0045】
3.第1モノマーとしてMMAおよびEGDMAのみが併用されて使用される場合
第1モノマーが複数種類のモノマーが併用されて使用される場合には、各モノマーに基づくモノマー単位の双極子間力項δp,1st monomer unitに、各モノマーの質量比を乗じて、それらを足し合わせること(相加平均)により、第1モノマー全体から得られる共重合体を構成するモノマー単位の双極子間力項δp,1st monomer unitsを算出する。
【0046】
また、各モノマーに基づくモノマー単位の水素結合力項δh,1st monomer unitに、モノマーの質量比を乗じて、それらを足し合わせること(相加平均)により、第1モノマー全体から得られる共重合体を構成するモノマー単位の水素結合力項δh,monomer unitsを算出する。
【0047】
次に、共重合体の一例として、MMAおよびEGDMAを、質量比で94:6で含む第1モノマーの共重合体であるポリ(メタクリル酸メチル−エチレングリコールジメタクリレート)(P(MMA−EGDMA))を挙げて、モノマー単位の溶解度パラメータδの双極子間力項δp,1st monomer unitsおよび水素結合力項δh,1st monomer unitsを算出する方法を説明する。
(1)双極子間力項δp,1st monomer units
MMAのモノマー単位の双極子間力項δp,MMA unitは、上記で算出したように、5.98[(J/cm1/2]である。
【0048】
また、EGDMAのモノマー単位の双極子間力項δp,EDGMA unitは、上記と同様に算出することにより、5.37[(J/cm1/2]である。
【0049】
そして、これら第1モノマーに基づくモノマー単位の双極子間力項δp,1st monomer unitsは、下記式(6)のように算出される。
δp,1st monomer units=(94/100)δp、MMA unit+(6/100)δp、EGDMA unit
=(94/100)×5.98+(6/100)×5.37
=5.95[(J/cm1/2] (6)
なお、この値は、ポリ(メタクリル酸メチル−エチレングリコールジメタクリレート)の双極子間力項δp,P(MMA−EGDMA)と同値である。
(2)水素結合力項δh,1st monomer units
MMAのモノマー単位の水素結合力項δh,MMA unitは、9.25[(J/cm1/2]である。
【0050】
また、EGDMAのモノマー単位の水素結合力項δh,EGDMAは、10.42[(J/cm1/2]である。
【0051】
そして、この第1モノマーの水素結合力項δh,1st monomer unitsは、下記式(7)のように算出される。
δh,1st monomer units=(94/100)δh,1st monomer unit+(6/100)δh,EGDMA unit
=(94/100)×9.25+(6/100)×10.42
=9.32[(J/cm1/2] (7)
なお、この値は、共重合体であるポリメタクリル酸メチル−エチレングリコールジメタクリレートの水素結合力項δh,PMMA−EGDMAと同値である。
【0052】
なお、第1モノマーに基づくモノマー単位の双極子間力項δp,1st monomer unit(s)および水素結合力項δh,1st monomer unit(s)の算出方法は、特開2011−79816号公報に詳述されている。
【0053】
上記から、第1モノマーの溶解度パラメータδ(双極子間力項δp,2nd monomer unitsおよび水素結合力項δh,2nd monomer units)は、異なる種類が併用される場合には、第1モノマー全体(つまり、異なる種類の混合物)として算出される値である。
【0054】
そして、第1モノマーの配合割合は、重合性ビニルモノマーに対して、例えば、50質量%以上、好ましくは、70質量%以上、さらに好ましくは、75質量%以上、とりわけ好ましくは、80質量%以上、さらには、85質量%以上、90質量%以上、95質量%以上、98質量%以上が好ましく、また、100質量部%以下でもある。
【0055】
また、重合性ビニルモノマーは、第2モノマーを含有することもできる。
【0056】
第2モノマーは、第1モノマーとともに併用され、重合性ビニルモノマーに任意的に含有される副モノマーであり、具体的には、第1モノマーと共重合可能であり、第1モノマーとの共重合体の双極子間力項δp,polymerおよび水素結合力項δh,polymerが所望の範囲となるように選択される。
【0057】
第2モノマーとしては、上記した第1モノマーと共重合できる共重合性モノマーであって、例えば、MMAを除く(メタ)アクリル酸エステル系モノマー、(メタ)アクリル酸系モノマー、芳香族系ビニルモノマー、ビニルエステル系モノマー、マレイン酸エステル系モノマー、ハロゲン化ビニル、ハロゲン化ビニリデン、窒素含有ビニルモノマー、EGDMAを除く架橋性モノマー、重合反応性乳化剤などが挙げられる。
【0058】
第2モノマーを重合性ビニルモノマーに配合することにより、第1モノマーとの共重合によって生成する共重合体のガラス転移温度を低下させる場合には、そのような共重合体は、架橋密度を、第1モノマーの単独重合によって生成する単独重合体に比べて、高めることが可能である。すなわち、第1モノマーおよび第2モノマーが併用されて使用され、かつ、第1モノマーのMMAおよびEGDMAが併用されて使用される場合におけるEGDMAの配合割合は、重合性ビニルモノマーに対して、例えば、5質量%以上、好ましくは、10質量%以上、さらに好ましくは、20質量%以上、とりわけ好ましくは、30質量%以上であり、また、例えば、60質量%以下、好ましくは、50質量%以下、さらに好ましくは、40質量%以下でもある。
【0059】
(メタ)アクリル酸エステル系モノマーとしては、例えば、メタクリル酸エステル(MMAを除く)および/アクリル酸エステルであって、具体的には、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸iso−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸iso−ノニル、(メタ)アクリル酸n−ドデシル(ラウリル)、(メタ)アクリル酸n−オクタデシル(ステアリル)、(メタ)アクリル酸シクロヘキシルなどのアルキル部分が直鎖状、分岐状または環状の炭素数1〜20のアルキル部分を有する(メタ)アクリル酸アルキルエステル(MMAを除く)や、例えば、(メタ)アクリル酸2−メトキシエチルなどの(メタ)アクリル酸アルコキシアルキルエステル、例えば、(メタ)アクリル酸ヒドロキシエチルなどの(メタ)アクリル酸ヒドロキシアルキル、例えば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステルなどが挙げられる。好ましくは、(メタ)アクリル酸アルキルエステル(MMAを除く)が挙げられる。
【0060】
(メタ)アクリル酸アルキルエステルとして、さらに好ましくは、炭素数2以上のアルキル部分を有するアクリル酸アルキルエステル、とりわけ好ましくは、アクリル酸エチル、また、アクリル酸n−プロピル、アクリル酸iso−プロピルなどのアクリル酸プロピル、さらには、アクリル酸n−ブチル(n−BA)、アクリル酸iso−ブチル、アクリル酸tert−ブチルなどのアクリル酸ブチルなどが挙げられる。また、メタクリル酸アルキルエステルとして、さらに好ましくは、炭素数4以上のアルキル部分を有するメタクリル酸アルキルエステル、とりわけ好ましくは、メタクリル酸n−ブチル、メタクリル酸iso−ブチル、メタクリル酸tert−ブチルなどのメタクリル酸ブチルが挙げられる。
【0061】
また、エポキシ基含有(メタ)アクリル酸エステルは、IPBCの熱や紫外線による変色を抑える働きがあり、この効果を得るために第2モノマーに必要により配合される。
【0062】
(メタ)アクリル酸系モノマーとしては、例えば、メタクリル酸(MAA)、アクリル酸、イタコン酸などが挙げられる。(メタ)アクリル酸系モノマーは、第1モノマーとの共重合体により形成する乳濁液のコロイド安定性を高める働きがあり、この効果を得るために必要により配合される。
【0063】
芳香族系ビニルモノマーとしては、例えば、スチレン、p−メチルスチレン、o−メチルスチレン、α−メチルスチレンなどが挙げられる。
【0064】
ビニルエステル系モノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニルなどが挙げられる。
【0065】
マレイン酸エステル系モノマーとしては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
【0066】
