特許第5880211号(P5880211)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧

特許5880211フェライト薄膜形成用組成物及びフェライト薄膜の形成方法
<>
  • 特許5880211-フェライト薄膜形成用組成物及びフェライト薄膜の形成方法 図000005
  • 特許5880211-フェライト薄膜形成用組成物及びフェライト薄膜の形成方法 図000006
  • 特許5880211-フェライト薄膜形成用組成物及びフェライト薄膜の形成方法 図000007
  • 特許5880211-フェライト薄膜形成用組成物及びフェライト薄膜の形成方法 図000008
  • 特許5880211-フェライト薄膜形成用組成物及びフェライト薄膜の形成方法 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5880211
(24)【登録日】2016年2月12日
(45)【発行日】2016年3月8日
(54)【発明の名称】フェライト薄膜形成用組成物及びフェライト薄膜の形成方法
(51)【国際特許分類】
   C01G 49/00 20060101AFI20160223BHJP
   H01F 10/20 20060101ALI20160223BHJP
   H01F 41/22 20060101ALI20160223BHJP
   C01G 53/00 20060101ALI20160223BHJP
   B22F 9/00 20060101ALI20160223BHJP
【FI】
   C01G49/00 A
   H01F10/20
   H01F41/22
   C01G53/00 A
   B22F9/00 Z
   B22F9/00 C
【請求項の数】3
【全頁数】16
(21)【出願番号】特願2012-76981(P2012-76981)
(22)【出願日】2012年3月29日
(65)【公開番号】特開2013-203637(P2013-203637A)
(43)【公開日】2013年10月7日
【審査請求日】2014年9月26日
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100085372
【弁理士】
【氏名又は名称】須田 正義
(72)【発明者】
【氏名】土井 利浩
(72)【発明者】
【氏名】桜井 英章
(72)【発明者】
【氏名】中村 賢蔵
(72)【発明者】
【氏名】五十嵐 和則
(72)【発明者】
【氏名】曽山 信幸
【審査官】 廣野 知子
(56)【参考文献】
【文献】 特開2005−175102(JP,A)
【文献】 特表2010−530137(JP,A)
【文献】 特開2009−221071(JP,A)
【文献】 特開平09−241008(JP,A)
【文献】 米国特許出願公開第2009/0035457(US,A1)
【文献】 特開平03−023226(JP,A)
【文献】 特開2006−210616(JP,A)
【文献】 Feng Liu et al.,NiCuZn ferrite thin films grown by a sol-gel method and rapid thermal annealing,JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2006年 6月14日,309,p.75-79
【文献】 Gao Liang-Qiu et al.,Study of NiCuZn ferrite powders and films prepared by solgel method,CHINESE PHYSICS B,中国,2006年 7月10日,Vol.20,No.2,p.027503-1〜027503-5
(58)【調査した分野】(Int.Cl.,DB名)
C01G 49/00−49/08
H01F 10/00ー10/32
H01F 41/14−41/34
C23C 18/12
H05K 1/00−1/02
(57)【特許請求の範囲】
【請求項1】
Cu1-xZnxO)t(Fe23s示される組成のフェライト薄膜をゾルゲル法により形成するための組成物であって、
前記組成物は金属原料を、アセトニトリルを含む溶媒に溶解してなり、
前記組成物100質量%としたときの前記アセトニトリルの割合が30〜60質量%であるフェライト薄膜形成用組成物。
但し、前記xは0.20≦x≦0.80を満たし、前記s、tは0.95≦s≦1.05、0.95≦t≦1.05をそれぞれ満たし、かつs+t=2を満たす。
【請求項2】
前記金属原料がZn、Cu又はFeの金属アルコキシド、酢酸塩、ナフテン酸塩或いは硝酸塩である請求項1記載のフェライト薄膜形成用組成物。
【請求項3】
