【実施例】
【0031】
以下、実施例を用いて本発明のDPP−IV阻害剤を更に具体的に説明するが、本発明はこれらに限定されるものではない。なお、本発明において、ピーク分子量の測定、DPP−IVの活性測定及び阻害活性測定方法は以下の方法により行った。
【0032】
(ピーク分子量の測定)
ピーク分子量は、ゲル濾過カラム(GEヘルスケア社製Superdex Peptide)を用いて分析した。溶媒として、0.15MのNaClを含む50mM酢酸バッファー(pH5.5)に、米糠由来又は玄米由来加水分解物を10mg/mlの濃度になるように溶解し、その200μlを流速0.7ml/分で上記ゲル濾過カラムに注入する。別途、表1に示す標品の溶出位置をもとに検量線を作成し、215nmの吸光度を測定することによってピーク分子量を求めた。
【0033】
【表1】
【0034】
(DPP−IVの調製)
DPP−IVの組み換え体の作出については、メタノール資化性酵母による系での例が報告されている(W. Metzler et al. Protein Sci.,17: 240-250 (2008))。この方法をもとに、市販されているhuman cDNA PCR templateを鋳型に、ヒトジペプチジルベプチダーゼ−IV遺伝子をPCRにより増幅し、発現ベクター・形質転換酵母を作出し、菌体外発現させた。この培養上清を水に対し透析して得た液をDPP−IV酵素液とした。
【0035】
(DPP−IVの活性測定)
基質として、Ala(アラニン)−Pro(プロリン)−pNA(パラニトロアニリン)(バッケム社製)を使用した。すなわち、あらかじめ37℃に加温した2mMのAla−Pro−pNAを含む0.1Mトリス−塩酸バッファー(pH7.5)720μlを、37℃で加温したホルダーに装着したプラスチックセルに加え、前記酵素液を80μl加え、405nmの1分間当たりの吸光度変化を求めた。1ユニットを1分間あたり1マイクロモルのパラ−ニトロアニリンを遊離させる活性を1ユニットと定義し、405nmにおけるパラ−ニトロアニリンのミリモル分子吸光係数が10.6であることから、当該酵素液の活性を測定したところ、0.29ユニット/mlと見積もられた。
【0036】
(DPP−IV阻害率の測定方法)
基質として上記Ala−Pro−pNAを使用し、酵素として前記酵素液を使用した。具体的操作としては、まず、下記実施例1〜3で調製した3種の米糠由来又は玄米由来加水分解物を超純水で50mg/mlとなるように溶解し、同じく超純水にて、25、12.5、6.25、3.125mg/mlになるように2倍希釈溶液を調製した。96穴透明マイクロプレートに、あらかじめ37℃に加温した2mMのAla−Pro−pNAを含む0.1Mトリス−塩酸バッファー(pH7.5)80μlおよび米糠由来又は玄米由来加水分解物溶液10μlあるいは超純水を10μl/ウェル添加し撹拌した後、SH−8000マイクロプレートリーダー(コロナ社製)にて、37℃、5分間加温した。この後、DPP−IV酵素液を10μl/ウェル添加し攪拌した後、前記マイクロプレートリーダーにて1分間当たりの405nm吸光度変化を求めた。超純水を加えたものの吸光度変化を100%とし、米糠由来又は玄米由来加水分解物溶液を添加した際の相対的な活性を算出した。各サンプルについてDPP−IV阻害率を3回測定して平均値を求めた。
【0037】
(脱脂米糠の製造)
精米工場からの生糠を70〜100℃に加熱することにより、生糠に残留するリパーゼを失活させ、油が絞りやすい状態にしてレイノルズ社(ドイツ)製の搾油機AP14/22を用いて搾油した。圧搾された油と(半)脱脂米糠を分離し、半脱脂米糠には3〜5倍量のエタノールを入れ、30〜60℃で0.5〜4時間撹拌し、その後5Aの濾紙にてろ過した。この撹拌とろ過を再度繰り返し、半脱脂米糠を70℃以下の通風乾燥機で半脱脂米糠の水分が5%以下になるように乾燥し、脱脂米糠を得た。
【0038】
(米糠タンパクの調製)
