(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0008】
以下、図面を参照して、本発明の実施の形態について説明する。
【0009】
(第一の実施の形態)
以下、
図1から
図4を参照して、本発明の第一の実施の形態による電源装置100について説明する。
【0010】
まず、
図1及び
図2を参照して、電源装置100の構成について説明する。
【0011】
電源装置100は、二次電池1とキャパシタ2とを組み合わせて負荷に電源を供給するものである。この負荷は、二次電池1とキャパシタ2とから電源が供給されて電動機5を駆動するインバータ50である。電源装置100は、HEV(Hybrid Electric Vehicle:ハイブリッド車両)やEV(Electric Vehicle:電動車両)などに適用される。
【0012】
最初に、電源装置100から電源が供給されるインバータ50と、インバータ50によって駆動される電動機5とについて説明する。
【0013】
電動機5は、HEVやEVに搭載される駆動用モータである。電動機5は、三相交流で回転磁界を生成して駆動される三相誘導モータジェネレータである。電動機5は、U相,V相,及びW相をそれぞれ構成する複数のコイル(図示省略)を内周に有する固定子と、永久磁石を有し固定子の内周を回転する回転子とを備える。電動機5は、固定子が車体(図示省略)に固定され、回転子の回転軸が車輪の車軸(図示省略)に連結される。電動機5は、電気エネルギを車輪の回転に変換することが可能であるとともに、車輪の回転を電気エネルギに変換することが可能である。
【0014】
インバータ50は、二次電池1とキャパシタ2とから供給された直流電力から交流電力を生成する電流変換機である。インバータ50は、定格電圧が600Vであり、駆動可能な最低電圧が350Vである。この最低電圧が、負荷を駆動可能な最低電圧に該当する。
【0015】
インバータ50は、二次電池1とキャパシタ2とから供給された直流電力を、120度ずつ位相のずれたU相,V相,及びW相からなる三層の交流に変換して電動機5に供給する。
【0016】
インバータ50は、正側電力線51aと、負側電力線51bと、U相電力線51uと、V相電力線51vと、W相電力線51wとを有する。正側電力線51aは、二次電池1及びキャパシタ2の正極に接続される。負側電力線51bは、二次電池1及びキャパシタ2の負極に接続される。正側電力線51aと負側電力線51bとの間には、U相電力線51u,V相電力線51v,及びW相電力線51wが設けられる。また、正側電力線51aと負側電力線51bとの間には、二次電池1及びキャパシタ2とインバータ50との間で授受される直流電力を平滑化する平滑コンデンサ55が並列接続される。
【0017】
インバータ50は、六つのスイッチング素子としてのIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)53u,54u,53v,54v,53w,及び54wを有している。これらのIGBT53u〜54wは、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。
【0018】
IGBT53uとIGBT54uとは、U相電力線51uに直列に設けられる。U相電力線51uは、IGBT53uとIGBT54uとの間が、電動機5のU相を構成するコイルに接続される。IGBT53vとIGBT54vとは、V相電力線51vに直列に設けられる。V相電力線51vは、IGBT53vとIGBT54vとの間が、電動機5のV相を構成するコイルに接続される。IGBT53wとIGBT54wとは、W相電力線51wに直列に設けられる。W相電力線51wは、IGBT53wとIGBT54wとの間が、電動機5のW相を構成するコイルに接続される。
【0019】
インバータ50は、IGBT53u,54u,53v,54v,53w,及び54wが、モータコントローラ(図示省略)によって制御されることによって、交流電流を生成して電動機5を駆動している。
【0020】
次に、電源装置100の構成について説明する。
【0021】
電源装置100は、二次電池1を有する二次電池電源部11と、キャパシタ2を有するキャパシタ電源部21と、二次電池1とキャパシタ2とからのインバータ50への電源の供給を制御するコントローラ30(
図2参照)とを備える。二次電池電源部11とキャパシタ電源部21とは、並列に接続される。つまり、二次電池1とキャパシタ2とは、並列に接続される。
【0022】
二次電池1は、リチウムイオン二次電池やニッケル水素二次電池などの化学電池である。ここでは、二次電池1の電圧は、300Vに設定される。二次電池1には、SOC(State of Charge:充電状態)を検出し、対応する信号をコントローラ30に送信する二次電池SOC検出器1a(