ハロゲン化ビニルとしては、例えば、塩化ビニル、フッ化ビニルなどが挙げられる。
【0067】
ハロゲン化ビニリデンとしては、例えば、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。
【0068】
窒素含有ビニルモノマーとしては、例えば、(メタ)アクリロニトリル、N−フェニルマレイミド、ビニルピリジンなどが挙げられる。
【0069】
架橋性モノマー(EGDMAを除く)としては、例えば、エチレングリコールジアクリレート、ジエチレングリコールジ(メタ)アクリレートなどのモノまたはポリエチレングリコールジ(メタ)アクリレート(EGDMAを除く)、例えば、1,3−プロパンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレートなどのアルカンジオールジ(メタ)アクリレート、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート(PETA/PETM)などのアルカンポリオールポリ(メタ)アクリレート、例えば、アリル(メタ)メタクリレート、トリアリル(イソ)シアヌレートなどのアリル系モノマー、例えば、ジビニルベンゼンなどのジビニル系モノマーなどが挙げられる。
【0070】
重合反応性乳化剤は、重合性の炭素−炭素二重結合を分子内に有する乳化剤であり、乳化剤であると同時に、重合性モノマーでもある。重合反応性乳化剤は、乳化機能を発現する親水性基を分子内に有しており、そのような親水性基としては、例えば、スルホネート基、カルボキシレート基などのアニオン性の親水基、例えば、ポリオキシエチレン基などのノニオン性の親水基などが挙げられる。重合反応性乳化剤としては、好ましくは、アニオン性の親水基およびノニオン性の親水基の両方を含むもの、アニオン性の親水基のみを含むもの、ノニオン性の親水基のみを含むものが挙げられ、特に好ましくは、アニオン性の親水基およびノニオン性の親水基の両方を含むものが挙げられ、そのようなアニオン性の親水基およびノニオン性の親水基の両方を含むものとして、具体的には、CH=C(CH)−COO(AO)SONa(式中AOは、エチレンオキシド、プロピレンオキシドなどのアルキレンオキシドを示す。)などが挙げられる。反応性乳化剤は、例えば、市販品を用いることもでき、例えば、エレミノールシリーズ(三洋化成社製)、アクアロンシリーズ(第一工業製薬社製)、ラテムルシリーズ(花王ケミカル社製)、リアソープシリーズ(ADEKA社製)、アントックスシリーズ(日本乳化剤社製)、ブレンマーシリーズ(日油社製)などが用いられる。
【0071】
第2モノマーとして、好ましくは、MMAを除く(メタ)アクリル酸エステル系モノマー、(メタ)アクリル酸系モノマー、重合反応性乳化剤が挙げられる。
【0072】
第2モノマーがMMAを除く(メタ)アクリル酸エステル系モノマー(具体的には、n−BAなど)を含有する場合には、共重合体のガラス転移温度を低下させることができる。
【0073】
第2モノマーが(メタ)アクリル酸系モノマーを含有する場合には、(メタ)アクリル酸系モノマーのカルボキシル基および/またはカルボキシレート基が、徐放性粒子表面に分布して、徐放性粒子乳濁液中でのコロイド安定性を向上させることができる。
【0074】
第2モノマーが重合反応性乳化剤を含有する場合には、特に希釈された徐放性粒子乳濁液中においても、コロイド安定性を維持することができ、機械的な剪断力が負荷されても、徐放性粒子の凝集・破壊を防ぐことができる。
【0075】
第2モノマーとして、より好ましくは、(メタ)アクリル酸エステル系モノマーが挙げられる。
【0076】
第2モノマーは、溶解度パラメータδの双極子間力項δp,2nd monomer unit(s)が、例えば、3.0〜6.0[(J/cm1/2]、好ましくは、3.5〜6.0[(J/cm1/2]であり、溶解度パラメータδの水素結合力項δh,2nd monomer unit(s)が、例えば、7.0〜10.0[(J/cm1/2]、好ましくは、7.2〜9.5[(J/cm1/2]である。
【0077】
なお、第2モノマーの溶解度パラメータδ(双極子間力項δp,2nd monomer unitsおよび水素結合力項δh,2nd monomer units)は、異なる種類が併用される場合には、第2モノマー全体(つまり、異なる種類の混合物)として算出される値である。そのような算出方法は、上記した第1モノマー全体と同様である。
【0078】
第2モノマーの配合割合は、重合体の溶解度パラメータδ(双極子間力項δp,polymerおよび水素結合力項δh,polymer)が、第1モノマーの溶解度パラメータδ、その配合割合、第2モノマーの溶解度パラメータδおよびその配合割合から算出される(特開2011−79816号公報参照)ことから、適宜設定され、具体的には、重合性ビニルモノマーに対して、例えば、50質量%以下、好ましくは、40質量%以下、さらに好ましくは、38質量%以下、さらには、30質量%以下、25質量%以下、20質量%以下、15質量%以下、10質量%以下、5質量%以下が好ましく、また、例えば、0質量%を超過し、好ましくは、2質量%以上である。
【0079】
第2モノマーの配合割合が上記した上限を超える場合には、共重合体とIPBCとの相溶性が低下することがあり、その場合には、ミニエマルション重合中、重合後の冷却中、あるいは、冷却後数日から数か月以内にIPBCの結晶が一部析出する場合がある。
【0080】
また、重合性ビニルモノマーは、例えば、アルキル部分の炭素数6以下の(メタ)アクリル酸アルキルエステルを主成分とし、さらには、アルキル部分の炭素数7以上の(メタ)アクリル酸アルキルエステルを任意成分として含有することもできる。
【0081】
アルキル部分の炭素数6以下の(メタ)アクリル酸アルキルエステルにおけるアルキル部分の炭素数は、例えば、1以上であり、また、好ましくは、4以下、より好ましくは、3以下、さらに好ましくは、2以下である。アルキル部分の炭素数が上記上限以下であれば、重合速度の低下が少なく、IPBCと相溶する重合体を容易に得ることができる。アルキル部分の炭素数6以下の(メタ)アクリル酸アルキルエステルは、(メタ)アクリル酸短鎖アルキルエステルであって、上記した第1モノマーであるMMAを含み、さらに、第2モノマーの一部を含む。アルキル部分の炭素数6以下の(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸iso−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸iso−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシルなどが挙げられる。(メタ)アクリル酸短鎖アルキルエステルとして、好ましくは、第1モノマーであるMMAが挙げられる。
【0082】
アルキル部分の炭素数7以上の(メタ)アクリル酸アルキルエステルは、(メタ)アクリル酸長鎖アルキルエステルである。アルキル部分の炭素数7以上の(メタ)アクリル酸アルキルエステルは、上記した第2モノマーにおける(メタ)アクリル酸アルキルエステルの残部であって、例えば、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸n−ドデシル(ラウリル)、(メタ)アクリル酸n−オクタデシル(ステアリル)などの直鎖状の(メタ)アクリル酸アルキルエステル、例えば、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸iso−ノニルなどの分岐状の(メタ)アクリル酸アルキルエステルなどが挙げられる。なお、アルキル部分の炭素数10以上の(メタ)アクリル酸アルキルエステルは、ミニエマルション重合におけるハイドロホーブとしての効果を示す一方、炭素数10以上(メタ)アクリル酸アルキルエステルが配合されると、ミニエマルションを調製する時に、1μm未満、さらには、500nm未満の粒子径に到達するのに、より大きな機械的剪断力が必要となる。
【0083】
(メタ)アクリル酸短鎖アルキルエステルの配合割合は、全重合性ビニルモノマー量に対して、例えば、75質量%以上、好ましくは、80質量%以上、より好ましくは、85質量%以上、さらに好ましくは、90質量%以上である。換言すれば、(メタ)アクリル酸長鎖アルキルエステルの配合割合は、全重合性ビニルモノマー量に対して、例えば、25質量%以下、好ましくは、20質量%以下、より好ましくは、15質量%以下、さらに好ましくは、10質量%以下である。
【0084】
