【実施例】
【0042】
以下に、本発明の微生物の作製方法及び当該微生物を用いたタンパク質の製造方法について枯草菌を例として具体的に説明するが、当該発明は枯草菌に限定されるものではない。
【0043】
枯草菌168株のゲノム領域から、下記の配列番号で示される一対のオリゴヌクレオチドセット(表3)により挟み込まれる領域を欠失したゲノム構造を有する枯草菌変異株
(flgM+csrA二重欠失株:配列番号1及び2(flgM遺伝子欠失用)、及び配列番号3及び4(csrA遺伝子欠失用);Fla領域欠失株:配列番号5及び6)を作製した。
【0044】
【表3】
【0045】
以下の実施例におけるDNA断片増幅のためのポリメラーゼ連鎖反応(PCR)には、GeneAmp PCR System(アプライドバイオシステムズ社製)を使用し、PrimeSTAR Premix(タカラバイオ社製)と付属の試薬類を用いてDNA増幅を行った。PCRの反応液組成は、適宜希釈した鋳型DNAを1μL、センスプライマー及びアンチセンスプライマーを各々20pmol、及びPrimeSTAR Max Premixを25μL添加して、反応液総量を50μLとした。PCRの反応条件は、98℃で10秒間、57℃で30秒間及び72℃で1〜5分間(目的増幅産物に応じて調整。目安は1kbあたり1分)の3段階の温度変化を30回繰り返し、とした。
【0046】
また、以下の実施例において、遺伝子の上流とは、複製開始点からの位置ではなく、各操作・工程において対象となる遺伝子の開始コドンの5’側に続く領域を意味し、一方下流とは、各操作・工程において対象となる遺伝子の終始コドンの3’側に続く領域を意味する。
【0047】
以下の実施例における各遺伝子及び遺伝子領域の名称は、Nature,390,249−256,(1997)で報告され、JAFAN:Japan Functional Analysis Network for Bacillus subtilis(BSORF DB)でインターネット公開(http://bacillus.genome.ad.jp/、2004年3月10日更新)された枯草菌ゲノムデータに基づいて記載したものである。
【0048】
枯草菌の形質転換はコンピテントセル法(J.Bacteriol.,93,1925(1967))にて行った。すなわち、枯草菌をSPI培地(0.20%硫酸アンモニウム、1.40%リン酸水素二カリウム、0.60%リン酸二水素カリウム、0.10%クエン酸三ナトリウム二水和物、0.50%グルコース、0.02%カザミノ酸(Difco社製)、5mM硫酸マグネシウム、0.25μM塩化マンガン、50μg/mLトリプトファン)において37℃で、生育度(OD
600)の値が1程度になるまで振盪培養し、振盪培養後、培養液の一部を9倍量のSPII培地(0.20%硫酸アンモニウム、1.40%リン酸水素二カリウム、0.60%リン酸二水素カリウム、0.10%クエン酸三ナトリウム二水和物、0.50%グルコース、0.01%カザミノ酸(Difco社製)、5mM硫酸マグネシウム、0.40μM塩化マンガン、5μg/mLトリプトファン)に接種し、更に生育度(OD
600)の値が0.4程度になるまで振盪培養することで、枯草菌のコンピテントセルを調製した。
【0049】
次いで調製したコンピテントセル懸濁液(SPII培地における培養液)100μLに各種DNA断片を含む溶液(SOE−PCRの反応液等)5μLを添加し、37℃で1時間振盪培養後、適切な薬剤を含むLB寒天培地(1% トリプトン、0.5% 酵母エキス、1% NaCl、1.5% 寒天)に全量を塗沫した。37℃における静置培養の後、生育したコロニーを形質転換体として分離した。得られた形質転換体のゲノムを抽出し、これを鋳型とするPCRによって目的とするゲノム構造の改変が為されたことを確認した。
【0050】