請求項1又は2いずれか1項に記載のフェライト薄膜形成用組成物を用いてゾルゲル法により成膜を行うフェライト薄膜の形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、IPD(Integrated Passive Device、集積受動素子)チップに組み込まれる薄膜インダクタの磁性膜等を、ゾルゲル法により形成するためのフェライト薄膜形成用組成物及びこの組成物を用いたフェライト薄膜の形成方法に関するものである。
【背景技術】
【0002】
近年、各種電子機器の小型化、軽量化が急速に求められており、基板上に複数の受動素子が形成されたIPDチップに組み込まれるコンデンサやインダクタ等の小型化や薄型化も求められている。インダクタの薄型化としては、従来のバルク磁性材料に巻き線を施した構造の巻き線型のものから、例えばスパイラル形状の平面コイルをフェライト等の磁性材料で挟み込んだ構造の薄膜型のインダクタ等が提案されている。
【0003】
インダクタに用いられる磁性材料には、一般に、高周波領域において高い透磁率を示す等の理由から、フェライト系材料を用いて形成されたフェライト薄膜等が、従来から広く用いられている。これまで、フェライト薄膜の製法としては、スパッタ法や化学気相成長法等の真空プロセスを必要とする形成方法を中心に研究及び開発がなされてきたが、これらの方法では、高価な装置を導入する必要があり、初期投資が嵩む等のコストの面で問題があった。一方、無電解メッキを応用させたスピンスプレー法による形成方法等も検討されているが、このスピンスプレー法では、比較的安価な装置でフェライト膜を形成できるというメリットはあるものの、成膜の際、原料を大量に含んだ液を使用するため、環境面において問題があった。
【0004】
そこで、スピンスプレー法以外の、スパッタ法等に代わるフェライト薄膜の形成方法としてゾルゲル法が注目されている。ゾルゲル法では、スパッタ法等のような真空プロセスを必要とせず、組成物の調製、塗布、乾燥、焼成といった比較的簡便、かつ低コストで形成することができる。ゾルゲル法によるフェライト薄膜の形成方法としては、従来、硝酸鉄、硝酸ニッケル、ジメチルホルムアミド、酢酸亜鉛及び硝酸銅を含む混合溶液をSiO2が形成されたSi基板上にスピンコート法により塗布し、120℃で10分間乾燥して溶媒を除去し、400℃で30分加熱して熱分解することにより行う、NiCuZnフェライト薄膜の形成方法が開示されている(例えば、非特許文献1参照。)。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】Journal of Magnetism and Magnetic Materials, 309 (2007) p.75-79(p.75〜76の2.Experimenntal)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記従来の非特許文献1に示された形成方法では、フェライト薄膜を形成するための組成物として、溶媒にホルムアミド系溶媒を用いた混合溶液が使用されている。この組成物(混合溶液)を用いて形成される膜においては、透磁率等の特性を更に向上させるのが困難であるという問題があった。これは、使用される溶媒等に起因し、例えばスピンコート法等によって塗布する際の塗布性や膜厚均一性等を更に改善するのが難しく、その結果、形成後の薄膜における膜密度等の向上をこれ以上望めないことが原因の一つと考えられる。
【0007】
また、上記従来の非特許文献1に示される組成物は、長期的な保存安定性が悪く、時間の経過と共に液沈殿が生じる傾向がみられ、これにより、塗膜性が悪化するという問題があった。そのため、ゾルゲル法によるフェライト薄膜の形成において、材料の改良という観点から、塗膜性等の更なる改善が求められており、長期間保存しても液沈殿等を生じさせることなく、優れた塗膜性を長期間維持できるフェライト薄膜形成用組成物の開発が望まれていた。
【0008】
本発明の目的は、フェライト薄膜をゾルゲル法により形成するための組成物であって、薄くて、かつ均一な膜厚のフェライト薄膜を形成でき、しかも長期保存安定性に優れるフェライト薄膜形成用組成物及びこの組成物を用いたフェライト薄膜の形成方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明の第1の観点は、(Cu1-xZnxO)t(Fe23s示される組成のフェライト薄膜をゾルゲル法により形成するための組成物であって、上記組成物は金属原料を、アセトニトリルを含む溶媒に溶解してなり、上記組成物100質量%としたときのアセトニトリルの割合が30〜60質量%であるフェライト薄膜形成用組成物である。但し、上記xは0.20≦x≦0.80を、上記yは0<y<0.80を満たし、上記s、tは0.95≦s≦1.05、0.95≦t≦1.05をそれぞれ満たし、かつs+t=2を満たす。
【0010】
本発明の第2の観点は、第1の観点に基づく発明であって、更に金属原料がZn、Cu又はFeの金属アルコキシド、酢酸塩、ナフテン酸塩或いは硝酸塩であることを特徴とする。