(メタ)アクリル酸短鎖アルキルエステルの配合割合が上記下限に満たず、あるいは、(メタ)アクリル酸長鎖アルキルエステルの配合割合が上記上限を超える場合には、ミニエマルション重合の重合速度が低下するとともに、IPBCと重合性ビニルモノマーとの相溶性が低下し、IPBCが重合性ビニルモノマーに十分溶解しないか、あるいは、たとえIPBCが重合性ビニルモノマーに溶解しても、IPBCが重合中に粒子外で漏出して針状結晶が生成する。つまり、IPBCと重合体との仕込み組成比に等しい均一相(後述)を構成することができない。
【0085】
上記した重合性ビニルモノマーは、実質的に疎水性であって、例えば、水に対する室温における溶解度が極めて小さく、具体的には、室温における溶解度が、例えば、8質量部/水100質量部以下、好ましくは、5質量部/水100質量部以下、さらに好ましくは、3質量部/水100質量部以下である。なお、重合性ビニルモノマーは、異なる種類が併用される場合(例えば、第1モノマーおよび第2モノマーが併用される場合や、例えば、異なる種類の第1モノマーが併用される場合、あるいは、(メタ)アクリル酸短鎖アルキルエステルおよび(メタ)アクリル酸長鎖アルキルエステルが併用される場合)には、重合性ビニルモノマー全体(つまり、異なる種類の重合性ビニルモノマーの混合物)として実質的に疎水性である。
【0086】
そして、ミニエマルション重合により得られる重合体に関し、溶解度パラメータδの双極子間力項δp,polymerが、5.0〜7.0[(J/cm1/2]、好ましくは、5.0〜6.5[(J/cm1/2]であり、溶解度パラメータδの水素結合力項δh,polymerが、8.0〜10.0[(J/cm1/2]、好ましくは、9.0〜10.0[(J/cm1/2]である。
【0087】
重合体の双極子間力項δp,polymerおよび/または水素結合力項δh,polymerが上記範囲に満たないと、重合体の疎水性が過度に高くなり、IPBCとの十分な相溶性を得ることができない場合があり、たとえ相溶性を得ることができた場合でも、IPBCがミニエマルション重合中に徐放性粒子外へ漏出して、IPBCを十分内包した徐放性粒子の合成が困難となる場合がある。
【0088】
一方、重合体の双極子間力項δp,polymerおよび/または水素結合力項δh,polymerが上記範囲を超えると、重合体の親水性が過度に高くなり、IPBCとの十分な相溶性が得ることができない場合があり、たとえ相溶性を得ることができたとしても、ミニエマルション重合における水相との界面自由エネルギーが低くなり、IPBCがミニエマルション重合中に徐放性粒子外へ漏出して、IPBCを十分内包した徐放性粒子の合成が困難となる場合がある。
【0089】
さらに、溶解度パラメータδにおいて、重合体の双極子間力項δp,polymerからIPBCの双極子間力項δp,IPBC(=3.23)を差し引いた値Δδ(=δp,polymer−δp,IPBC)は、例えば、0〜3[(J/cm1/2]、好ましくは、1〜3[(J/cm1/2]である。
【0090】
また、重合体の水素結合力項δh,polymerからIPBCの水素結合力項δh,IPBC(=7.83)を差し引いた値Δδ(=δh,polymer−δh,IPBC)は、例えば、0〜3[(J/cm1/2]、好ましくは、1〜3[(J/cm1/2]である。
【0091】
ΔδおよびΔδが上記した範囲内にあれば、IPBCおよび重合体の優れた相溶性を確保して、優れた徐放性を確保することができる。
【0092】
IPBCの双極子間力項δp,IPBCおよび水素結合力項δh,IPBCが上記した値であって、重合体の双極子間力項δp,polymerおよび水素結合力項δh,polymerが上記した範囲内であれば、IPBCは、ミニエマルション重合中、徐放性粒子から漏出せずに重合体と相溶していると定義される。つまり、徐放性粒子は、IPBCと重合体との仕込み組成比に等しい均一相からなる。
【0093】
乳化剤は、ミニエマルション重合で通常用いられる乳化剤が挙げられ、例えば、ジオクチルスルホコハク酸ナトリウムなどのジアルキルスルホコハク酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、ノニルジフェニルエーテルスルホン酸ナトリウムなどのアルキルジフェニルエーテルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ポリオキシエチレンドデシルエーテル硫酸エステルナトリウム塩、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウム塩、ポリオキシエチレンスチレン化フェニルエーテル硫酸エステルアンモニウム塩、ポリオキシエチレンノニルフェニルエーテル燐酸エステルアンモニウム塩などのアニオン系乳化剤が挙げられる。
【0094】
また、乳化剤として、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルアリールエーテル、ポリオキシアルキレンアラルキルアリールエーテル、ポリオキシアルキレンブロックコポリマー、ポリオキシアルキレンアリールエーテルなどのノニオン系乳化剤が挙げられる。
【0095】
ポリオキシアルキレンアルキルエーテルとしては、例えば、ポリオキシエチレンアルキルエーテルなどが挙げられる。
【0096】
ポリオキシアルキレンアルキルアリールエーテルとしては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテルなどが挙げられる。
【0097】
ポリオキシアルキレンアラルキルアリールエーテルとしては、例えば、ポリオキシエチレンスチレン化フェニルエーテル(例えば、ノイゲンEA−177(第一工業製薬社製))などが挙げられる。
【0098】
ポリオキシアルキレンブロックコポリマーとしては、例えば、ポリオキシエチレン−ポリオキシプロピレンブロックコポリマーなどが挙げられる。
【0099】
ポリオキシアルキレンアリールエーテルとしては、例えば、ポリオキシエチレンアリールエーテルなどが挙げられる。
【0100】
ノニオン系乳化剤のHLBは、例えば、11〜20、好ましくは、12〜19、さらに好ましくは、13〜18である。
【0101】
なお、HLBは、下記式(1)で示されるグリフィンの式によって計算される。
【0102】
HLB=20×(親水部の式量の総和/分子量) (1)
ノニオン系乳化剤としては、好ましくは、ポリオキシアルキレンアラルキルアリールエーテルが挙げられる。
【0103】
乳化剤は、単独使用または2種以上併用することができる。好ましくは、アニオン系乳化剤の単独使用が挙げられ、さらに好ましくは、ジアルキルスルホコハク酸ナトリウムの単独使用が挙げられる。
【0104】
アニオン系乳化剤およびノニオン系乳化剤が併用される場合には、アニオン系乳化剤の配合割合が、乳化剤に対して、例えば、10〜60質量%、好ましくは、15〜50質量%であり、ノニオン系乳化剤の配合割合が、乳化剤に対して、例えば、40〜90質量%、好ましくは、50〜85質量%である。
【0105】
なお、乳化剤は、予め水に適宜の割合で配合して溶解させ、乳化剤含有水溶液として調製することもできる。乳化剤含有水溶液における乳化剤の配合割合は、例えば、10〜90質量%、好ましくは、20〜80質量%である。
【0106】
PVAは、ミニエマルションの保護コロイドを形成するために、水相に配合される分散剤であり、例えば、酢酸ビニルを主成分とするビニルモノマーを適宜の方法で重合して得られるポリ酢酸ビニル系重合体をけん化させることにより、得ることができる。
【0107】
PVAのけん化度は、例えば、70%以上、好ましくは、80%以上であり、また、例えば、99%以下、好ましくは、90%以下である。
【0108】
PVAの平均重合度は、例えば、300以上、好ましくは、500以上であり、また、例えば、4000以下、好ましくは、2500以下である。
【0109】
PVAは、4%水溶液の20℃における粘度が、例えば、3mPa・sec以上、好ましくは、5mPa・sec以上であり、また、例えば、100mPa・sec以下、好ましくは、50mPa・sec以下である。
【0110】
PVAの粘度は、20℃において、その4%水溶液をB型粘度計を用いて測定することができる。
【0111】
重合開始剤は、ミニエマルション重合で通常用いられる重合開始剤が挙げられ、例えば、油溶性重合開始剤、水溶性重合開始剤などが挙げられる。
【0112】
油溶性重合開始剤としては、例えば、ジラウロイルパーオキシド、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、ジイソプロピルパーオキシジカーボネート、ベンゾイルパーオキシドなどの油溶性有機過酸化物、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)などの油溶性アゾ化合物などが挙げられる。
【0113】