目的のタンパク質を発現するプラスミドの宿主微生物への導入は、プロトプラスト形質転換法(Mol.Gen.Genet.,168,111(1979))により行った。組換え微生物によるタンパク質生産の際の培養には、LB培地(1% トリプトン、0.5% 酵母エキス、1% NaCl)、2×L−マルトース培地(2% トリプトン、1% 酵母エキス、1% NaCl、7.5% マルトース、7.5ppm硫酸マンガン4−5水和物)を用いた。
【0051】
実施例1(flgM遺伝子欠失株の構築):
枯草菌σDのアンチシグマとして知られているFlgMをコードする遺伝子flgMの欠失株は、以下の方法により構築した。枯草菌168株から抽出したゲノムDNAを鋳型として、表2に示すプライマーflgM−F1(配列番号7)とflgM−R1(配列番号8)、flgM−F2(配列番号9)とflgM−R2(配列番号10)の各プライマーセットを用いて、ゲノム上のflgM遺伝子領域の上流(A)と下流(B)に隣接するそれぞれ約500bpの断片をPCRにより増幅した。また、スペクチノマイシン耐性遺伝子を有するプラスミドpAPNC213(Microbiology,148,3539−3552(2002))を鋳型として、表2に示すrPCR−specF(配列番号23)とrPCR−specR(配列番号24)のプライマーセットを用いてスペクチノマイシン耐性遺伝子カセット(C)をPCRにより増幅した。次に、得られた(A)(B)(C)3断片を混合して鋳型とし、flgM−F1とflgM−R2のプライマーを用いてSOE(splicing by overlap extension)−PCR法(Gene,77,61(1989))を行ない、3断片を(A)−(C)−(B)の順になる様に結合させ、遺伝子欠失用のDNA断片を得た(
図1)。このDNA断片を用いて、コンピテントセル法により枯草菌168株の形質転換を行い、スペクチノマイシン(100mg/L)を含むLB寒天培地上に生育したコロニーを形質転換体として分離した。得られた形質転換体からゲノムDNAを抽出し、これを鋳型とするPCRによってflgM遺伝子がクロラムフェニコール耐性遺伝子と置換されていることを確認した。以上のようにして得られた変異株をflgM::spec株とした。
【0052】
実施例2(csrA遺伝子欠失株の構築):
大腸菌でmRNAからの翻訳制御因子として知られているCsrAをコードするcsrA遺伝子の欠失株は、以下の方法により構築した。枯草菌168株から抽出したゲノムDNAを鋳型として表2に示すプライマーcsrA−F1(配列番号11)とcsrA−R1(配列番号12)、csrA−F2(配列番号13)とcsrA−R2(配列番号14)の各プライマーセットを用いて、ゲノム上のcsrA遺伝子領域の上流(A)と下流(B)に隣接するそれぞれ約500bpの断片をPCRにより増幅した。また、クロラムフェニコール耐性遺伝子を有するプラスミドpDLT3(Microbiology,148,3539−3552(2002))を鋳型として、表4に示すrPCR−CmF(配列番号25)とrPCR−CmR(配列番号26)のプライマーセットを用いてクロラムフェニコール耐性遺伝子カセット(C)をPCRにより増幅した。次に、得られた(A)(B)(C)3断片を混合して鋳型とし、csrA−F1とcsrA−R2のプライマーを用いてSOE(splicing by overlap extension)−PCR法(Gene,77,61,1989)を行ない、3断片を(A)−(C)−(B)の順になる様に結合させ、遺伝子欠失用のDNA断片を得た(
図2)。このDNA断片を用いて、コンピテントセル法により枯草菌168株と実施例1で作製したflgM::spec株の形質転換を行い、クロラムフェニコール(5mg/L)を含むLB寒天培地上に生育したコロニーを形質転換体として分離した。得られた形質転換体からゲノムDNAを抽出し、これを鋳型とするPCRによって、csrA遺伝子がスペクチノマイシン耐性遺伝子と置換されていることを確認した。以上のようにして得られた変異株をそれぞれcsrA::cm株と168ΔflgMΔcsrA株とした。
【0053】
実施例3(Fla領域マーカーレス削除株の構築):