図2参照)が設けられる。
【0023】
キャパシタ2は、直列に複数接続して所望の電圧に設定されるとともに、並列に複数接続して所望の蓄電容量に設定される電気二重層キャパシタである。ここでは、キャパシタ2の電圧は、600Vに設定される。キャパシタ2には、電圧を検出し、対応する信号をコントローラ30に送信するキャパシタ電圧検出器2a(
図2参照)が設けられる。
【0024】
キャパシタ電源部21は、キャパシタ2の電圧が電動機5を駆動可能な電圧である場合に、接続状態に切り換えらえるバイパススイッチ22と、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回った場合に、キャパシタ2の電圧を昇圧してインバータ50に供給可能とするDC−DCコンバータ25(第一のDC−DCコンバータ)とを備える。
【0025】
バイパススイッチ22は、コントローラ30によって開閉制御される。バイパススイッチ22は、接続状態に切り換えられたときに、キャパシタ2からインバータ50に電源を直接供給可能とするものである。バイパススイッチ22が遮断状態に切り換えられると、キャパシタ2からインバータ50に電源を直接供給することはできない。この場合、キャパシタ2からインバータ50への電源の供給は、DC−DCコンバータ25を介して行われることとなる。
【0026】
また、バイパススイッチ22は、接続状態に切り換えられたときに、電動機5によって発電された電力を、DC−DCコンバータ25を経由しないでキャパシタ2に直接充電可能とする。これにより、キャパシタ2の充電時のエネルギロスを減らすことができる。
【0027】
DC−DCコンバータ25は、キャパシタ2の電圧を昇圧して電動機5に供給することが可能であるとともに、電動機5によって発電された電力を降圧してキャパシタ2に充電することが可能である。
【0028】
DC−DCコンバータ25は、キャパシタ2の下流に設けられるリアクトル26と、リアクトル26と電動機5の上流との間に設けられる降圧制御トランジスタ27と、リアクトル26と電動機5の下流との間に設けられる昇圧制御トランジスタ28と、キャパシタ2と並列に接続される平滑コンデンサ29とを備える。
【0029】
リアクトル26は、昇圧制御トランジスタ28がオンのときにエネルギを蓄積する。そして、昇圧制御トランジスタ28がオフになったときには、キャパシタ2から入力される電圧と、リアクトル26に蓄積されたエネルギによる誘導起電力とが出力される。これにより、リアクトル26は、昇圧制御トランジスタ28によるスイッチングによって、入力電圧を昇圧して出力することが可能である。
【0030】
昇圧制御トランジスタ28は、コントローラ30によってスイッチングされる。昇圧制御トランジスタ28は、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。昇圧制御トランジスタ28は、リアクトル26の電流をスイッチングして、電動機5へ供給される供給電圧を誘導起電力によって昇圧することが可能である。
【0031】
昇圧制御トランジスタ28がオンにスイッチングされると、キャパシタ2の正極からの電流は、リアクトル26と昇圧制御トランジスタ28とを経由してキャパシタ2の負極に流れる。この電流のループによって、リアクトル26にエネルギが蓄積される。
【0032】
降圧制御トランジスタ27は、コントローラ30によってスイッチングされる。降圧制御トランジスタ27は、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。降圧制御トランジスタ27は、スイッチングによって電動機5からの充電電圧を降圧可能なものである。降圧制御トランジスタ27は、電動機5が発電した電力を、チョッパ制御によって降圧してキャパシタ2に充電するものである。
【0033】
平滑コンデンサ29は、降圧制御トランジスタ27がチョッパ制御を行って出力された電圧を平滑化するものである。これにより、電動機5によって発電された電力をキャパシタ2に充電する際の電圧を平滑化して安定させることができる。
【0034】
二次電池電源部11は、キャパシタ2からの電源によってインバータ50を駆動できなくなった場合に、二次電池1の電圧を昇圧して電動機5に供給可能とするDC−DCコンバータ15(第二のDC−DCコンバータ)を備える。
【0035】
DC−DCコンバータ15は、二次電池1の電圧を昇圧して電動機5に供給することが可能であるとともに、電動機5によって発電された電力を降圧して二次電池1に充電することが可能である。
【0036】
DC−DCコンバータ15は、二次電池1の下流に設けられるリアクトル16と、リアクトル16と電動機5の上流との間に設けられ、スイッチングによって電動機5からの充電電圧を降圧可能な降圧制御トランジスタ17と、リアクトル16と電動機5の下流との間に設けられ、リアクトル16の電流をスイッチングして、電動機5へ供給される供給電圧を誘導起電力によって昇圧可能な昇圧制御トランジスタ18とを備える。これらの構成は、DC−DCコンバータ25と同様であるため、ここでは詳細な説明を省略する。