水溶性重合開始剤としては、例えば、2,2’−アゾビス(2−メチルプロピオンアミジン)二硫酸塩、2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]水和物、2,2’−アゾビス(N,N’−ジメチレンイソブチルアミジン)、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}二塩酸塩、2,2’−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)二塩酸塩、2,2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩酸塩、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二硫酸塩二水和物などの水溶性アゾ化合物、例えば、過硫酸カリウム、過硫酸ナトリウム(SPS)、過硫酸アンモニウムなどの過硫酸塩化合物、例えば、過酸化水素などの水溶性無機過酸化物、例えば、tert−ブチルパーオキサイド、クメンパーオキサイドなどの水溶性有機過酸化物などが挙げられる。さらに、水溶性重合開始剤として、例えば、水溶性アゾ化合物を除く水溶性重合開始剤と、アスコルビン酸、次亜硫酸水素ナトリウム、次亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトルム、ヒドロキシメタンスルフィン酸ナトリウム(ロンガリット)、二酸化チオ尿素、チオ硫酸ナトリウム、2価鉄塩、1価銅塩、アミン類などの水溶性還元剤とを組み合わせたレドックス系水溶性重合開始剤なども挙げられる。
【0114】
重合開始剤は、単独使用または2種類以上併用することができる。
【0115】
好ましくは、油溶性重合開始剤、さらに好ましくは、油溶性有機過酸化物が挙げられる。
【0116】
そして、本発明の徐放性粒子の製造方法では、まず、IPBCを疎水性の重合性ビニルモノマーで溶解することにより、疎水性溶液を調製する。
【0117】
すなわち、IPBCおよび重合性ビニルモノマーを配合して、それらを均一に攪拌することにより、疎水性溶液を得る。
【0118】
なお、疎水性溶液は、例えば、IPBCを溶解できる溶剤(ヘキサン、トルエン、酢酸エチルなどの疎水性の有機溶剤)、および/または、ハイドロホーブ(セチルアルコール、ヘキサデカンなどのコスタビライザー)を配合することなく、調製される。これにより、環境負荷を低減することができる。
【0119】
IPBCの重合性ビニルモノマーに対する配合割合は、質量基準(つまり、IPBCの質量部/重合性ビニルモノマーの質量部)で、例えば、0.01以上、好ましくは、0.05以上、より好ましくは、0.1以上、さらに好ましくは、0.2以上、とりわけ好ましくは、0.3以上であり、また、例えば、1.5以下、好ましくは、1.0以下、より好ましくは、0.75以下、より好ましくは、0.5以下である。
【0120】
疎水性溶液の調製は、例えば、常温で実施してもよく、あるいは、IPBCの重合性ビニルモノマーに対する溶解速度を高めるためには、加熱して実施することもできる。
【0121】
加熱温度は、例えば、30〜100℃、好ましくは、40〜80℃である。
【0122】
また、疎水性溶液の調製において、重合開始剤として油溶性重合開始剤が用いられる場合には、IPBCおよび重合性ビニルモノマーとともに、油溶性重合開始剤を配合する。油溶性重合開始剤の配合は、好ましくは、常温で実施する。IPBCおよび重合性ビニルモノマーを配合して、それらを加熱して、IPBCを重合性ビニルモノマーに溶解させた場合は、その溶液を室温に冷却し、その後、油溶性重合開始剤を配合する。
【0123】
油溶性重合開始剤の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上であり、例えば、5質量部以下、好ましくは、3質量部以下でもある。
【0124】
油溶性重合開始剤の配合割合が上記上限を超える場合には、重合体の分子量が過度に低下する場合があり、上記下限に満たない場合には、転化率が十分に向上せず、未反応の重合性ビニルモノマーが数%以上残存する場合がある。
【0125】
また、本発明の徐放性粒子の製造方法では、別途、水と乳化剤とPVAとを配合して乳化剤−PVA水溶液を調製する。
【0126】
具体的には、あらかじめPVA水溶液を調製しておき、これに水と乳化剤とを配合して、それらを均一に攪拌することにより、乳化剤−PVA水溶液を得る。
【0127】
乳化剤の配合割合は、乳化剤が疎水性溶液乳化液滴の全表面に吸着されるのに十分な量であり、過剰な乳化剤の存在によりIPBCを含まない新しい重合性ビニルモノマーの乳化重合粒子の発生を抑制する量が選ばれ、乳化剤の種類により異なるが、疎水性溶液に対して、例えば、乳化剤の有効成分(AI:Active Ingredient)量として、例えば、0.1〜20質量%、好ましくは、0.2〜10質量%である。
【0128】
PVAの配合割合は、PVAが疎水性溶液乳化液滴の全表面に吸着されるのに十分な量が選ばれ、PVAの種類により異なるが、疎水性溶液に対して、例えば、PVAの有効成分量として、例えば、0.5〜10質量%、好ましくは、1〜8質量%である。
【0129】
PVA水溶液の調製は、例えば、25℃以下の冷水に撹拌下にPVAを投入して分散させ、そのまま60〜90℃に昇温して溶解させる。PVAが完全に水に溶解したことを確認後、室温に冷却することにより実施することができる。
【0130】
また、乳化剤−PVA水溶液には、PVA以外の分散剤を含有することもできる。
【0131】
分散剤としては、例えば、芳香族スルホン酸とホルムアルデヒドとの縮合物、ポリカルボン酸型オリゴマーなどが挙げられ、好ましくは、芳香族スルホン酸とホルムアルデヒドとの縮合物が挙げられる。
【0132】
芳香族スルホン酸とホルムアルデヒドとの縮合物としては、例えば、β−ナフタリンスルホン酸ホルムアルデヒド縮合物のナトリウム塩などが挙げられる。
【0133】
これら分散剤は、単独使用または2種以上併用することができる。
【0134】
分散剤の配合割合は、例えば、疎水性溶液に対して、例えば、0.001質量%以上、好ましくは、0.01質量%以上であり、また、例えば、0.5質量%以下、好ましくは、0.3質量%以下、より好ましくは、0.2質量%以下である。
【0135】
なお、乳化剤−PVA水溶液の調製において、重合開始剤として水溶性重合開始剤が用いられる場合には、水、乳化剤およびPVA水溶液とともに、水溶性重合開始剤を配合する。水溶性重合開始剤の配合は、好ましくは、常温で実施する。
【0136】
水溶性重合開始剤の配合割合は、水100質量部に対して、例えば、0.01質量部以上、好ましくは、0.1質量部以上であり、例えば、5質量部以下、好ましくは、3質量部以下でもある。
【0137】
水溶性重合開始剤の配合割合が上記上限を超える場合には、重合体の分子量が過度に低下する場合があり、上記下限に満たない場合には、転化率が十分に向上せず、未反応の重合性ビニルモノマーが数%以上残存する場合がある。
【0138】
本発明の徐放性粒子の製造方法では、次いで、疎水性溶液を乳化剤−PVA水溶液中に乳化する。
【0139】
具体的には、疎水性溶液を乳化剤−PVA水溶液に配合し、それらに高い剪断力を与えることにより、疎水性溶液を乳化剤−PVA水溶液中に乳化させて、ミニエマルションを調製する。
【0140】
疎水性溶液の乳化では、例えば、ホモミキサー(ホモミクサー)、超音波ホモジナイザー、加圧式ホモジナイザー、マイルダー、多孔膜圧入乳化機などの乳化機が用いられ、好ましくは、ホモミキサーが用いられる。
【0141】
攪拌条件は、適宜設定され、ホモミキサーを用いる場合には、その回転数を、例えば、6000rpm以上、好ましくは、8000rpm以上、さらに好ましくは、10000rpm以上に、例えば、30000rpm以下に設定する。
【0142】
回転数が上記下限に満たない場合には、粒子径1μm未満のミニエマルション粒子が形成されない場合がある。
【0143】
攪拌時間は、例えば、1分間以上、好ましくは、2分間以上であり、また、1時間以下でもある。
【0144】
また、ミニエマルションの調製は、例えば、常温で実施してもよく、あるいは、加熱して実施することもできる。好ましくは、ミニエマルションの調製は、常温で実施する。
【0145】
加熱してミニエマルションを調製する場合は、加熱温度は、例えば、重合開始剤が分解する温度未満であり、具体的には、例えば、30℃以上、好ましくは、35℃以上であり、また、例えば、50℃以下、好ましくは、40℃以下である。
【0146】
疎水性溶液の配合割合は、乳化剤−PVA水溶液100質量部に対して、例えば、10〜150質量部、好ましくは、25〜90質量部である。
【0147】