本実施例では、枯草菌168株のゲノム上のyvyD遺伝子とcomFC遺伝子に挟まれる領域で、走化性に関与する遺伝子群領域(以後、Fla領域)を欠失させた変異株を、森本らの方法(Genes&Genetic Systems,84,315(2009))に従い作製した。またそのフローを
図3に示す。
【0054】
<選択マーカー遺伝子カセットDNAの増幅>:
枯草菌TMO310株(Genes&Genetic Systems,84,315(2009))の染色体DNAを鋳型として、APNC−Fプライマー(配列番号27)とchpA−Rプライマー(配列番号28)を用いて、PCRにより選択マーカー遺伝子カセットDNA断片を増幅した。
【0055】
<供与体DNAの作製>:
枯草菌168株の染色体DNAを鋳型として、欠失対象領域の5’外側領域(断片A)、欠失対象領域の3’外側領域(断片B)の2断片を、それぞれFla−DF1(配列番号15)とFla−DR1(配列番号16)、及びFla−DF2(配列番号17)とFla−DR2(配列番号18)のプライマーセットを用いて、PCRにより増幅した(
図3)。また、Fla−IF(配列番号19)とFla−IR(配列番号20)のプライマーセットを用いて、PCRによりFla領域内部配列(断片C)を増幅した(
図3)。
【0056】
これらPCRによって得られた選択マーカー遺伝子カセット、5’外側領域(断片A)、3’外側領域(断片B)及びFla領域内部配列(断片C)の4断片、並びに、Fla−DF1(配列番号15)とFla−IR(配列番号20)のプライマーセットを用いて、SOE−PCR法(Gene,77,61(1989))を行った。これにより、
図3に示すような、5’外側領域(断片A)、3’外側領域(断片B)、選択マーカー遺伝子カセット及びFla領域内部配列(断片C)がこの順で配置したDNA断片を得ることができた。本実施例では、このDNA断片を供与体DNAとして使用した。
【0057】
<形質転換>:
上述のように取得された供与体DNAを用いて、枯草菌168株を形質転換した。形質転換は、コンピテントセル形質転換法により行い、1μg以上のPCR産物(供与体DNA)を400μlのコンピテントセルに添加し、更に1.5時間培養し、第1相同組み換え(
図3)を行った。
【0058】
組み換えにより導入されたスペクチノマイシン耐性遺伝子を用いて、形質転換体を選抜した。具体的には、上記形質転換処理後の細胞を、100μg/mLのスペクチノマイシンを含むLB寒天平板培地にて37℃で一晩培養してコロニーを形成させ、生存可能な菌株を取得した。すなわち、相同組み換えによって供与体DNAが組み込まれ、スペクチノマイシン耐性を獲得した枯草菌のみが、この培養により生育し、コロニーを形成する。取得した株を168(Fla::spec,lacI,Pspac−chpA)株とした。
【0059】
<168(Fla::spec,lacI,Pspac−chpA)株のゲノム内相同組換え>:
168(Fla::spec,lacI,Pspac−chpA)株を、LB液体培地で一晩培養した。培養液を希釈後、1mM IPTGを添加したLB寒天プレートに塗布した結果、コロニー形成が確認された。IPTG含有LB寒天プレート上で生存し、コロニー形成が確認されたこれらの形質転換枯草菌は、ゲノム内相同組み換えによって上記供与体DNAとともにA断片とB断片に挟まれる領域がゲノムDNAから欠失したものである(
図3)。更に、本実施例では、以上により得られた形質転換枯草菌の単コロニーについて、欠失対象領域(Fla領域)の欠失を、Fla−checkFプライマー(配列番号21)とFla−checkRプライマー(配列番号22)を用いて、PCRにより確認した(
図3)。得られた株を168ΔFla株とした。
【0060】
【表4】
【0061】
実施例4(アルカリセルラーゼ生産用プラスミドの作製):