【0037】
コントローラ30(
図2参照)は、電源装置100の制御を行うものである。コントローラ30は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、及びI/Oインターフェース(入出力インターフェース)を備えたマイクロコンピュータである。RAMは、CPUの処理におけるデータを記憶する。ROMは、CPUの制御プログラム等を予め記憶する。I/Oインターフェースは、接続された機器との情報の入出力に使用される。CPUやRAMなどを、ROMに格納されたプログラムに従って動作させることによって、電源装置100の制御が実現される。
【0038】
次に、
図3及び
図4を参照して、コントローラ30による電源装置100の制御について説明する。コントローラ30は、
図3に示されるルーチンを、例えば10ミリ秒ごとの一定時間隔で繰り返し実行する。
図4では、横軸は時間であり、縦軸は上から順に電動機5の駆動力,キャパシタ2の出力電圧,二次電池1の出力電圧,及びインバータ50の入力電圧である。
【0039】
ステップ101では、コントローラ30は、キャパシタ電圧検出器2aが検出したキャパシタ2の電圧を読み込む。
【0040】
ステップ102では、コントローラ30は、キャパシタ2の電圧が第一設定電圧以上であるか否かを判定する。ステップ102にて、キャパシタ2の電圧が第一設定電圧以上であると判定された場合には、ステップ103に移行して、リターンする。一方、ステップ102にて、キャパシタの電圧が第一設定電圧よりも低いと判定された場合には、ステップ104に移行する。
【0041】
この第一設定電圧は、インバータ50を駆動可能な最低電圧と比較して余裕電圧分だけ高い値に設定される。ここでは、インバータ50を駆動可能な最低電圧は350Vであるため、第一設定電圧は、350Vよりも少し高い値に設定される。
【0042】
ステップ103では、コントローラ30は、バイパススイッチ22を接続状態とする。これにより、キャパシタ2からインバータ50に電源が直接供給されて、電動機5が駆動されることとなる。
【0043】
この状態は、
図4におけるt
0からt
1の間の時間に相当する。具体的には、t
0から電動機5によるEV走行が開始され、キャパシタ2の電圧は、消費された電気エネルギの分だけ比例的に降下する。そして、このEV走行は、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧に近づき、上述した第一設定電圧を下回るまで継続される。
【0044】
このとき、キャパシタ2からインバータ50に電源が直接供給されるため、エネルギロスが小さい。よって、キャパシタ2の特性を活かして、大電流を瞬時にインバータ50に供給することが可能である。
【0045】
ステップ104では、コントローラ30は、バイパススイッチ22を遮断状態とする。これにより、キャパシタ2からインバータ50に電源が直接供給されなくなる。このとき、キャパシタ2内には、電気エネルギが残存している。電気エネルギの減少が電圧の降下に比例すると考えた場合、600Vから350Vまで降圧したキャパシタ2内には、フル充電のときを100%とすると約34%の電気エネルギが残存していることとなる。
【0046】
従来は、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回ると、キャパシタ2内に電気エネルギが残存しているにも関わらず、キャパシタ2からのインバータ50の駆動は行われなかった。そこで、電源装置100では、以下のようにして、キャパシタ2内に残存する電気エネルギを利用している。
【0047】
ステップ105では、コントローラ30は、キャパシタ2の電圧が第二設定電圧以上であるか否かを判定する。ステップ105にて、キャパシタ2の電圧が第二設定電圧以上であると判定された場合には、ステップ106に移行して、リターンする。一方、ステップ105にて、キャパシタの電圧が第二設定電圧よりも低いと判定された場合には、ステップ107に移行して、リターンする。
【0048】
この第二設定電圧は、キャパシタ2が作動可能な最低電圧である最低作動電圧と比較して余裕電圧分だけ高い値に設定される。また、第二設定電圧は、上述した第一設定電圧と比較して低い値に設定される。
【0049】
ステップ106では、コントローラ30は、DC−DCコンバータ25によって昇圧されたキャパシタ2からの電源をインバータ50に供給する。このように、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、DC−DCコンバータ25がキャパシタ2の電圧を昇圧してインバータ50に供給する。