上記の方法により、疎水性溶液のミニエマルションを調製する。なお、疎水性溶液のミニエマルションは、乳化剤が、ミニエマルション粒子(疎水性溶液乳化液滴)に吸着しており、水媒体中に、平均粒子径1μm未満の疎水性溶液のミニエマルション粒子が形成されている。
【0148】
ミニエマルション粒子の平均粒子径(メジアン径、後述)は、1μm未満、好ましくは、750nm以下、さらに好ましくは、500nm以下、とりわけ好ましくは、300nm以下に、また、例えば、50nm以上に調節される。
【0149】
なお、このミニエマルション粒子の表面には、乳化剤が吸着されており、それによって、ミニエマルションが安定化されている。
【0150】
そのため、攪拌により調製されたミニエマルションを、調製して静置した後、次のミニエマルション重合に供することもできる。その場合には、静置時間を、例えば、24時間以上にすることもできる。
【0151】
ミニエマルション粒子の平均粒子径は、経時的に実質的に変化しないか、あるいは、変化率が極めて小さい。
【0152】
具体的には、ミニエマルションの調製から20分経過(室温にて静置)後の平均粒子径に対する、調製から24時間経過(室温にて静置)後の平均粒子径の比(調製から24時間経過後の平均粒子径/調製から20分間経過後の平均粒子径)が、例えば、0.9〜1.1、好ましくは、0.95〜1.05である。
【0153】
本発明では、その後、乳化された疎水性溶液の重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、重合体を生成する。
【0154】
このミニエマルション重合は、原料となる重合性ビニルモノマーがすべてミニエマルション粒子(疎水性液相)のみにあることから、インサイチュ(in situ)重合である。
【0155】
すなわち、ミニエマルション重合は、ミニエマルションを攪拌しながら加熱することにより、重合性ビニルモノマーがそのまま、ミニエマルション粒子中で重合を開始し、重合体が生成する。
【0156】
攪拌は、例えば、攪拌羽根を有する攪拌器によって実施でき、ミニエマルションへの均一な熱伝導、ミニエマルション粒子の器壁固着、ミニエマルション表面でのミニエマルションの滞留膜張りを制御するに十分なかき混ぜ効果が実現できればよく、過剰な攪拌はミニエマルション粒子の凝集の原因となる。攪拌速度は、攪拌羽根の周速が、例えば、10m/分以上、好ましくは、20m/分以上であり、また、400m/分以下、好ましくは200m/分以下でもある。
【0157】
加熱条件では、加熱温度が、例えば、IPBCの融点(60℃)以上であり、具体的には、40〜100℃、好ましくは、60〜80℃である。なお、IPBCが重合体と相溶している状態でミニエマルション重合が進行することから、少なくとも重合末期、好ましくは、重合初期から、加熱温度が、IPBCの融点以上、すなわち、60℃以上であることが必要である。また、加熱時間は、例えば、2〜12時間、好ましくは、3〜8時間である。さらに、所定温度に加熱後、その温度を所定時間維持し、その後、加熱および温度維持を繰り返すことにより、段階的に加熱することもできる。
【0158】
MMAは少量でも、臭いが強いことが知られており、僅かに未反応で残存していても、環境を損ねる場合がある。そのため、例えば、MMAにおいては、労働安全衛生規則第九十五条の六に基づき、0.1%質量以上のMMAを含むものは、その取り扱い数量が年間500kg以上になった場合、報告書の提出が義務付けられている。このため、重合末期で残留するMMAを含む重合性ビニルモノマーの量(残存モノマー量)を低減するには、例えば、水相中に飽和溶解している残存重合性ビニルモノマーおよび徐放性粒子中の残存モノマーの両方を重合させるために、好ましくは、上記した水溶性重合開始剤を添加する。
【0159】
水溶性重合開始剤は、上記した水溶性重合開始剤と同様のものが挙げられる。好ましくは、過硫酸塩化合物が挙げられる。
【0160】
水溶性重合開始剤の配合割合は、重合性ビニルモノマー100質量部に対して、例えば、0.01〜0.5質量部である。
【0161】
その結果、重合終了時の残存モノマー量は、例えば、徐放性粒子乳濁液の0.1質量%未満、好ましくは、0.08質量%未満である。
【0162】
そして、ミニエマルション重合は、上記したように、重合プロセスがインサイチュ重合である点で、重合プロセスが、インサイチュ重合でなく、重合性ビニルモノマーが物質移動して重合する乳化重合と、明らかに相違する。
【0163】
具体的に、乳化重合は、水相中で、乳化剤、重合性ビニルモノマーおよび重合開始剤(ラジカル重合開始剤)の存在下、攪拌を行い、ラジカル重合開始剤が分解して生成したラジカルにより重合を開始させる。このとき、重合性ビニルモノマーは、以下の3つの状態で存在する。つまり、(1)乳化剤のミセル中に可溶化された状態(平均粒子径数十nm未満の状態)、(2)水相中に溶解した状態、(3)油滴として存在する状態(粒子径数μm以上)の3つの状態で重合性ビニルモノマーが存在する。
【0164】
そして、ラジカル重合開始剤の分解により生成したラジカルは、この3つ状態の重合性ビニルモノマーに衝突・侵入し、重合性ビニルモノマーに付加して重合を開始させる可能性があるが、上記した(1)重合性ビニルモノマーを可溶化した乳化剤のミセルは、上記した(3)重合性ビニルモノマーの油滴より、粒子の数が圧倒的に多く、そのため、表面積が大きくて、ラジカルの侵入確率が高いため、(1)乳化剤のミセルの中で重合が開始して、重合体粒子を形成する。なお、重合性ビニルモノマーとして水溶性の高い重合性ビニルモノマーを使用する場合には、上記した(2)水相中に溶解したビニルモノマーへのラジカル付加も併せて起こり、生成した重合体が水相に溶解できず析出した時点で乳化剤により安定化され、重合体粒子が生成する。このような開始反応も乳化重合のプロセスで観察される。
【0165】
そして、乳化重合が開始すると、(3)重合性ビニルモノマーの油滴から水相中に重合性ビニルモノマーが溶解し、次いで、重合性ビニルモノマーが重合体粒子に移動し、重合が進行する。すなわち、重合の場は、重合体粒子であり、重合性ビニルモノマーの油滴は、重合性ビニルモノマーの供給源としての役割を担うのみであり、その場で重合、つまり、インサイチュ重合は起こらない。
【0166】
これに対して、ミニエマルション重合は、乳化剤およびハイドロホーブ(コスタビライザー)の存在下、ホモミキサー(ホモミクサー)、高圧ホモジナイザー、超音波照射などによって水相中の重合性ビニルモノマーの油滴に高剪断力を与えることによって粒子径1μm未満、好ましくは、0.5μm未満に微小化し、重合開始剤(ラジカル重合開始剤)が油溶性である場合には、その微小でかつ安定な重合性ビニルモノマーの油滴内で、重合開始剤が分解して生成したラジカルにより、あるいは、重合開始剤が水溶性である場合には、ラジカルが水相から油滴に侵入して、侵入したラジカルにより、重合が開始し、ラジカル重合が進行する重合法である。
【0167】
詳しくは、粒子径1μm未満の微小な重合性ビニルモノマーの油滴は、例えば、乳化剤としてアニオン系乳化剤を採用することにより、安定に存在する。同時に、粒子径1μm未満の微小な重合性ビニルモノマーの油滴は、総表面積が大きくて、重合性ビニルモノマーが水相中に分子拡散し易いところ、ハイドロホーブ(コスタビライザー)を用いることにより、水相を介してより小さな(微小な)重合性ビニルモノマーの油滴からより大きな重合性ビニルモノマーの油滴への重合性ビニルモノマーの移動による肥大化(オストワルド熟成)を制御することにより、安定に存在する。
【0168】
一方、本発明においては、乳化剤による界面自由エネルギーの低下と大きな機械的な剪断力により生成したミニエマルション粒子(IPBCおよび重合性ビニルモノマーからなる微小な油滴)は、乳化剤とPVAとによりコロイド安定性を維持し、同時にIPBCがハイドロホーブの役割により粒子径の増大を抑制して、粒子を安定化している。このミニエマルション粒子中で重合性ビニルモノマーが重合(ラジカル重合)するミニエマルション重合が進行する。ミニエマルション重合中、重合性ビニルモノマーの重合体は、好ましくは、IPBCに対して相溶している。つまり、重合体がIPBCに溶解されて、重合体のIPBC溶液とされており、そのIPBC溶液粒子が、水中で乳化されている。
【0169】
また、重合性ビニルモノマーは、上記したミニエマルション重合中の重合温度(加熱温度)において、好ましくは、上記したように重合性ビニルモノマーの重合体とIPBCとが相溶するような組み合わせが選択されていることから、ミニエマルション重合中に相分離が生じることを防止して、重合体(反応途中の重合体)がIPBCに溶解し、あるいは、重合体(反応途中の重合体)がIPBCに対して膨潤した状態で反応が進行し、均一相が形成された徐放性粒子を得ることができる。
【0170】