【0014】
本発明の第の観点は、第1又はの観点のフェライト薄膜形成用組成物を用いてゾルゲル法により成膜を行うフェライト薄膜の形成方法である。
【発明の効果】
【0016】
本発明の第1の観点のフェライト薄膜形成用組成物は、CuZnフェライト薄膜をゾルゲル法により形成するための組成物であって、アセトニトリルを含む溶媒に溶解してなり、上記組成物100質量%としたときのアセトニトリルの割合が30〜60質量%である。このように、本発明のフェライト薄膜形成用組成物では、溶媒としてアセトニトリルを所定の割合で含むことにより、従来のホルムアミド系溶媒を用いた組成物に比べて、成膜の際の塗膜性に優れ、かつ組成物の保存安定性に優れる。また、(Cu1-xZnxO)t(Fe23sで示される組成のフェライト薄膜における上記xが0.20≦x≦0.80の範囲である。これにより、成膜される薄膜の透磁率が高められ、また、膜の損失が低減される。
【0017】
本発明の第2の観点のフェライト薄膜形成用組成物は、金属原料としてZn、Cu又はFeの金属アルコキシド、酢酸塩、ナフテン酸塩或いは硝酸塩を用いる。これにより、組成物の保存安定性を更に向上させることができる。
【0021】
本発明の第の観点のフェライト薄膜の形成方法では、上記本発明のフェライト薄膜形成用組成物を用いるため、基板の全面に斑なく組成物を塗布することができ、均一な薄膜を形成することができる。また、上記組成物を用いたゾルゲル法による形成方法であるため、CVDのような真空プロセスを必要とせず、安価に、かつ容易に薄膜を形成することができる。
【0022】
また、上記本発明の形成方法によって形成されたフェライト薄膜は、非常に薄くて均一な薄膜であり、高周波領域において所望の透磁率を示すため、これを高周波領域で使用される薄膜インダクタの磁性膜をはじめとする磁性材料に用いれば、インダクタの小型化やQ値等の特性を向上させることができる。
【図面の簡単な説明】
【0023】
図1】実施例1−1で得られたフェライト薄膜の磁気ヒステリシス曲線を示す図である。
図2】実施例1−1、実施例2−1、実施例3−1及び比較例3−1で得られたフェライト薄膜における周波数と初透磁率の関係を示すグラフである。
図3】実施例1−1で得られたフェライト薄膜をSEM(Scanning Electron Microscope、走査型電子顕微鏡)で観察したときの写真図である。
図4】実施例3−1で得られたフェライト薄膜をSEMで観察したときの写真図である。
図5】比較例3−1で得られたフェライト薄膜をSEMで観察したときの写真図である。
【発明を実施するための形態】
【0024】
次に本発明を実施するための形態を説明する。
【0025】
本発明のフェライト薄膜形成用組成物は、(Ni1-xZnxO)t(Fe23s、(Cu1-xZnxO)t(Fe23s又は(Ni0.80-yCu0.20ZnyO)t(Fe23sで示される組成のフェライト薄膜をゾルゲル法により形成するための組成物である。そして、上記組成物は金属原料を、アセトニトリルを含む溶媒に溶解してなり、上記組成物100質量%としたときのアセトニトリルの割合が30〜60質量%、好ましくは35〜50質量%である。但し、上記xは0<x<1を、上記yは0<y<0.80を満たし、上記s、tは0.95≦s≦1.05、0.95≦t≦1.05をそれぞれ満たし、かつs+t=2を満たす。これにより、本発明のフェライト薄膜形成用組成物では、ゾルゲル法によるフェライト薄膜の形成において、従来使用されていた、ホルムアミド系溶媒を用いた組成物に比べ、非常に優れた塗膜性を有する。そのため、この組成物を用いれば、例えばスピンコート法等により組成物を塗布する際に、基板の全面に均一に塗布することができ、薄くて、かつ均一な膜厚のフェライト薄膜を形成することができる。更に、本発明のフェライト薄膜組成物は、長期間保存しても液沈殿が生じることなく保存安定性に優れる。
【0026】
アセトニトリルを溶媒として含ませるのは、他の溶媒であるプロピレングリコールやエタノールとの親和性が高い理由から、従来のホルムアミド系溶媒を用いた組成物よりも塗膜性が向上するからである。また、前駆物質であるため、長期間保存しても液沈殿が生じることなく保存安定性が向上するからである。また、アセトニトリルの含有割合を上記範囲に限定した理由は、アセトニトリルの含有割合が下限値未満では、保存安定性が低下し、液沈殿が生じる不具合が生じ、一方、上限値を越えると、塗膜性が却って悪くなるからである。
【0027】
溶媒としては、上記アセトニトリル以外に、エタノール等の低級アルコールや、プロピレングリコール等のジオール類等の他の溶媒を併用させることができる。これらアセトニトリル以外の他の溶媒を併用させることにより、液の粘性や溶媒の揮発性を調整することができる。他の溶媒は1種のみならず、2種以上を用いてもよい。これらアセトにトリル以外の他の溶媒の配合割合は、製造後の組成物を100質量%としたとき、15〜60質量%となる割合とするのが好ましい。