【0050】
この状態は、
図4におけるt
1からt
2の間の時間に相当する。具体的には、キャパシタ2の電圧がDC−DCコンバータ25によって昇圧されてインバータ50に供給されるため、t
0から開始されたEV走行がt
1を過ぎてもt
2まで継続されることとなる。このときもまた、キャパシタ2の実際の電圧は、一点鎖線で示すように、消費された電気エネルギの分だけ比例的に降下している。そして、このEV走行は、キャパシタ2の実際の電圧が最低作動電圧に近づき、上述した第二設定電圧を下回るまで継続される。
【0051】
以上のように、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、キャパシタ2内に残存した電気エネルギを用いてインバータ50を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
【0052】
また、キャパシタ2の電気エネルギを有効に活用できるため、同じ電気エネルギをインバータ50に出力するために必要なキャパシタ2の容量を小さくできる。よって、キャパシタ2の小型軽量化が可能である。また、電源装置100がHEVに適用される場合には、従来と比較してEV走行可能な距離が長くなるため、エンジンによる燃料消費量を低減することができる。
【0053】
一方、ステップ107では、コントローラ30は、DC−DCコンバータ15によって昇圧された二次電池1からの電源をインバータ50に供給する。ステップ107では、キャパシタ2内の電気エネルギは既に使用不可能なレベルまで減少しているため、二次電池1を用いてインバータ50を駆動する。具体的には、二次電池1の電圧を300Vから上述した第一設定電圧まで昇圧させて、インバータ50を駆動する。
【0054】
つまり、キャパシタ2の電圧が第二設定電圧よりも低くなった場合には、DC−DCコンバータ25からインバータ50への電源の供給が停止され、DC−DCコンバータ15からインバータ50への電源の供給が開始される
【0055】
この状態は、
図4におけるt
2からt
3の間の時間に相当する。具体的には、二次電池1の電圧がDC−DCコンバータ15によって昇圧されてインバータ50に供給されるため、t
0から開始されたEV走行がt
2を過ぎてもt
3まで継続されることとなる。
【0056】
そして、このEV走行は、二次電池SOC検出器1aによって検出された二次電池1のSOCが設定値を下回るまで継続可能である。なお、HEVの場合には、二次電池SOC検出器1aによって検出された二次電池1のSOCが設定値を下回っても、車両のエンジン(図示省略)が作動して、エンジンからの駆動力によって走行することが可能である。
【0057】
以上の実施の形態によれば、以下に示す効果を奏する。
【0058】
電源装置100では、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、DC−DCコンバータ25がキャパシタ2の電圧を昇圧してインバータ50に供給可能である。そのため、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、キャパシタ2内に残存した電気エネルギを用いてインバータ50を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
【0059】
また、キャパシタ2の電気エネルギを有効に活用できるため、同じ電気エネルギをインバータ50に出力するために必要なキャパシタ2の容量を小さくできる。よって、キャパシタ2の小型軽量化が可能である。また、電源装置100がHEVに適用される場合には、従来と比較してEV走行可能な距離が長くなるため、エンジンによる燃料消費量を低減することができる。
【0060】
なお、車両の制動時には、まず、電動機5によって発電した電気エネルギをキャパシタ2に充電する。このとき、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧よりも低い場合には、コントローラ30は、バイパススイッチ22を接続状態とする。これにより、電動機5の誘起電圧でキャパシタ2を充電することができる。
【0061】
キャパシタ2の電圧がインバータ50を駆動可能な最低電圧以上となったら、コントローラ30は、DC−DCコンバータ25を作動させて、電動機5が発電する電気エネルギを降圧してキャパシタ2に充電する。これにより、キャパシタ2の充電に適した電圧及び電流に調整することができるため、キャパシタ2を効率よく充電することが可能である。
【0062】
そして、キャパシタ2が満充電となったら、コントローラ30は、DC−DCコンバータ15を作動させて、電動機5が発電する電気エネルギを降圧して二次電池1に充電する。この場合にも、二次電池1の充電に適した電圧及び電流に調整することができるため、二次電池1を効率よく充電することが可能である。
