(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
実施の形態1
以下、図面を参照して実施の形態について説明する。以下で説明する実施の形態は、半導体装置として1つの昇圧回路によって出力される出力電圧から複数の昇圧電圧を生成する電圧生成回路について説明する。
【0011】
図1に実施の形態1にかかる半導体装置1のブロック図を示す。
図1に示すように、半導体装置1は、昇圧回路10、制御回路11、電圧保持回路14、第1のスイッチSW1を有する。また、半導体装置1は、第1の昇圧電圧Vcp1を出力する第1の出力端子と、第2の昇圧電圧V1を出力する第2の出力端子を有する。
【0012】
昇圧回路10は、入力電圧(例えば、電源電圧)を昇圧して第1の昇圧電圧Vcp1を生成する。この第1の昇圧電圧Vcp1は、昇圧回路10が出力する出力電圧の最終的な電圧である。つまり、昇圧回路10は、出力電圧の電圧値を徐々に上昇させて、最終的に出力電圧を第1の昇圧電圧Vcp1とする。
【0013】
制御回路11は、昇圧回路10の出力電圧が電圧保持回路14に対して設定された保持電圧レベルに達したことに応じて第1のスイッチSW1を閉状態から開状態に切り替える切替信号S12を生成する。
図1に示す例では、制御回路11は、電圧検知回路12と電圧レベル変換回路13とを有する。
【0014】
電圧検知回路12は、電源電圧と接地電圧とに基づき動作し、昇圧回路10の出力電圧が設定された保持電圧レベルを超えたことを検出して電圧検出信号S11を出力する。電圧レベル変換回路13は、電圧検出信号S11の振幅の最大値を昇圧回路10の出力電圧に応じた電圧に変換する。
【0015】
電圧保持回路14は、第1の昇圧電圧Vcp1よりも低い第2の昇圧電圧V1を保持する。より具体的には、電圧保持回路14は、切替信号S12が第1のスイッチSW1を閉状態とすることを指示する期間は昇圧回路10の出力電圧に応じて出力する第2の昇圧電圧V1の電圧値を上昇させる。そして、電圧保持回路14は、切替信号S12が第1のスイッチSW1を開状態とすることを指示する期間は切替信号の値が切り替わった時点における第2の昇圧電圧V1の電圧値を維持する。
【0016】
第1のスイッチSW1は、第1の昇圧電圧Vcp1が出力される第1の出力端子と、第2の昇圧電圧V1が出力される第2の出力端子と、の間に設けられる。そして、第1のスイッチSW1は、切替信号S12に応じて閉状態と開状態とが制御される。
【0017】
続いて、各回路ブロックの詳細についてさらに説明する。
図2に昇圧回路10の詳細な回路図を示す。
図2に示すように、昇圧回路10は、逆流防止回路20、昇圧段回路21〜2n(nは回路の段数を示す整数)を有する。逆流防止回路20は、トランジスタTr20を有する。トランジスタTr20は、ダイオード接続され、ダイオードとして機能する。トランジスタTr20により形成されるダイオードは、アノードが入力電圧(例えば、電源電圧)が供給される電源端子VDDに接続され、カソードが昇圧段回路21に接続される。
【0018】
昇圧段回路21〜2nは、同じ回路構成を有する。そこで、昇圧段回路21を例に昇圧段回路の回路構成について説明する。昇圧段回路21は、トランジスタTr21と、昇圧コンデンサC21と、を有する。トランジスタTr21は、ダイオード接続され、ダイオードとして機能する。トランジスタTr21により形成されるダイオードは、アノードが前段の回路に接続され、カソードが後段の回路に接続される。昇圧段回路21の場合、トランジスタTr21により形成されるダイオードは、アノードが前段に設けられる逆流防止回路20に接続され、カソードが後段に設けられる昇圧段回路22に接続される。そして、最も後段に配置される昇圧段回路2nのトランジスタTr2nにより形成されるダイオードのカソードが昇圧回路10の出力端子となる。また、昇圧コンデンサC21は、トランジスタTr21により形成されるダイオードのアノードに一端が接続される。昇圧コンデンサC21の他端には、バッファを介して動作クロックCLKが与えられる。なお、昇圧回路10では、隣り合う昇圧段回路には互いに反転する動作クロックが与えられる。