250mlの水に1.0gのNaOHを溶解し、pHを12.5付近に調整したアルカリ溶液に上記のようにして得た脱脂米糠25gを加え、45℃の温度で攪拌しながら2時間抽出した。遠心分離機により、ろ液とろ過物に分け、ろ過物にさらに上記アルカリ溶液を250ml加え、同様に抽出した。得られたろ液を併せて1〜2規定の希塩酸でpH4に調整することにより、タンパク質を溶液中に沈殿させた。これを再度、遠心分離機でろ液とろ過物に分けた後、ろ過物を40℃で減圧乾燥して米糠タンパクとして回収した。得られた米糠タンパクのタンパク含量はデュマ法で77.3%であった。
【0039】
実施例1:(デナチームAPによる米糠由来加水分解物の調製)
上記で得た米糠タンパク2.5gをプラスチック製50mlコニカルチューブにとり、蒸留水40mlに懸だくし、5規定NaOHによりpHを7.0に調整した。デナチームAP(ナガセケムテックス社製)を25mg加え、反応温度を40℃に設定した。反応装置は、エッペンドルフ社製サーモミキサーコンフォートを用い、750rpmの攪拌を行って終夜反応を行った。終夜反応の後、静置した状態で80℃、30分加熱して酵素を失活させた。反応終了時においても、不溶物が残存していたので、反応液を2000Gで20分間遠心分離し、その上清を液体チッソにより凍結し、ラブコンコ社製凍結乾燥用フラスコおよび装置を用いて、終日凍結乾燥を行い、デナチームAPによる米糠由来加水分解物1.1gを得た。ピーク分子量は230であった。
【0040】
(DPP−IV阻害効果の評価)
上記説明したDPP−IV阻害率の測定方法にしたがって、実施例1のサンプルについてDPP−IV阻害率を3回測定して平均値を求めた。上記阻害活性とサンプル濃度(固形分濃度)の対数の関係式から逆算して、サンプルの50%阻害濃度(IC50)を求めた。その結果、デナチームAPによる米糠由来加水分解物(実施例1)のIC50は、9.08±2.04mg/mlであった。
【0041】
実施例2:(ウマミザイムGによる米糠由来加水分解物の調製)
上記で得た米糠タンパク2.5gを、プラスチック製50mlコニカルチューブにとり、蒸留水40mlに懸だくし、5規定NaOHによりpHを7.5に調整した。実施例1と同様の方法により、ウマミザイムGによる米糠由来加水分解物1.2gを得た。ピーク分子量は245であった。
【0042】
(DPP−IV阻害効果の評価)
上記説明したDPP−IV阻害率の測定方法にしたがって、実施例2のサンプルについてDPP−IV阻害率を3回測定して平均値を求めた。上記阻害活性とサンプル濃度(固形分濃度)の対数の関係式から逆算して、サンプルの50%阻害濃度(IC50)を求めた。その結果、ウマミザイムGによる米糠由来加水分解物(実施例2)のIC50は、2.34±0.13mg/mlであった。
【0043】
(ウマミザイムGによる米糠由来加水分解物中のIle−ProおよびLeu−Proの定量)
上記ウマミザイムGによる米糠由来加水分解物を、200μg/mlになるように、0.1%ギ酸を含む超純水に溶解した。また検量線を引く目的で、市販されているIle−Pro(バッケム社製)を0.25、0.50、1.00μg/mlになるように、同じく0.1%ギ酸を含む超純水に溶解した。これらサンプル各1μlをLC/MS分析した。装置は、高速液体クロマトグラフ装置NEXERAおよび質量分析計LCMS−2020(いずれも島津製作所製)を用い、カラムはジーエルサイエンス社製のInertsil ODS−3(2.1mm ID×50mm)を40℃で使用した。溶出は、0〜1分、0.1%ギ酸を含む超純水を供給し、1〜11分、0%から100%へ、0.1%ギ酸を含むアセトニトリルのグラジエント供給で、0.3ml/分の流速で行った。その結果、215nmおよびSelected Ion Monitoring(SIM)で、Ile−ProおよびLeu−Proに相当するM/Z=229.3を検出した。検量線から、ウマミザイムGによる米糠由来加水分解物中1mgあたり、2.91±0.52μgのIle−ProおよびLeu−Proが含まれていることが見積もられた。N末端解析の結果から、イソロイシンおよびロイシンの混合物が、4.2対5.8の割合で検出された。その結果、上記比率でIle−ProおよびLeu−Proが含まれているものとして、ウマミザイムGによる米糠由来加水分解物中1mgあたり、Ile−Proが1.22±0.22μg、Leu−Proが1.69±0.30μg含まれていると見積もられた。