【0028】
本発明のフェライト薄膜形成用組成物は、フェライト薄膜の中でも、特にNiZnフェライト、CuZnフェライト、NiCuZnフェライト薄膜を形成するための組成物であり、具体的には、上記3つの組成式、即ち(Ni1-xZnxO)t(Fe23s、(Cu1-xZnxO)t(Fe23s又は(Ni0.80-yCu0.20ZnyO)t(Fe23sで示される組成のフェライト薄膜を形成するためのものである。組成物に含まれる金属原料は、それぞれ目的とする上記フェライト薄膜の組成に応じた割合で含有させる。
【0029】
ここで、本発明の組成物により形成されるフェライト薄膜において、上記s、tを0.95≦s≦1.05、0.95≦t≦1.05、s+t=2に限定する理由は、s、tが上記範囲から外れると、形成後の薄膜において初透磁率や抵抗値を低下させる不具合が生じるからである。
【0030】
また、(Ni1-xZnxO)t(Fe23sで示される組成のフェライト薄膜において、上記xが0.10≦x≦0.65の範囲であるのが好ましい。xが下限値未満又は上限値を越えると、Znに対するNiの割合が少なくなりすぎる、又は多くなりすぎて、形成後の薄膜において初透磁率や抵抗値を低下させる傾向がみられるからである。
【0031】
また、(Cu1-xZnxO)t(Fe23sで示される組成のフェライト薄膜において、上記xが0.20≦x≦0.80の範囲であるのが好ましい。xが下限値未満又は上限値を越えると、Znに対するCuの割合が少なくなりすぎる、又は多くなりすぎて、形成後の薄膜において初透磁率や抵抗値を低下させる傾向がみられるからである。
【0032】
また、(Ni0.80-yCu0.20ZnyO)t(Fe23sで示される組成のフェライト薄膜において、上記yが0.20≦y≦0.40の範囲であるのが好ましい。yが下限値未満又は上限値を越えると、Zn又はCuに対するNiの割合が少なくなりすぎる、又は多くなりすぎて、形成後の薄膜において初透磁率や抵抗値を低下させる傾向がみられるからである。
【0033】
上記形成後のフェライト薄膜の組成に応じた割合で組成物が含有する金属原料としては、Ni、Zn、Cu又はFeの金属アルコキシド、酢酸塩、ナフテン酸塩或いは硝酸塩が挙げられる。具体的には、硝酸ニッケル(II)六水和物、硝酸亜鉛(II)四水和物、硝酸銅(II)三水和物、硝酸鉄(III)九水和物、酢酸ニッケル(II)四水和物、酢酸亜鉛(II)二水和物、ナフテン酸鉄又は鉄(III)トリスエトキシド等が挙げられる。このうち、組成物の保存安定性の理由から、硝酸ニッケル(II)六水和物、硝酸亜鉛(II)四水和物、硝酸銅(II)三水和物、硝酸鉄(III)九水和物等の硝酸塩、酢酸ニッケル(II)四水和物等の酢酸塩が特に好ましい。これらの金属材料の割合は、組成物中に占める金属材料の合計が、金属酸化物換算量で2〜15質量%含まれるように調整するのが好ましい。
【0034】
本発明のフェライト薄膜形成用組成物を調製するには、先ず、上記金属材料を用意し、フェライト薄膜が目的の組成になるようにそれぞれ秤量する。また、調整後の組成物100質量%に対して30〜60質量%、好ましくは35〜50質量%に相当する量のアセトニトリルと、アセトニトリル以外の溶媒として、調整後の組成物100質量%に対して好ましくは15〜60質量%に相当する量の上記他の溶媒を用意する。
【0035】
次に、上記秤量した金属材料を、アセトニトリル及び他の溶媒と混合し、オイルバス又は氷浴を用いて、好ましくは0〜30℃の温度で0.5〜24時間攪拌し溶解させた後、上記プロピレングリコールやn−ブタノール等の他の溶媒を更に添加して、組成物中に占める金属材料の合計が、酸化物換算量で好ましくは5〜7質量%となるように調整する。これを更に室温で、好ましくは2〜24時間撹拌することにより、本発明のフェライト薄膜形成用組成物を得ることができる。
【0036】
続いて、本発明のゾルゲル法によるフェライト薄膜の形成方法について説明する。先ず、上記本発明のフェライト薄膜形成用組成物を、基板に塗布して塗布膜を形成する。フェライト薄膜を形成する基板としては、好ましくはSi/SiO2基板等のシリコン基板やアルミナ基板等の耐熱性基板が挙げられる。フェライト薄膜形成用組成物の基板への塗布法としては、スピンコート法、ディップコート法、LSMCD(Liquid Source Misted Chemical Deposituion )法等が挙げられるが、このうち、高い表面平滑性が得られることから、スピンコート法が特に好ましい。
【0037】
また、組成物の塗布量は、最終的に得られるフェライト薄膜の膜厚が50〜200nmとなる量とするのが好ましい。なお、基板への塗布は、一回の塗布により行ってもよいが、クラックを防止する理由から、塗布した後、好ましくは後述する条件で仮焼きを行い、その後更に塗布するという操作を複数回、好ましくは2〜20回繰り返すことにより行ってもよい。この場合の1回での塗布量は、一回の塗布により形成される塗布膜の膜厚が50〜150nmになる量とするのが好ましい。