図1に示す例では、昇圧段回路21、23には動作クロックCLKが与えられ、昇圧段回路22、2nには動作クロックCLKの反転動作クロックCLKbが与えられる。なお、動作クロックCLK及び反転動作クロックCLKbは、図示しない発振回路により生成される。
【0019】
続いて、
図3に実施の形態1にかかる電圧検出回路12の回路図を示す。
図3に示すように、電圧検知回路12は、比較器CMP12、基準電圧生成回路VS、抵抗R11、R12を有する。抵抗R11、R12は、昇圧回路10が出力する出力電圧が供給される昇圧ノードと所定の電圧が供給されるバイアス端子との間に直列に接続される。
図3に示す例では、昇圧ノードに対応する符号としてVcp1を用いた。また、
図3に示す電圧検知回路12では、接地電圧が供給される接地端子VSSがバイアス端子に相当する。
【0020】
基準電圧生成回路VSは、基準電圧Vrefを生成する。この基準電圧生成回路VSは、例えば、バンドギャップ電圧源であって、バンドギャップ電圧を基準電圧Vrefとして出力する。
【0021】
比較器CMP12は、抵抗R11と抵抗R12とを接続する接続ノードに生成される分圧電圧Vdivと基準電圧Vrefとを比較して、電圧検出信号S11の論理レベルを切り替える。なお、電圧検出信号S11は、差動信号である。例えば、比較器CMP12は、分圧電圧Vdivが基準電圧Vrefを超えた場合に電圧検出信号S11をイネーブル状態とする。つまり、電圧検知回路12は、昇圧回路10の出力電圧が保持電圧レベルに達した時点での分圧電圧Vdivを基準電圧Vrefに設定することで出力電圧が保持電圧レベルに達したことを検出する。なお、分圧電圧Vdivの調整は、抵抗R11と抵抗R12との抵抗比を調整することで行うことができる。
【0022】
続いて、
図4に実施の形態1にかかる電圧レベル変換回路13の回路図を示す。
図4に示すように、電圧レベル変換回路13は、NMOSトランジスタMN11〜MN14、PMOSトランジスタMP11〜MP16を有する。
【0023】
NMOSトランジスタMN11のソースは、接地端子VSSに接続される。NMOSトランジスタMN11のドレインは、PMOSトランジスタMP11のドレインと接続される。NMOSトランジスタMN11のゲートとPMOSトランジスタMP11のゲートとは、共通に接続され、電圧検出信号S11の正転信号S111が入力される。NMOSトランジスタMN12のソースは、接地端子VSSに接続される。NMOSトランジスタMN12のドレインは、PMOSトランジスタMP12のドレインと接続される。NMOSトランジスタMN11のゲートとPMOSトランジスタMP11のゲートとは、共通に接続され、電圧検出信号S11の反転信号S112が入力される。
【0024】
PMOSトランジスタMP11のソースは、PMOSトランジスタMP13を介して昇圧ノードに接続される。PMOSトランジスタMP12のソースは、PMOSトランジスタMP14を介して昇圧ノードに接続される。
図4では、昇圧ノードに対応する符号としてVcp1を付した。PMOSトランジスタMP13のゲートは、NMOSトランジスタMN12のドレインとPMOSトランジスタMP12のドレインとを接続するノードに接続される。PMOSトランジスタMP14のゲートは、NMOSトランジスタMN11のドレインとPMOSトランジスタMP11のドレインとを接続するノードに接続される。
【0025】
NMOSトランジスタMN13とPMOSトランジスタMP15とは、昇圧ノードと接地端子VSSとの間に直列に接続され、インバータとして機能する。NMOSトランジスタMN13とPMOSトランジスタMP15とにより形成されるインバータは、NMOSトランジスタMN12のドレインとPMOSトランジスタMP12のドレインとを接続するノードに生成される信号の反転論理となる信号を出力する。
【0026】