【0063】
(第二の実施の形態)
以下、
図5を参照して、本発明の第二の実施の形態による電源装置200について説明する。なお、以下に示す各実施の形態では、前述した実施の形態と同様の構成には同一の符号を付し、重複する説明は適宜省略する。
【0064】
電源装置200は、二次電池1とキャパシタ2とを組み合わせて、電動機5を駆動するインバータ50に電源を供給するものである。
【0065】
電源装置200は、二次電池1を有する二次電池電源部211と、キャパシタ2を有するキャパシタ電源部221と、二次電池1とキャパシタ2とからのインバータ50への電源の供給を制御するコントローラ30(
図2参照)とを備える。
【0066】
キャパシタ電源部221は、キャパシタ2の電圧が電動機5を駆動可能な電圧である場合に、接続状態に切り換えらえるバイパススイッチ22と、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回った場合に、キャパシタ2の電圧を昇圧してインバータ50に供給可能とするDC−DCコンバータ225(第一のDC−DCコンバータ)とを備える。
【0067】
DC−DCコンバータ225は、キャパシタ2の電圧を昇圧して電動機5に供給することが可能であるとともに、電動機5によって発電された電力を降圧してキャパシタ2に充電することが可能である。
【0068】
DC−DCコンバータ225は、キャパシタ2の下流に設けられるリアクトル26(第一のリアクトル)と、リアクトル26と電動機5の上流との間に設けられる降圧制御トランジスタ27と、リアクトル26と電動機5の下流との間に設けられる昇圧制御トランジスタ28と、キャパシタ2と並列に接続される平滑コンデンサ29とを備える。
【0069】
DC−DCコンバータ215は、二次電池1の電圧を昇圧して電動機5に供給することが可能であるとともに、電動機5によって発電された電力を降圧して二次電池1に充電することが可能である。
【0070】
DC−DCコンバータ215は、二次電池1の下流に設けられるリアクトル16(第二のリアクトル)と、リアクトル16と電動機5の上流との間に設けられ、スイッチングによって電動機5からの充電電圧を降圧可能な降圧制御トランジスタ27と、リアクトル16と電動機5の下流との間に設けられ、リアクトル16の電流をスイッチングして、電動機5へ供給される供給電圧を誘導起電力によって昇圧可能な昇圧制御トランジスタ28とを備える。
【0071】
このように、DC−DCコンバータ215は、二次電池1の下流に設けられるリアクトル16を備え、降圧制御トランジスタ27と昇圧制御トランジスタ28とをDC−DCコンバータ225と共用する。
【0072】
具体的には、DC−DCコンバータ215は、切換スイッチ213を備え、DC−DCコンバータ225は、切換スイッチ223を備える。切換スイッチ213は、リアクトル16の下流と、降圧制御トランジスタ27と昇圧制御トランジスタ28との間とを連結する配線に設けられる。一方、切換スイッチ223は、リアクトル26の下流と、降圧制御トランジスタ27と昇圧制御トランジスタ28との間とを連結する配線に設けられる。
【0073】
切換スイッチ213が接続状態となり、切換スイッチ223が遮断状態となった場合には、降圧制御トランジスタ27と昇圧制御トランジスタ28とは、DC−DCコンバータ215を構成する。一方、切換スイッチ213が遮断状態となり、切換スイッチ223が接続状態となった場合には、降圧制御トランジスタ27と昇圧制御トランジスタ28とは、DC−DCコンバータ225を構成する。
【0074】
以上より、電源装置200でもまた、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、DC−DCコンバータ225がキャパシタ2の電圧を昇圧してインバータ50に供給する。そのため、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、キャパシタ2内に残存した電気エネルギを用いてインバータ50を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
【0075】
また、DC−DCコンバータ215とDC−DCコンバータ225とで、降圧制御トランジスタ27と昇圧制御トランジスタ28とを共用することで、部品点数を減らしてコストを削減することが可能である。
【0076】
(第三の実施の形態)
以下、
図6を参照して、本発明の第三の実施の形態による電源装置300について説明する。
【0077】
電源装置300は、二次電池1とキャパシタ2とを組み合わせて、電動機5を駆動するインバータ50に電源を供給するものである。
【0078】