【0044】
(ゲル濾過カラムによる分画とDPP−IV阻害活性の測定)
阻害活性成分を同定するため、実施例2で得たウマミザイムGによる米糠由来加水分解物を分取用ゲル濾過カラム(GEヘルスケア社製HiLoad 26/60 Superdex 30 prep grade) で分画した。ウマミザイムGによる米糠由来加水分解物617mgを、150mMのNaClを含む0.1Mトリス−塩酸バッファー(pH7.5)で100mg/mlの濃度で溶解し、0.45μmのフィルターで濾過し、カラムに全量注入した。溶出液は、150mMのNaClを含む0.1Mトリス−塩酸バッファー(pH7.5)を用い、流速1ml/分で溶出させ、10mlずつ分画した。フラクションナンバー21から34について、DPP−IV阻害活性を測定した。
【0045】
具体的には、96穴透明マイクロプレートに、各フラクションあるいは150mMのNaClを含む0.1Mトリス−塩酸バッファー(pH7.5)を90μlおよびDPP−IV酵素液を5μl/ウェル添加し撹拌した後、SH−8000マイクロプレートリーダー(コロナ社製)にて、37℃、5分間加温した。この後、20mMのAla−Pro−pNAのDMSO溶液を5μl/ウェル添加し撹拌した後、前記マイクロプレートリーダーにて1分間当たりの405nm吸光度変化を求めた。150mMのNaClを含む0.1Mトリス−塩酸バッファー(pH7.5)を加えたものの吸光度変化を100%とし、米糠由来加水分解物溶液を添加した際の相対的な活性を算出した。
【0046】
表2に各フラクションのDPP−IV阻害率を示す。
図1は、分取用ゲル濾過カラムの結果であり、1は215nmにおける吸光度変化を、2はDPP−IV阻害率(%)を示す。各フラクションについてDPP−IV阻害率を3回測定して平均値を求めた。表2に示すように、フラクションナンバー24において、最も強い阻害活性を認めた。
【0047】
【表2】
【0048】
(活性画分のLC/MSによる解析)
前記フラクションナンバー24〜27について、各溶液9mlを、透析チューブ(家田紡績株式会社のSPECTRUM フロータライザーG2、容量10ml、分画分子量100〜500)に入れ、脱塩のため蒸留水(4L×2回)で透析した後、得られた透析液をプラスチック製50mlコニカルチューブにとり、ボルテックスエバポレーター(ラブコンコ社製)にて乾固させ、フラクションナンバー24〜27について、各々42、47、50、19mgの乾固物を得た。これを、0.1%ギ酸を含む超純水に100μg/mlの濃度になるよう溶解し、各10μlをLC/MS分析した。
【0049】
装置は、高速液体クロマトグラフ装置NEXERAおよび質量分析計LCMS−2020(いずれも島津製作所製)を用い、カラムはジーエルサイエンス社製のInertsil ODS−3(2.1mm ID×50mm)を40℃で使用した。溶出は、0〜1分、0.1%ギ酸を含む超純水を供給し、1〜11分、0%から100%へ、0.1%ギ酸を含むアセトニトリルのグラジエント供給で、0.3ml/分の流速で行い、215nmおよびSelected Ion Monitoring(SIM)で検出した。
【0050】
SIM分析における検出するM/Zの値は、市販されている15種のXaa−Proジペプチドに相当する値、すなわち、173.2(Gly−Pro)、187.2(Ala−Pro)、203.2(Ser−Pro)、213.3(Pro−Pro)、215.3(Val−Pro)、217.3(Thr−Pro)、229.3(Ile−Pro、Leu−Pro、Pro−Ile、Pro−Leuは、同じM/Z=229.3を与える)、244.3(Lys−Pro)、247.3(Met−Pro)、253.3(His−Pro)、263.3(Phe−Pro)、272.3(Arg−Pro)、279.3(Tyr−Pro)、302.4(Trp−Pro)、計14種のM/Zを測定した。その結果、フラクションナンバー24に保持時間3.4分付近に、M/Z=229.3の顕著なピークが検出された。