また、重合中のミニエマルション粒子は、PVAの保護コロイドにより、安定な水和層を形成しているため、粒子間の衝突による凝集が起こりにくく、残存モノマー量を低減するために添加される、水溶性重合開始剤によるミニエマルション粒子の不安定化を防止することができる。すなわち、本発明の徐放性粒子の製造方法は、重合安定性に優れる。
【0171】
換言すると、ミニエマルション重合により1μm未満の安定な粒子を得るには、乳化剤で静電的に安定化されることが必要であるが、このような、静電的にのみ安定化された粒子は、電解質の添加により安定性を損なう。しかし、本発明のミニエマルション重合では、電解質を溶液中に添加した場合であっても、得られる粒子が安定化し、凝集物の発生を極めて少なくすることができる。
【0172】
その後、重合後の乳濁液を、例えば、放冷などによって冷却し、100目の濾布などで濾過することにより、徐放性粒子の乳濁液を得る。
【0173】
冷却温度は、例えば、室温(20〜30℃、より具体的には、25℃)である。
【0174】
IPBCは、融点が60℃であるので、冷却により重合性ビニルモノマーの重合体とIPBCの相溶状態が凍結されて、均一な相として徐放性粒子を形成している。
【0175】
徐放性粒子が粉剤(後述)または粒剤(後述)として製剤化される場合には、徐放性粒子が互いに融着することを防止すべく、好ましくは、室温において、硬質のガラス状態とされるように、重合性ビニルモノマーが選択される。
【0176】
また、防カビ性を付与させたい基体に、粘着性をもって付着することにより、防カビ性が発揮される場合は、軟質のゴム状態となるように、重合性モノマーが選択される。
【0177】
このようにして得られる徐放性粒子(重合体)の平均粒子径は、メジアン径で、1μm未満、好ましくは、750nm以下、さらに好ましくは、500nm以下、とりわけ好ましくは、300nm以下であり、また、例えば、10nm以上、好ましくは、50nm以上でもある。
【0178】
このメジアン径は、粒径アナライザー(FPAR−1000、大塚電子株式会社)を用いる動的光散乱法により、体積基準のメジアン径として測定することができる。
【0179】
また、徐放性粒子におけるIPBCの含有割合は、例えば、10質量%以上、好ましくは、20質量%以上であり、また、例えば、50質量%以下、好ましくは、40質量%以下である。
【0180】
これにより、IPBCが均一に存在する徐放性粒子が微分散された乳濁液を得ることができる。
【0181】
得られた乳濁液は、PVAのIPBCの針状結晶の生成と成長を制御する働きにより、乳濁液の貯蔵中に、IPBCの針状結晶が析出することを抑制することができる。
【0182】
また、この乳濁液は、ミニエマルション重合中、PVAの保護コロイド効果により、凝集が抑制されており、重合安定性の指標となる100目の濾布で濾過したときの濾布上残存物量は、徐放性粒子に対して、例えば、0.2質量%以下であり、好ましくは、0.1質量%以下である。
【0183】
また、1μm超の徐放性粒子の含有量(測定方法は後述)は、徐放性粒子全量に対して、例えば、30体積%以下、好ましくは、10体積%以下、より好ましくは、0体積%である。
【0184】
そして、徐放性粒子を含む乳濁液に、必要により、その他の分散剤、増粘剤、凍結防止剤、防腐剤、微生物増殖抑制剤、比重調節剤などの公知の添加剤を適宜配合する。
【0185】
このようにして得られた徐放性粒子は、そのままの状態(乳濁液)、つまり、乳濁剤として用いてもよく、また、スプレードライ、または、凍結・融解や、塩析などにより凝集させた後、遠心分離・洗浄・乾燥などによって固液分離を行い、例えば、粉剤または粒剤などの公知の剤型に製剤化して用いてもよい。また、とりわけ、第2モノマーとして(メタ)アクリル酸アルキルエステル(具体的には、例えば、n−BAなどの炭素数2以上のアルキル部分を有するアクリル酸アルキルエステル、例えば、メタクリル酸2−エチルヘキシルなどの炭素数5以上のアルキル部分を有するメタクリル酸アルキルエステル)を含む徐放性粒子は、ガラス転移温度が低いので、最低造膜温度(MFT)が低い。そのため、造膜性に優れ、そのため、造膜用途に好適に用いられる。
【0186】
そして、本発明の徐放性粒子の製造方法は、水と乳化剤とPVAとを含有する乳化剤−PVA水溶液中に乳化された疎水性溶液の重合性ビニルモノマーを、重合開始剤の存在下、ミニエマルション重合して、IPBCを含有する平均粒子径1μm未満の重合体を生成することにより、本発明の徐放性粒子を得るので、徐放性粒子は、分散性および貯蔵安定性に優れる。
【0187】
さらに、この徐放性粒子では、重合体は、溶解度パラメータδの双極子間力項δp,polymerが5.0〜7.0[(J/cm1/2]に、溶解度パラメータδの水素結合力項δh,polymerが8.0〜10.0[(J/cm1/2]に設定されるので、IPBCとの相溶性が、より一層顕著に優れている。その結果、重合体において、IPBCが均一に存在するように、IPBCを含有する。
【0188】
そして、徐放性粒子は、平均粒子径が1μm未満であるので、重力に基づく沈降が生じにくく、徐放性粒子のブラウン運動によって、乳濁液中に均一に分散しており、この乳濁液を各種水系媒体中に添加すると、液中に均一に分散させることができる。
【0189】
そのため、本発明の徐放性粒子は、添加された媒体中で平均粒子径1μm未満(サブミクロンサイズ)で均質(均一)に分散することにより、優れた徐放性と、優れた分散性および優れた貯蔵安定性とを有する徐放性粒子として、種々の用途に用いることができる。
【0190】
具体的には、徐放性粒子は、各種の工業製品に適用することができ、例えば、屋内外の塗料、ゴム、繊維、樹脂、プラスチック、接着剤、目地剤、シーリング剤、建材、コーキング剤、土壌処理剤、木材、製紙工程における白水、顔料、印刷版用処理液、冷却用水、インキ、切削油、化粧用品、不織布、紡糸油、皮革などに、抗生物活性(具体的には、防かび性)を発現する添加剤(防かび剤)として添加することができる。なお、これらの工業製品に対する徐放性粒子中のIPBCの添加量は、例えば、10mg/kg〜100g/kg(製品質量)である。
【0191】
また、この徐放性粒子は、乳化剤−PVA水溶液に配合される乳化剤と共通する乳化剤が用いられる水性塗料に好適に配合することができる。水性塗料は、屋内外に用いられる水性塗料であって、具体的には、例えば、アクリル系、アクリル−スチレン系、スチレン系、酢酸ビニル系、酢酸ビニル−アクリル系、ポリエステル系、シリコーン系、ウレタン系、アルキッド系、フッ素系の樹脂のエマルションまたは水性樹脂およびこれらの混合物などをビヒクルとする塗料が挙げられ、なかでも、ゼロVOC塗料に配合すれば、環境に優しく、かつ、徐放性粒子の安定性を良好に維持して、効力持続性の向上を、より一層図ることができる。
【0192】
また、IPBCがミニエマルション重合におけるハイドロホーブを兼用することができるので、別途、ハイドロホーブを配合することなく、簡易に、平均粒子径1μm未満の徐放性粒子を生成することができる。
【0193】
また、徐放性粒子の平均粒子径が、750nm以下100nm以上であれば、徐放性粒子の屈折率と媒体の屈折率との間に、例えば、0.2以上の差がある場合には、徐放性粒子と媒体との界面で、光(可視光線、波長360〜760nm)の反射が大きく、媒体に配合された徐放性粒子は、目視で白色に見えるようになる。
【0194】
さらに、徐放性粒子の平均粒子径が、100nm未満であれば、媒体によらず光(可視光線、波長360〜760nm)は徐放性粒子を透過する割合が高くなり、透明感が強くなる。
【0195】
従って、適当な媒体に配合された本発明の徐放性粒子は、IPBCが、実質的に変色しても、目視では変色が抑えられるので、塗料の添加剤として好適に用いることができる。
【実施例】
【0196】
各実施例および各比較例で用いる原料または測定方法の詳細を次に記載する。
【0197】
IPBC:商品名「ファンギトロール400」、3−ヨード−2−プロピニルブチルカルバメート、分子量281、融点:60℃、水への溶解度:150ppm、溶解度パラメータδの双極子間力項δp,IPBC:3.23[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,IPBC:7.83[(J/cm1/2]、インターナショナル・スペシャリティ・プロダクツ社製
エポキシコナゾール:cis−1−[[3−(2−クロロフェニル)−2−(4−フルオロフェニル)オキシラニル]メチル]−1H−1,2,4−トリアゾール、分子量330、融点:136〜137℃、水への溶解度:6.6ppm、溶解度パラメータδの双極子間力項δp,エポキシコナゾール:5.82[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,エポキシコナゾール:7.1[(J/cm1/2]、LKT ラボラトリーズ社製