【0038】
次に、上記基板上、或いは仮焼き後の仮焼き膜上に形成された塗布膜を、大気又は酸素ガス雰囲気下、好ましくは温度100〜450℃、保持時間1〜30分、更に好ましくは、温度400〜450℃、保持時間5〜15分の条件で仮焼きすることにより、アモルファス状の仮焼き膜を形成する。仮焼き膜の厚さは総厚で90〜3000nmとするのが好ましい。この塗布膜を仮焼きする工程では、ホットプレート(HP)や急速熱処理(RTA)等を用いて行うことが好適である。
【0039】
最後に、上記仮焼き膜が形成された膜付き基板を焼成することによりフェライト薄膜が得られる。焼成は、大気又は酸素ガス雰囲気下、好ましくは温度500〜800℃、保持時間30〜120分、更に好ましくは、温度700〜800℃、保持時間1〜60分の条件で、急速熱処理(RTA)、電気炉又はマッフル炉等を用いて行うことができる。
【0040】
以上の工程により、本発明のフェライト薄膜を形成することができる。本発明のフェライト薄膜は、上述の本発明のフェライト薄膜組成物を用いて形成された薄膜であるため、
非常に薄くて均一な薄膜であり、高周波領域において所望の透磁率を示す。そのため、これを高周波領域で使用される薄膜インダクタの磁性膜をはじめとする磁性材料に用いれば、インダクタの小型化や特性を向上させることができる。
【実施例】
【0041】
次に本発明の実施例を比較例とともに詳しく説明する。なお、実施例1−1〜実施例1−9及び実施例3−1〜実施例3−8は参考例である。
【0042】
<実施例1−1>
先ず、金属材料として、硝酸ニッケル(II)六水和物、硝酸亜鉛(II)四水和物及び硝酸鉄(III)九水和物を用意し、これらを形成後のフェライト薄膜の組成が(Ni0.64Zn0.36O)1.0(Fe231.0となるようにそれぞれ秤量した。また、溶媒として、調整後の組成物100質量%に対して30質量%に相当する量のアセトニトリルと、他の溶媒として10質量%に相当するプロピレングリコールとを用意し、これらを上記金属材料に添加混合し、オイルバスを用いて、30℃の温度で6時間撹拌を行った。
【0043】
撹拌後、更に他の溶媒として、調整後の組成物100質量%に対して37.2質量%のブタノールを加え、組成物中に占める上記金属材料の合計が、金属酸化物換算量で5質量%となるように調整した。その後、更に24時間常温で撹拌することによりフェライト薄膜形成用組成物を調製した。
【0044】
次に、上記調製したフェライト薄膜形成用組成物を、回転速度3000rpmで15秒間スピンコートを行うことにより、表面にSiO2膜が形成されたシリコン基板上に塗布膜を形成し、その後、400℃の温度で5分間仮焼きを行った。塗布から仮焼きまでの工程を計5回繰り返することにより、表1に示す厚さのアモルファス状の仮焼き膜を形成した。
【0045】
最後に、この膜付き基板をRTAを用いて700℃で焼成することにより、組成が(Ni0.64Zn0.36O)1.0(Fe231.0であって、表1に示す厚さのNiZnフェライト薄膜を形成した。
【0046】
<実施例1−2,実施例1−3、比較例1−1,比較例1−2>
調整後の組成物を100質量%としたときのアセトニトリルの割合を、以下の表1に示す割合とした以外は、実施例1−1と同様に、フェライト薄膜形成用組成物を調製し、表1に示す厚さを有するNiZnフェライト薄膜を形成した。
【0047】
<実施例1−4〜実施例1−9、比較例1−3〜比較例1−6>
形成後のフェライト薄膜の組成が、以下の表1に示す組成になるように各金属材料の割合を調整した以外は、実施例1−1又は実施例1−2と同様に、フェライト薄膜形成用組成物を調製し、表1に示す厚さを有するNiZnフェライト薄膜を形成した。
【0048】
<実施例2−1>
先ず、金属材料として、硝酸銅(II)三水和物、硝酸亜鉛(II)四水和物及び硝酸鉄(III)九水和物を用意し、これらを形成後のフェライト薄膜の組成が(Cu0.40Zn0.60O)1.0(Fe231.0となるようにそれぞれ秤量した。また、溶媒として、調整後の組成物100質量%に対して30質量%に相当する量のアセトニトリルと、他の溶媒として10質量%に相当するプロピレングリコールとを用意し、これらを上記金属材料に添加混合し、オイルバスを用いて、30℃の温度で6時間撹拌を行った。
【0049】
撹拌後、更に他の溶媒として、調整後の組成物100質量%に対して42.5質量%のエタノールを加え、組成物中に占める上記金属材料の合計が、金属酸化物換算量で4質量%となるように調整した。その後、更に24時間常温で撹拌することによりフェライト薄膜形成用組成物を調製した。
【0050】