【0051】
図2にフラクションナンバー24のSIM(M/Z=229.3)のマスクロマトグラムを示す。この条件でIle−Pro、Leu−Proの標品を分析したところ、全く同じ保持時間を与えた。また、この条件で、Pro−Ile、Pro−Leuの標品を分析したところ、各々の保持時間は、2.2分、2.9分付近であった。
【0052】
(分取用逆相カラムによる分画とDPP−IV阻害活性の測定)
前記フラクションナンバー24について、阻害活性成分を同定するため、上記活性画分のLC/MSによる解析における方法と同様にして42mgの乾固物を得た。この乾燥物を、10mg/mlになるように、0.1%ギ酸を含む蒸留水に溶解し、このうち50μLを高速液体クロマトグラフ装置(日本ウォーターズ社製)に注入し、分取用逆相カラムで分画した。カラムはジーエルサイエンス社製のInertsil ODS−3(10mm ID×150mm)を40℃で使用した。溶出は、0〜3分、0.1%ギ酸を含む超純水を供給し、3〜13分、0%から100%へ、0.1%ギ酸を含むアセトニトリルのグラジエント供給で、3ml/分の流速で行い、1.5mlずつ分画した。各フラクションについて、各10μlをLC/MS分析した。
【0053】
装置は、高速液体クロマトグラフ装置NEXERAおよび質量分析計LCMS−2020(いずれも島津製作所製)を用い、カラムはInertsil ODS−3(2.1mm ID×50mm、ジーエルサイエンス社製)を40℃で使用した。溶出は、0〜1分、0.1%ギ酸を含む超純水を供給し、1〜11分、0%から100%へ、0.1%ギ酸を含むアセトニトリルのグラジエント供給を、流速0.3ml/分の流速で行い、215nmおよびSelected Ion Monitoring(SIM)で検出した。M/Z=229.3(Ile−Pro、Leu−Pro、Pro−Ile、Pro−Leuは同じM/Z=229.3を与える)で検出したところ、フラクションナンバー18に保持時間3.4分付近、M/Z=229.3の顕著なピークが検出された。
【0054】
フラクションナンバー18について、エドマン反応を利用した気相法プロテインシークエンサー(島津製作所製)にかけ、N末端に位置するアミノ酸を検出したところ、N末端には、イソロイシンおよびロイシンの混合物が、4.2対5.8の割合で検出され、N末端の次位置にはプロリンが検出された。よってこのフラクションナンバー18には、Ile−ProおよびLeu−Proが含まれていることが判明した。
【0055】
試験例3:(ウマミザイムGによる玄米由来加水分解物の調製)
玄米タンパク(Nutribiotic社製)2.5gを、プラスチック製50mlコニカルチューブにとり、蒸留水40mlに懸だくし、5規定NaOHによりpHを7.5に調整した。ウマミザイムG(アマノエンザイム社製)を25mg加え、反応温度を45℃に設定した。実施例1と同様の方法により、ウマミザイムGによる玄米由来加水分解物1.45gを得た。ピーク分子量は225であった。
【0056】
(DPP−IV阻害効果の評価)
上記説明したDPP−IV阻害率の測定方法にしたがって、
試験例3のサンプルについてDPP−IV阻害率を3回測定して平均値を求めた。上記阻害活性とサンプル濃度(固形分濃度)の対数の関係式から逆算して、サンプルの50%阻害濃度(IC50)を求めた。その結果、ウマミザイムGによる玄米由来加水分解物(
試験例3)のIC50は、4.58±0.79mg/mlであった。
【0057】
試験例1:(市販ジペプチドによるDPP−IV阻害活性の測定)
基質として、前記と同じAla−Pro−pNAを使用し、酵素としては前記酵素液を使用した。具体的操作としては、下記表3に示す16種のジペプチドを超純水にて、6.25、12.5、25、50、100mMになるように2倍希釈溶液を調製した。96穴透明マイクロプレートに、あらかじめ37℃に加温した2mMのAla−Pro−pNAを含む0.1Mトリス―塩酸バッファー(pH7.5)80μlおよびペプチド溶液10μlあるいは超純水10μl/ウェル添加し撹拌した後、SH−8000マイクロプレートリーダー(コロナ社製)にて、37℃、5分間加温した。