トリチコナゾール:5−[(4−クロロフェニル)メチレン]−2,2−ジメチル−1−(1H−1,2,4−トリアゾール−1−イルメチル)シクロペンタノール、分子量318、融点:139〜141℃、水への溶解度:9.3ppm、溶解度パラメータδの双極子間力項δp,トリチコナゾール:5.27[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,トリチコナゾール:10.81[(J/cm1/2]、LKT ラボラトリーズ社製
MMA:メタクリル酸メチル、商品名「アクリエステルM」、水への溶解度:1.6質量%、溶解度パラメータδの双極子間力項δp,1st monomer unit:5.98[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,1st monomer unit:9.25[(J/cm1/2]、三菱レイヨン社製
n−BA:アクリル酸n−ブチル、水への溶解度:0.2質量%、溶解度パラメータδの双極子間力項δp,2nd monomer unit:4.26[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,2nd monomer unit:7.81[(J/cm1/2]、日本触媒社製
EGDMA:エチレングリコールジメタクリレート、商品名「ライトエステルEG」、水への溶解度:不溶、溶解度パラメータδの双極子間力項δp,1st monomer unit:5.37[(J/cm1/2]、溶解度パラメータδの水素結合力項δh,1st monomer unit:10.42[(J/cm1/2]、共栄社化学社製
MAA:メタクリル酸、水への溶解度:8.9質量%、モノマー単位としての溶解度パラメータδの双極子間力項δp,2nd monomer unit:7.13[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,2nd monomer unit:13.03[(J/cm1/2]、三菱レイヨン社製
ステアリルアクリレート:モノマー単位としての溶解度パラメータδの双極子間力項δp,2nd monomer unit:1.44[(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,2nd monomer unit:4.54[(J/cm1/2]、和光純薬工業社製
エレミノールRS−3000:商品名、メタクリロイルオキシポリオキシプロピレン硫酸エステルナトリウム塩50%水溶液、重合反応性乳化剤(ノニオン性親水基を有するアニオン系乳化剤)、三洋化成工業社製
PETA:ペンタエリスリトールテトラアクリレートモノマー単位としての溶解度パラメータδの双極子間力項δp,2nd monomer unit:3.79(J/cm1/2]、モノマー単位としての溶解度パラメータδの水素結合力項δh,2nd monomer unit:10.41[(J/cm1/2]、アルドリッチ社製
パーロイルL:商品名(「パーロイル」は登録商標)、ジラウロイルパーオキシド、日油社製
ネオコールSW−C:商品名、ジオクチルスルホコハク酸ナトリウム(アニオン系乳化剤)の70質量%イソプロパノール溶液、第一工業製薬社製
ノイゲンEA−177:商品名、ポリオキシエチレンスチレン化フェニルエーテル(ノニオン系乳化剤、HLB:15.6)、第一工業製薬社製
PVA205:商品名、ポリビニルアルコール、けん化度:87.0〜89.0%、重合度:500、粘度(4%水溶液、20℃):5.0〜6.0mPa・sec、クラレ社製
PVA217:商品名、ポリビニルアルコール、けん化度:87.0〜89.0%、重合度:1700、粘度(4%水溶液、20℃):22.0〜27.0mPa・sec、クラレ社製
PVA224:商品名、ポリビニルアルコール、けん化度:87.0〜89.0%、重合度:2400、粘度(4%水溶液、20℃):42.0〜50.0mPa・sec、クラレ社製
デモールNL:商品名、β−ナフタレンスルホン酸ホルムアルデヒド縮合物ナトリウム塩、分散剤、花王ケミカル社製
メトローズ90SH−50:商品名、ヒドロキシプロピルメチルセルロール、粘度(2%水溶液,20℃):50mPa・sec、信越化学工業社製
メトローズ90SH−100:商品名、ヒドロキシプロピルメチルセルロール、粘度(2%水溶液,20℃):100mPa・sec、信越化学工業社製
SPS:過硫酸ナトリウム(SPS)、水溶性重合開始剤、和光純薬工業社製
なお、表1〜表6について、「%」は、特に断りがない限り、「質量%」を示す。
【0198】
実施例1
(ミニエマルション重合による、IPBCを含有する徐放性粒子の製造)
200mLの容器に、IPBC25g、MMA70.5g、EGDMA4.5gおよびパーロイルL 0.5gを仕込み、室温で攪拌することにより、均一な疎水性溶液を調製した。
【0199】
別途、500mLのビーカーに、脱イオン水106.3g、ネオコールSW−C1.0g、PVA217(10%)水溶液40gおよびデモールNL0.24gを仕込み、室温で攪拌することにより、均一な乳化剤−PVA水溶液を調製した。
【0200】
次いで、500mLビーカーの乳化剤−PVA水溶液に、疎水性溶液を加え、T.K.ホモミクサーMARK2.5型(プライミクス社製)により回転数14000rpmで5分間攪拌することにより、疎水性溶液を乳化剤−PVA水溶液中に乳化させて、ミニエマルションを調製した。
【0201】
その後、調製したミニエマルションを、攪拌器、還流冷却器、温度計および窒素導入管を装備した300mLの4口フラスコに移し、窒素気流下、6cm径の攪拌器により回転数125rpm(周速23.6m/分)で攪拌しながら、4口フラスコをウォーターバスにより、昇温して、ミニエマルション重合を実施した。
【0202】
ミニエマルション重合は、55℃到達時点を重合開始とし、その後、62±2℃で3時間、70±2℃で2時間、連続して実施した。
【0203】
続いて、ウォーターバスを、反応液の温度が80±2℃となるように昇温し、SPS(5%)水溶液2gを1時間かけて供給しながら(SPS追添加)、その温度で2時間、熟成した。
【0204】
その後、反応液を30℃以下に冷却することにより、IPBCを含有する徐放性粒子の乳濁液を得た。
【0205】
その後、乳濁液を、100目の濾布で濾過した後、濾液中の徐放性粒子のメジアン径を測定したところ、その結果が435nmであった。
【0206】
この乳濁液は、通常のポリマーラテックスと同様に安定したコロイド分散液であり、室温で貯蔵中に徐放性粒子の沈降や相分離の傾向は認められなかった。
【0207】
実施例2〜17
表1〜表5に準拠して、各成分の配合処方および条件を変更した以外は、実施例1と同様に処理して、徐放性粒子の乳濁液を得た。
【0208】
実施例2〜17のいずれの乳濁液も、通常のポリマーラテックスと同様に安定したコロイド分散液であり、室温で貯蔵中に粒子の沈降や相分離の傾向は認められなかった。
【0209】
比較例1〜11および比較例15、16
表3、表4および表6に準拠して、各成分の配合処方および条件を変更した以外は、実施例1と同様に処理して、徐放性粒子の乳濁液を得た。
【0210】
比較例12
(乳化重合による、IPBCを含有する徐放性粒子の製造)
攪拌器、還流冷却器、温度計および窒素導入管を装備した300mLの4口フラスコに脱イオン水50g、ネオコールSW−C 0.1g、PVA217(10%)水溶液4gおよびデモールNL 0.24gを仕込み、室温で撹拌することにより、均一な乳化剤−PVA水溶液とした。
【0211】
200mLの容器に、MMA70.5g、およびEGDMA4.5gを仕込み、室温で攪拌することにより、均一なモノマー混合液を調製した。
【0212】
該モノマー混合液の0.75gを2mLの密栓つきガラスビンに小分けした。残りのモノマー混合液にIPBC25gを添加し、室温で攪拌することにより、均一な疎水性溶液を調製した。
別途、500mLのビーカーに、脱イオン水36.66g、ネオコールSW−C 0.9gおよびPVA217(10%)水溶液36gを仕込み、室温で攪拌することにより、均一な乳化剤−PVA水溶液を得た。
【0213】
次いで、500mLビーカーの乳化剤−PVA水溶液に、疎水性溶液を加え、T.K.ホモディスパー2.5型(プライミクス社製)により回転数500rpmで5分間攪拌することにより、疎水性溶液を乳化剤−PVA水溶液中に水分散させて、IPBCモノマー混合液のエマルションを調製した。