次に、上記調製したフェライト薄膜形成用組成物を、回転速度3000rpmで15秒間スピンコートを行うことにより、表面にSiO2膜が形成されたシリコン基板上に塗布膜を形成し、その後、400℃の温度で5分間仮焼きを行った。塗布から仮焼きまでの工程を計5回繰り返することにより、表2に示す厚さのアモルファス状の仮焼き膜を形成した。
【0051】
最後に、この膜付き基板をRTAを用いて700℃で焼成することにより、組成が(Cu0.40Zn0.60O)1.0(Fe231.0である、表2に示す厚さのCuZnフェライト薄膜を形成した。
【0052】
<実施例2−2,実施例2−3、比較例2−1,比較例2−2>
調整後の組成物を100質量%としたときのアセトニトリルの割合を、以下の表2に示す割合とした以外は、実施例2−1と同様に、フェライト薄膜形成用組成物を調製し、表2に示す厚さを有するCuZnフェライト薄膜を形成した。
【0053】
<実施例2−4〜実施例2−9、比較例2−3〜比較例2−6>
形成後のフェライト薄膜の組成が、以下の表2に示す組成になるように各金属材料の割合を調整した以外は、実施例2−1又は実施例2−2と同様に、フェライト薄膜形成用組成物を調製し、表2に示す厚さを有するCuZnフェライト薄膜を形成した。
【0054】
<実施例3−1>
先ず、金属材料として、酢酸ニッケル(II)四水和物、硝酸銅(II)三水和物、硝酸亜鉛(II)四水和物及び硝酸鉄(III)九水和物を用意し、これらを形成後のフェライト薄膜の組成が(Ni0.40Cu0.20Zn0.40O)1.0(Fe231.0となるようにそれぞれ秤量した。また、溶媒として、調整後の組成物100質量%に対して40質量%に相当する量のアセトニトリルと、15質量%に相当するプロピレングリコールとを用意し、これらを上記金属材料に添加混合し、オイルバスを用いて、30℃の温度で6時間撹拌を行った。
【0055】
撹拌後、更に他の溶媒として、調整後の組成物100質量%に対して22.4質量%のブタノールを加え、組成物中に占める上記金属材料の合計が、金属酸化物換算量で5質量%となるように調整した。その後、更に24時間常温で撹拌することによりフェライト薄膜形成用組成物を調製した。
【0056】
次に、上記調製したフェライト薄膜形成用組成物を、回転速度3000rpmで15秒間スピンコートを行うことにより、表面にSiO2膜が形成されたシリコン基板上に塗布膜を形成し、その後、400℃の温度で5分間仮焼きを行った。塗布から仮焼きまでの工程を計5回繰り返することにより、表3に示す厚さのアモルファス状の仮焼き膜を形成した。
【0057】
最後に、この膜付き基板をRTAを用いて700℃で焼成することにより、組成が(Ni0.40Cu0.20Zn0.40O)1.0(Fe231.0である、表3に示す厚さのNiCuZnフェライト薄膜を形成した。
【0058】
<実施例3−2,実施例3−3>
調整後の組成物を100質量%としたときのアセトニトリルの割合を、以下の表3に示す割合とした以外は、実施例3−1と同様に、フェライト薄膜形成用組成物を調製し、表3に示す厚さを有するNiCuZnフェライト薄膜を形成した。
【0059】
<比較例3−1>
先ず、金属材料として、硝酸ニッケル(II)六水和物、硝酸銅(II)三水和物、硝酸亜鉛(II)四水和物及び硝酸鉄(III)九水和物を用意し、これらを形成後のフェライト薄膜の組成が(Ni0.40Cu0.20Zn0.40O)1.0(Fe231.0となるようにそれぞれ秤量した。また、溶媒として、N,N−ジメチルホルムアミドを用意し、これを上記金属材料に添加混合し、オイルバスを用いて、2時間撹拌を行った。
【0060】
撹拌後、更に安定化剤として酢酸を加え、組成物中に占める上記金属材料の合計が、金属酸化物換算量で5質量%となるように調整した。その後、更にポリビニルピロリドン(平均分子量40000)を、金属材料の金属酸化物換算量の50モル%に相当する量で添加し、24時間常温で撹拌することによりフェライト薄膜形成用組成物を調製した。
【0061】
また、上記調製したフェライト薄膜形成用組成物を用いて、実施例3−1と同様に、表3に示す厚さを有するNiCuZnフェライト薄膜を形成した。
【0062】
<比較例3−2,比較例3−3>
調整後の組成物を100質量%としたときのアセトニトリルの割合を、以下の表3に示す割合とした以外は、実施例3−1と同様に、フェライト薄膜形成用組成物を調製し、表3に示す厚さを有するNiCuZnフェライト薄膜を形成した。
【0063】
<実施例3−4〜実施例3−8、比較例3−4〜比較例3−7>
形成後のフェライト薄膜の組成が、以下の表3に示す組成になるように各金属材料の割合を調整した以外は、実施例3−1又は実施例3−2と同様に、フェライト薄膜形成用組成物を調製し、表3に示す厚さを有するNiCuZnフェライト薄膜を形成した。
【0064】
<比較試験及び評価>