【0058】
この後、DPP−IV酵素液を10μl/ウェル添加し攪拌した後、前記マイクロプレートリーダーにて1分間当たりの405nm吸光度変化を求めた。超純水を加えたものの吸光度変化を100%とし、ペプチド溶液を添加した際の相対的な活性を算出した。各サンプルについてDPP−IV阻害率を3回測定して平均値を求めた。表3に結果を示す。表3に示された結果から分かるように、Ile−Proが最も阻害活性が強く、そのIle−ProのレトロペプチドであるPro−IleおよびGly−Proは全く阻害を示さなかった。
【0059】
【表3】
【0060】
比較例1:(ビオプラーゼSPによる米糠由来加水分解物の調製)
上記得られた米糠タンパク2.5gをプラスチック製50mlコニカルチューブにとり、蒸留水40mlに懸だくし、5規定NaOHによりpHを8.0に調整した。ビオプラーゼSP(ナガセケムテックス社製)を25mg加え、反応温度を50℃に設定した。反応装置は、エッペンドルフ社製サーモミキサーコンフォートを用い、750rpmの攪拌を行って終夜反応を行った。終夜反応の後、静置した状態で80℃、30分加熱して酵素を失活させた。反応終了時においても、不溶物が残存していたので、反応液を2000Gで20分間遠心分離し、その上清を液体チッソにより凍結し、ラブコンコ社製凍結乾燥用フラスコおよび装置を用いて、終日凍結乾燥を行い、ビオプラーゼSPによる米糠由来加水分解物0.65gを得た。ピーク分子量は11,500であった。
【0061】
基質として、前記と同じAla−Pro−pNAを使用し、酵素としては前記酵素液を使用した。具体的操作としては、まず、上記ビオプラーゼSPによる米糠由来加水分解物を超純水で80mg/mlとなるように溶解し、同じく超純水にて、40、20、10、5mg/mlになるように2倍希釈溶液を調製した。96穴透明マイクロプレートに、あらかじめ37℃に加温した2mMのAla−Pro−pNAを含む0.1Mトリス−塩酸バッファー(pH7.5)80μlおよび米糠由来加水分解物溶液10μlあるいはミリQ水を10μl/ウェル添加し撹拌した後、SH−8000マイクロプレートリーダー(コロナ社製)にて、37℃、5分間加温した。この後、DPP−IV酵素液を10μl/ウェル添加し撹拌した後、前記マイクロプレートリーダーにて1分間当たりの405nm吸光度変化を求めた。超純水を加えたものの吸光度変化を100%とし、米糠由来加水分解物溶液を添加した際の相対的な活性を算出した。サンプルについてDPP−IV阻害率を3回測定して平均値を求めた。
【0062】
上記阻害活性とサンプル濃度(固形分濃度)の対数の関係式から逆算して、サンプルの50%阻害濃度(IC50)を求めた。その結果、ビオプラーゼSPによる米糠由来加水分解物のIC50は、26.4±2.3mg/mlであった。
【0063】
ビオプラーゼSPによる米糠由来加水分解物を、200μg/mlになるように、0.1%ギ酸を含む超純水に溶解した。また検量線を引く目的で、市販されているIle-Pro(バッケム社製)を0.125、0.25、0.50、1.00μg/mlになるように、同じく0.1%ギ酸を含む超純水に溶解した。これらサンプル各1μlをLC/MS分析した。
【0064】
装置は、高速液体クロマトグラフ装置NEXERAおよび質量分析計LCMS−2020(いずれも島津製作所製)を用い、カラムはジーエルサイエンス社製のInertsil ODS−3(2.1mm ID×50mm)を40℃で使用した。溶出は、0〜1分、0.1%ギ酸を含む超純水を供給し、1〜11分、0%から100%へ、0.1%ギ酸を含むアセトニトリルのグラジエント供給で、0.3ml/分の流速で行った。215nmおよびSelected Ion Monitoring(SIM)で測定したところ、Ile-ProおよびLeu−Proに相当するM/Z=229.3の値は検出限界以下であり測定できなかった。