乳化剤−PVA水溶液54.34gを仕込んだ攪拌器、還流冷却器、温度計および窒素導入管を装備した300mLの4口フラスコを6cm径の攪拌器により回転数125rpm(周速23.6m/分)で攪拌しながら、窒素気流下、昇温した。50℃到達時に、小分けしていたモノマー混合液0.75gを添加し、70℃到達時に過硫酸ナトリウム(SPS)0.1gを添加して、乳化重合シード粒子の合成を開始した。
20分間、70±2℃でシード粒子の調製を行った後、同温度でIPBCモノマー混合液のエマルション(撹拌を継続してエマルション状態を維持したもの)、およびSPS(2%)水溶液20gを4時間でフィードを行い、乳化重合を行った。エマルションフィード終了後、80℃に昇温した。過硫酸ナトリウム(SPS)(5%)水溶液2gを1時間にわたってフィードし、昇温時間を含め、80±2℃で熟成反応を行った。
【0214】
。反応はエマルションフィードが約25%進行した頃より、凝集が顕著となり、エマルションフィード終了時には、おから状(凝集物が塊状となり不均一な高粘度物、高濃度パルプ液状)の反応物を生成した。さらに、室温に冷却した反応物はゲル化した。
【0215】
比較例13
(ミニエマルション重合による、エポキシコナゾールを含有する徐放性粒子の製造)
表6に準拠して、各成分の配合処方および条件を変更した以外は、実施例1と同様に処理して、徐放性粒子の乳濁液を得ようと試みた。
【0216】
しかしながら、エポキシコナゾールと、MMAおよびEGDMAとが相溶しなかった。つまり、エポキシコナゾールが、MMAおよびEGDMAに対して溶解しなかった。
【0217】
そのため、均一な疎水性溶液を調製できず、それ以降の工程を実施しなかった。
【0218】
比較例14
(ミニエマルション重合による、トリチコナゾールを含有する徐放性粒子の製造)
表6に準拠して、各成分の配合処方および条件を変更した以外は、実施例1と同様に処理して、徐放性粒子の乳濁液を得ようと試みた。
【0219】
しかしながら、トリチコナゾールと、MMAおよびEGDMAとが相溶しなかった。つまり、トリチコナゾールが、MMAおよびEGDMAに対して溶解しなかった。
【0220】
そのため、均一な疎水性溶液を調製できず、それ以降の工程を実施しなかった。
【0221】
(配合処方および条件)
実施例および比較例における配合処方および条件を表1〜表6に記載する。
【0222】
【表1】
【0223】
【表2】
【0224】
【表3】
【0225】
【表4】
【0226】
【表5】
【0227】
【表6】
【0228】
実施例5の配合処方および条件については、表1の他にも、表6に記載する。
【0229】
(評価)
1. 乳濁液の性状
(1)徐放性粒子の粒子径の測定
乳濁液を100目の濾布で濾過した濾液について、粒径アナライザー(FPAR−1000、大塚電子株式会社)を用いる動的光散乱法により、体積基準のメジアン径として測定した。
【0230】
その結果を表1〜表6に示す。
(2)1μm超の徐放性粒子の含有量
上記「(1)徐放性粒子の粒子径の測定」を実施すると同時に、得られる「散乱強度分布、頻度分布テーブル表」より、粒子径が1μm以下の累計頻度をX%とし、(100−X)%を1μm超の徐放性粒子の含有量とした。
【0231】
その結果を表1〜表6に示す。
(3)100目濾布残存量(重合安定性)
乳濁液を100目の濾布で濾過し、濾布上の残存物を風乾した量(質量%)を、徐放性粒子を基準にして、算出した。
【0232】
その結果を表1〜表6に示す。
(4)残存モノマー
乳濁液を100目の濾布で濾過した濾液について、島津製作所製ガスクロマトグラフィーを用いて、次の測定条件で残存モノマー量を測定した。先ず、MMAを標品とし、内部標準をシクロヘキサノンとし、希釈溶媒にメタノールを用いて検量線用標準溶液を調製し、パイロライザー220℃×20秒で気化させる方法で、検量線を作成した。乳濁液試料4gに内部標準液を加え、メタノールで全量10gとした試料液を、標準溶液と同様の測定条件で、残存モノマーを定量した。
【0233】
その結果を表1〜表6に示す。
2. 貯蔵安定性
下記の測定方法により、貯蔵安定性を評価した。
【0234】
密栓付ガラスビンに所定の乳濁液を量りこみ、40℃の恒温室に静置した。静置開始1日後、4日後、20日後、2ケ月経過後に100目濾布で濾過を行い、濾布上の残存物を風乾した量(質量%)を、徐放性粒子を基準にして、算出するとともに、光学顕微鏡により濾布上の残存物を観察した。
【0235】
そして、乳濁液の調製から2ヶ月経過後まで、IPBCの針状結晶の析出が見られなかった場合を◎と評価し、乳濁液の調製から2ヶ月経過後までに、徐放性粒子の凝集物の生成が見られたが、IPBCの針状結晶の析出が見られなかった場合を○と評価し、乳濁液の調製から2ケ月経過後までに、IPBCの針状結晶の析出が見られた場合を×と評価した。
【0236】
その結果を表1〜表6に示す。
3. TEM(透過型電子顕微鏡、Transmission Electron Microscope)観察
実施例2の乳濁液を自然乾燥し、ビスフェノール型液状エポキシ樹脂に分散して、アミンで硬化させた。これをウルトラミクロトームで切断することにより断面を出し、四酸化ルテニウムで染色し、これをウルトラミクロトームで超薄切片に切り出して、サンプルを調製した。調製したサンプルを、透過型電子顕微鏡(型番「H−7100」、日立製作所社製)で、TEM観察した。
【0237】
実施例2のTEM写真の画像処理図を、図1および図2に示す。
【0238】
図1および図2から明らかなように、徐放性粒子の内層(内部)は、相分離の無い均一な構造であることが分かる。
4. SEM(走査型電子顕微鏡、Scanning Electron Microscope)観察
比較例15および比較例16で得られた乳濁液を自然乾燥し、さらに、金属コート(導電処理)して、サンプルを調製した。調製したサンプルを、走査型電子顕微鏡(型番「S−3000」、日立ハイテクノロジーズ社製)で、SEM観察した。
【0239】
比較例15および比較例16のSEM写真の画像処理図のそれぞれを、図4および図5のそれぞれに示す。
【0240】
比較例15および比較例16ともに、IPBCの針状結晶が観察された。特に、比較例16では、多量の針状結晶が観察された。
5. IPBCを含有する徐放性粒子(実施例1〜実施例17)およびコントロールとしてのIPBC懸濁液の徐放性試験
IPBC懸濁液(コントロール)の調製
特開2007−204441号公報の実施例3に従い、IPBC 30質量部、メトローズ90SH−100 2質量部、DKエステルF−160(蔗糖脂肪酸エステル、第一工業製薬社製)1.5質量部、ペレックスSSL(アルキルジフェニルエーテルスルホン酸ナトリウム)0.6質量部およびイオン交換水65.9質量部からなるIPBC懸濁液を調製した。
【0241】
以下の操作に従って、IPBCを含有する実施例1〜実施例17の徐放性粒子について、IPBC懸濁液をコントロールとしてIPBCの徐放性試験を実施した。
【0242】
すなわち、まず、実施例1〜実施例17の乳濁液(IPBC濃度10質量%)と、コントロールとしての、上記IPBC懸濁液(IPBC濃度30質量%)とを、それぞれ、徐放性試験のサンプルとして用意した。
【0243】
次いで、ポリプロピレン製50mL遠沈管3本に、用意したサンプルをIPBC質量として、それぞれ20mgとなる量で投入し、次いで、脱イオン水で総量40gとして、IPBC濃度0.05質量%のIPBC含有液を調製した。
【0244】
次いで、この遠沈管3本を振とう機(タイテック・コーポレーション製 TAITEC RECIPRO SHAKER SR−1)にかけて140回/分の振とうを実施し、所定時間毎に振とうを止めて、遠沈管を遠心分離機(マイクロ冷却遠心機3740、久保田製作所社製)にかけて15000rpm、5分間で固液分離した。
【0245】
固体部は、脱イオン水を添加して総量40gとし、ミクロスパーテルで再分散後、再度、振とう機にかけて振とうを継続した。
【0246】
一方、液体部は、島津製作所製HPLCを用いて、IPBCを定量し、徐放率を算出した。
【0247】
各振とう時間における徐放率は、積算値(つまり、総徐放率)として算出した。
【0248】
その結果を図3に示す。
【0249】
ミニエマルション重合により得られた実施例1〜実施例17の徐放性粒子は、コントロールであるIPBC懸濁液のIPBCに比べて、徐放速度が遅いことが確認された。
【産業上の利用可能性】
【0250】
本発明の徐放性粒子は、各種の工業製品に適用することができ、例えば、屋内外の塗料、ゴム、繊維、樹脂、プラスチック、接着剤、目地剤、シーリング剤、建材、コーキング剤、土壌処理剤、木材、製紙工程における白水、顔料、印刷版用処理液、冷却用水、インキ、切削油、化粧用品、不織布、紡糸油、皮革などに、抗生物活性(防かび性)を発現する添加剤として添加することができる。
図5
図6
図7
図8
図9
図1
図2
図3
図4