実施例及び比較例で得られたフェライト薄膜について、次に示す方法により、膜厚及び初透磁率を求めた。また、調製したフェライト薄膜形成用組成物の保存安定性を評価した。それらの結果を次の表1〜表3に示す。また、実施例1−1で得られたフェライト薄膜の磁気ヒステリシス曲線(B−H曲線)を図1に示す。また、実施例1−1、実施例2−1、実施例3−1及び比較例3−1で得られたフェライト薄膜の初透磁率を図2に示す。更に、実施例1−1、実施例3−1及び比較例3−1で得られたフェライト薄膜をSEMにより観察したときの写真図をそれぞれ図3図4及び図5に示す。
【0065】
(1) 膜厚:形成した薄膜の断面の厚さを走査型顕微鏡(日立製作所社製、モデル:s−4300)により測定した。なお、焼成前の仮焼き膜の膜厚についても同様の方法及び装置により測定した。
【0066】
(2) 初透磁率:絶対透磁率測定装置インピーダンスアナライザ(アジレントテクノロジー社製、製品名HP4194A)と銅線で作製した空芯コイルを用い、40MHz程度までの周波数で測定した。なお、図2には、400kHzまでの測定結果を示す。空芯コイルはアクリル樹脂等の薄い板で1センチ×5センチサイズのウェーハがちょうど収まるサイズの外形を作成し、この外形に銅線を20〜80回巻きつけることにより作製した。作製した空芯コイルのインダクタンスをインピーダンスアナライザで測定した後、コアとして1センチ×5センチサイズのフェライト薄膜付き基板を差し込んで再びインダクタンスを測定した。この時、コアの挿入前後でのインダクタンス差ΔLは次の式(1)で与えられることから、フェライト薄膜の初透磁率を算出することができる。
【0067】
ΔL=μ0×μ’×S×N2/l ……(1)
但し、上記式(1)中、μ0は真空の透磁率、μ’はフェライト薄膜の複素透磁率における実部(初透磁率)、Sはフェライト薄膜の断面積、Nはコイルの巻き数、lはコイルの長さである。
【0068】
(3) 保存安定性:調製後、5℃の温度で1ヶ月間冷蔵保存した後のフェライト薄膜形成用組成物について、目視により沈殿の有無を確認した。表1〜表3中、「不良」は、保存後のフェライト薄膜形成用組成物に沈殿が確認された場合を示し、「良」は、保存後のフェライト薄膜形成用組成物に沈殿が確認されなかった場合を示す。
【0069】
【表1】
図1から明らかなように、実施例1−1で得られたフェライト薄膜の飽和磁化は300emu/cm3前後と高い値を示したことから、この薄膜は高い磁性特性を有することが判る。
【0070】
また、表1、図2から明らかなように、実施例1−1で得られたフェライト薄膜の初透磁率は10と高い値を示した。また、図3から明らかなように、実施例1−1で得られたフェライト薄膜は、グレインサイズ(結晶粒径)が20nm前後の非常に緻密な膜質であり、膜の表面平滑性に優れることが判る。
【0071】
また、実施例1−1、実施例1−2、実施例1−3及び比較例1−1とを比較すると、アセトニトリルが30質量%に満たない比較例1−1で調製したフェライト薄膜形成用組成物では、調製直後は赤色で均一な液であったが、1ヶ月冷蔵保存後には、組成物中に緑色の沈殿がみられ、保存安定性が悪かった。これに対し、実施例1−1、実施例1−2、実施例1−3で調製したフェライト薄膜形成用組成物では、1ヶ月冷蔵保存後も組成物中に沈殿はみられず、保存安定性に優れることが確認された。
【0072】
なお、アセトニトリルが60質量%を越える比較例1−2では、保存安定性については良好な結果が得られたものの、膜むらが発生する不具合が生じた。
【0073】
また、実施例1−1〜実施例1−3、実施例1−8、実施例1−9及び比較例1−3〜比較例1−6とを比較すると、得られたフェライト薄膜の組成、即ち一般式(Ni1-xZnxO)t(Fe23)において、s,tが0.95≦s≦1.05、0.95≦t≦1.05、かつs+t=2を満たさない比較例1−3、比較例1−4では、初透磁率がそれぞれ2と非常に低い値を示し、比較例1−5、比較例1−6でもそれぞれ4、3と低い値を示した。これに対し、s,tが上記要件を満たす実施例1−1、実施例1−2、実施例1−3では、初透磁率がそれぞれ10、9、8と非常に高い値を示し、実施例1−8、実施例1−9においても、いずれも10と非常に高い値を示した。このことから、NiZnフェライト薄膜において、s,tが0.95≦s≦1.05、0.95≦t≦1.05、かつs+t=2を満たす組成とするのが効果的であることが確認された。
【0074】
また、実施例1−4、実施例1−5と、実施例1−6、実施例1−7とを比較すると、xが0.10≦x≦0.65の範囲を満たす実施例1−4、実施例1−5では、xがこの範囲から外れる実施例1−6、実施例1−7に比べ、初透磁率が高い値を示した。このことから、NiZnフェライト薄膜において、xが0.10≦x≦0.65の範囲を満たす組成とするのが好ましいことが確認された。
【0075】
【表2】
表2、図2から明らかなように、実施例2−1で得られたフェライト薄膜の初透磁率は8と高い値を示した。
【0076】