図4に示すように、アルカリセルラーゼ遺伝子上流領域にSigD依存型のプロモーター配列を挿入したプラスミドを構築し。具体的には、枯草菌168株から抽出したゲノムDNAを鋳型として、表5に示すB−Phag Fw(配列番号29)とPhag−Ssig Rv(配列番号30)のプライマーセットを用いて、ゲノム上のhag遺伝子領域の上流に隣接する約0.3kbp断片(A)をそれぞれ調製した。また、シャトルベクターpHY300PLKのBamHI制限酵素切断点に、バチルス属細菌 KSM−S237株(FERM BP−7875)由来のS237アルカリセルラーゼ遺伝子(特開2000−210081号公報参照)をコードするDNA断片を挿入した組換えプラスミドpHY−S237を鋳型とし、表3に示すPhag−Ssig Fw(配列番号31)とB−Ster Rv(配列番号32)のプライマーセットを用いて、約2.4kbp断片(B)を調製した。次いで、得られた(A)(B)2断片を混合して鋳型とし、表3に示すB−Phag Fw(配列番号29)とB−Ster Rv(配列番号32)のプライマーセットを用い、SOE−PCRを行い、2断片が(A)(B)の順に結合した約2.7kbpのDNA断片(C)を得た。得られたDNA断片(C)を、シャトルベクターpHY300PLKのBamHI制限酵素切断点に挿入し、組換えプラスミドpHY−Phag−S237を構築した。
【0062】
【表5】
【0063】
実施例5(セルラーゼ生産量評価):
実施例1から実施例3で構築したflgM::spec株、csrA::cm株、168ΔflgMΔcsrA株、168ΔFla株、及び枯草菌168株に、実施例5で構築したアルカリセルラーゼ遺伝子発現用プラスミドを導入した。また、SigA依存型プロモーターであるS237プロモーター領域の下流にS237セルラーゼ遺伝子を挿入したプラスミドpHY−S237を枯草菌168株に導入し、コントロールとして用いた。
【0064】
得られた菌株を、5mLのLB培地で30℃で15時間振盪培養し、更にこの培養液0.6mLを30mLの2×L−マルトース培地(2%トリプトン、1%酵母エキス、1%塩化ナトリウム、7.5%マルトース、7.5ppm硫酸マンガン4−5水和物、15ppmテトラサイクリン)に接種し、30℃で2日間振盪培養した(測定誤差を算出するため、培養を3回行った)。2日間培養後、遠心分離によって菌体を除き、得られた培養液上清のアルカリセルラーゼ活性を測定した。セルラーゼ活性は、1/7.5M リン酸緩衝液(pH7.4 和光純薬社製)で適宜希釈したサンプル溶液50μLに0.4mM p−ニトロフェニル−β−D−セロトリオシド(生化学工業社製)を50μL添加して混合し、30℃にて反応を行った際に遊離するp−ニトロフェノール量を420nmにおける吸光度(OD
420)変化を測定することにより定量した。アルカリセルラーゼの活性値は、1分間に1μmolのp−ニトロフェノールを遊離させる酵素量を1Uと定義した。培養の結果を
図5に示す。また、表4には培養3日目の各株のセルラーゼ生産量を、168株にpHY−S237を導入した株(コントロール株)の生産量に対する相対値として表わした(表4;表の値は平均値±標準偏差(N=3)を示す)。
【0065】
168株にpHY−S237を形質転換したコントロール株の場合では、4000U/L程度の生産性が観察された。これに対し、pHY−Phag−S237で形質転換した場合では、168株では約2000U/Lの生産性しか観察できなかったが、csrA::cm株、flgM::spec株、ΔflgMΔcsrA株、ΔFla株の順に生産性が向上し、ΔFla株を用いた場合ではコントロールの約2.5倍の、約10000U/Lのアルカリセルラーゼ生産性を示すことが明らかとなった(
図5、表6)。
【0066】
以上の結果より、σDにより転写制御されるプロモーターの下流に目的タンパク質の遺伝子を配置したプラスミドを用い、168ΔflgMΔcsrA株、168ΔFla株を用いてタンパク質の生産を行うことで、168株の場合やflgM遺伝子の単独削除株の場合よりも高いタンパク質生産性を示すことが明らかとなり、従来から使用されるσA依存型の発現系よりも高いタンパク質生産性を示すことも明らかとなった。
【0067】
【表6】