電源装置300は、二次電池1を有する二次電池電源部311と、キャパシタ2を有するキャパシタ電源部321と、二次電池1とキャパシタ2とからのインバータ50への電源の供給を制御するコントローラ30(
図2参照)とを備える。
【0079】
キャパシタ電源部321は、キャパシタ2の電圧が電動機5を駆動可能な電圧である場合に、接続状態に切り換えらえるバイパススイッチ22と、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回った場合に、キャパシタ2の電圧を昇圧してインバータ50に供給可能とするDC−DCコンバータ325(第一のDC−DCコンバータ)とを備える。
【0080】
DC−DCコンバータ325は、キャパシタ2の電圧を昇圧して電動機5に供給することが可能であるとともに、電動機5によって発電された電力を降圧してキャパシタ2に充電することが可能である。
【0081】
DC−DCコンバータ325は、キャパシタ2の下流に設けられるリアクトル26と、リアクトル26と電動機5の上流との間に設けられる降圧制御トランジスタ27と、リアクトル26と電動機5の下流との間に設けられる昇圧制御トランジスタ28と、キャパシタ2と並列に接続される平滑コンデンサ29とを備える。
【0082】
DC−DCコンバータ315は、二次電池1の電圧を昇圧して電動機5に供給することが可能であるとともに、電動機5によって発電された電力を降圧して二次電池1に充電することが可能である。
【0083】
DC−DCコンバータ315は、二次電池1の下流に設けられるリアクトル26と、リアクトル26と電動機5の上流との間に設けられ、スイッチングによって電動機5からの充電電圧を降圧可能な降圧制御トランジスタ27と、リアクトル26と電動機5の下流との間に設けられ、リアクトル26の電流をスイッチングして、電動機5へ供給される供給電圧を誘導起電力によって昇圧可能な昇圧制御トランジスタ28とを備える。
【0084】
このように、DC−DCコンバータ315は、リアクトル26と降圧制御トランジスタ27と昇圧制御トランジスタ28とをDC−DCコンバータ325と共用する。
【0085】
具体的には、DC−DCコンバータ315は、切換スイッチ313を備え、DC−DCコンバータ325は、切換スイッチ323を備える。切換スイッチ313は、リアクトル26の上流と、降圧制御トランジスタ27と昇圧制御トランジスタ28との間とを連結する配線に設けられる。一方、切換スイッチ323は、リアクトル26の上流と、降圧制御トランジスタ27と昇圧制御トランジスタ28との間とを連結する配線に設けられる。
【0086】
切換スイッチ313が接続状態となり、切換スイッチ323が遮断状態となった場合には、リアクトル26と降圧制御トランジスタ27と昇圧制御トランジスタ28とは、DC−DCコンバータ315を構成する。一方、切換スイッチ313が遮断状態となり、切換スイッチ323が接続状態となった場合には、リアクトル26と降圧制御トランジスタ27と昇圧制御トランジスタ28とは、DC−DCコンバータ325を構成する。
【0087】
以上より、電源装置300でもまた、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、DC−DCコンバータ225がキャパシタ2の電圧を昇圧してインバータ50に供給する。そのため、キャパシタ2の電圧がインバータ50を駆動可能な最低電圧を下回っても、キャパシタ2内に残存した電気エネルギを用いてインバータ50を駆動することができる。したがって、キャパシタ2の電気エネルギを有効に活用することができる。
【0088】
また、DC−DCコンバータ315とDC−DCコンバータ325とで、リアクトル26と降圧制御トランジスタ27と昇圧制御トランジスタ28とを共用することで、部品点数を減らしてコストを更に削減することが可能である。
【0089】
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
【0090】
例えば、上述した実施の形態における電圧などの数値は例示したものであり、これらの数値に限定されるものではない。
【0091】
また、上述した実施の形態では、電源装置100,200,300はコントローラ30によって制御され、インバータ50はモータコントローラ(図示省略)によって制御される。これに代えて、電源装置100,200,300とインバータ50とを単一のコントローラによって制御するようにしてもよい。
【0092】
また、上述した各々のIGBTは、逆方向に並列接続される整流ダイオードを有するダイオード付きIGBTである。これに代えて、ダイオードを内蔵しないIGBTと、IGBTに逆方向に並列接続される整流ダイオードとを、それぞれ別々に設けてもよい。
【0093】
この発明の実施例が包含する排他的性質又は特徴は、以下のようにクレームされる。