また、実施例2−1、実施例2−2、実施例2−3及び比較例2−1とを比較すると、アセトニトリルが30質量%に満たない比較例2−1で調製したフェライト薄膜形成用組成物では、調製直後は赤色で均一な液であったが、1ヶ月冷蔵保存後には、組成物中に緑色の沈殿がみられ、保存安定性が悪かった。これに対し、実施例2−1、実施例2−2、実施例2−3で調製したフェライト薄膜形成用組成物では、1ヶ月冷蔵保存後も組成物中に沈殿はみられず、保存安定性に優れることが確認された。
【0077】
なお、アセトニトリルが60質量%を越える比較例2−2では、保存安定性については良好な結果が得られたものの、膜むらが発生する不具合が生じた。
【0078】
また、実施例2−1〜実施例2−3、実施例2−8、実施例2−9及び比較例2−3〜比較例2−6とを比較すると、得られたフェライト薄膜の組成、即ち一般式(Cu1-xZnxO)t(Fe23)において、s,tが0.95≦s≦1.05、0.95≦t≦1.05、かつs+t=2を満たさない比較例2−3〜比較例2−6では、初透磁率がいずれも2となり、非常に低い値を示した。これに対し、s,tが上記要件を満たす実施例2−1、実施例2−2、実施例2−3では、初透磁率がそれぞれ8、7、5と比較的高い値を示し、実施例2−8、実施例2−9ではそれぞれ7、8と高い値を示した。このことから、CuZnフェライト薄膜において、s,tが0.95≦s≦1.05、0.95≦t≦1.05、かつs+t=2を満たす組成とするのが効果的であることが確認された。
【0079】
また、実施例2−4、実施例2−5と、実施例2−6、実施例2−7とを比較すると、xが0.20≦x≦0.80の範囲を満たす実施例2−4、実施例2−5では、xがこの範囲から外れる実施例2−6、実施例2−7に比べ、初透磁率が同等若しくはそれ以上の値を示した。このことから、CuZnフェライト薄膜において、xが0.20≦x≦0.80の範囲を満たす組成とするのが好ましいことが確認された。
【0080】
【表3】
表3、図2から明らかなように、実施例3−1、実施例3−2、実施例3−3及び比較例3−1とを比較すると、アセトニトリルを含まない比較例3−1で得られたフェライト薄膜の初透磁率は、膜密度が低くなった理由から、5であった。これに対し、実施例3−1で得られたフェライト薄膜の初透磁率は10と、実施例3−2、実施例3−3では、9、10とそれぞれ高い値を示した。また、図4図5から明らかなように、実施例3−1で得られたフェライト薄膜は、比較例3−1で得られたフェライト薄膜に比べ、グレインサイズ(結晶粒径)が非常に緻密な膜質であり、膜の表面平滑性に優れることが判る。
【0081】
また、実施例3−1、実施例3−2、実施例3−3及び比較例3−1、比較例3−2、比較例3−3とを比較すると、アセトニトリルを含まない比較例3−1、及びアセトニトリルが30質量%に満たない比較例3−2で調製したフェライト薄膜形成用組成物では、調製直後は赤色で均一な液であったが、1ヶ月冷蔵保存後には、組成物中に緑色の沈殿がみられ、保存安定性が悪かった。また、アセトニトリルが60質量%を越える比較例3−3では、保存安定性については良好な結果が得られたものの、膜むらが発生する不具合が生じた。これに対し、実施例3−1、実施例3−2、実施例3−3で調製したフェライト薄膜形成用組成物では、1ヶ月冷蔵保存後も組成物中に沈殿はみられず、保存安定性に優れることが確認された。
【0082】
また、実施例3−1〜実施例3−3、実施例3−7、実施例3−8及び比較例3−4〜比較例3−7とを比較すると、得られたフェライト薄膜の組成、即ち一般式(Ni0.80-yCu0.20ZnyO)t(Fe23sにおいて、s,tが0.95≦s≦1.05、0.95≦t≦1.05、かつs+t=2を満たさない比較例3−4〜比較例3−7では、初透磁率がいずれも2となり、非常に低い値を示した。これに対し、s,tが上記要件を満たす実施例3−1、実施例3−2、実施例3−3では、初透磁率がそれぞれ10、9、10と非常に高い値を示し、実施例3−7、実施例3−8でもそれぞれ9、10と非常に高い値を示した。このことから、NiCuZnフェライト薄膜において、s,tが0.95≦s≦1.05、0.95≦t≦1.05、かつs+t=2を満たす組成とするのが効果的であることが確認された。
【0083】
また、実施例3−2、実施例3−4と、実施例3−5、実施例3−6とを比較すると、yが0.20≦y≦0.40の範囲を満たす実施例3−2、実施例3−4では、yがこの範囲から外れる実施例3−5、実施例3−6に比べ、初透磁率が高い値を示した。このことから、NiCuZnフェライト薄膜において、yが0.20≦y≦0.40の範囲を満たす組成とするのが好ましいことが確認された。
【産業上の利用可能性】
【0084】
本発明のフェライト薄膜形成用組成物は、IPD(Integrated Passive Device、集積受動素子)チップに組み込まれる薄膜インダクタの磁性膜等の形成に好適に利用することができる。
図1
図2
図3
図4
図5