NMOSトランジスタMN14とPMOSトランジスタMP16とは、昇圧ノードと接地端子VSSとの間に直列に接続され、インバータとして機能する。NMOSトランジスタMN14とPMOSトランジスタMP16とにより形成されるインバータは、NMOSトランジスタMN13とPMOSトランジスタMP15とにより形成されるインバータが出力する信号の反転論理となる信号を出力する。NMOSトランジスタMN14とPMOSトランジスタMP16とにより形成されるインバータの出力信号は、切替信号S12となる。
【0027】
ここで、電圧レベル変換回路13の動作について説明する。まず、半導体装置1では、電圧検出信号S11がイネーブル状態のとき、正転信号S111をハイレベル(例えば、電源電圧)とし、反転信号S112をロウレベル(例えば、接地電圧)とする。そして、電圧レベル変換回路13は、電圧検出信号S11がイネーブル状態である場合、NMOSトランジスタMN11をオン状態とし、PMOSトランジスタMP11をオフ状態とする。これにより、NMOSトランジスタMN11のドレインとPMOSトランジスタMP11のドレインとを接続する接続ノードは、ロウレベル(例えば、接地電圧)となり、PMOSトランジスタMP14がオン状態となる。また、電圧レベル変換回路13は、電圧検出信号S11がイネーブル状態である場合、NMOSトランジスタMN12をオフ状態とし、PMOSトランジスタMP11をオン状態とする。これにより、NMOSトランジスタMN12のドレインとPMOSトランジスタMP12のドレインとを接続する接続ノードは、ハイレベル(例えば、昇圧ノードに供給される昇圧回路10の出力電圧)となり、PMOSトランジスタMP13がオフ状態となる。
【0028】
また、NMOSトランジスタMN12のドレインとPMOSトランジスタMP12のドレインとを接続する接続ノードが、ハイレベルとなることにより、NMOSトランジスタMN13とPMOSトランジスタMP15とにより形成されるインバータは、ロウレベル(例えば、接地電圧)を出力する。そして、NMOSトランジスタMN14とPMOSトランジスタMP16とにより形成されるインバータは、ハイレベル(例えば、昇圧ノードに供給される昇圧回路10の出力電圧)を出力する。
【0029】
つまり、電圧レベル変換回路13は、電圧検出信号S11がイネーブル状態である場合、切替信号S12をハイレベルとする。一方、電圧検知回路12は、電圧検出信号S11をディスイネーブル状態とする場合、正転信号S111をロウレベル(例えば、接地電圧)とし、反転信号S112をハイレベル(例えば、電源電圧)とする。このとき、電圧レベル変換回路13は、イネーブル状態の電圧検出信号S11に対する動作と相補的な動作により、切替信号S12をロウレベル(例えば、接地電圧)とする。
【0030】
なお、制御回路11は、第1のスイッチSW1に開状態となることを指示する場合切替信号S12をハイレベルとし、第1のスイッチSW1に閉状態となることを指示する場合切替信号S12をロウレベルとする。
【0031】
続いて、
図5に実施の形態1にかかる電圧保持回路14の回路図を示す。
図5に示すように、電圧保持回路14は、第2のスイッチSW2、電圧保持コンデンサCV1を有する。第2のスイッチSW2は、切替信号S12に応じて昇圧回路10の出力電圧が保持電圧レベルよりも絶対値が大きい期間に開状態に制御される。一方、第2のスイッチSW2は、切替信号S12に応じて昇圧回路10の出力電圧が保持電圧レベルよりも絶対値が小さい期間に閉状態に制御される。電圧保持コンデンサCV1は、一端が第2のスイッチSW2を介して昇圧回路10の出力電圧が生成される昇圧ノードに接続され、他端が所定の電圧が供給されるバイアス端子に接続される。
図5に示す例では、昇圧ノードに対応する符号としてVcp1を付した。また、
図5に示す電圧保持回路14では、接地電圧が供給される接地端子VSSがバイアス端子に相当する。そして、電圧保持回路14は、電圧保持コンデンサCV1と第2のスイッチSW2とを接続する電圧保持ノードの電圧を第2の昇圧電圧V1として出力する。
【0032】
続いて、実施の形態1にかかる半導体装置1の動作について説明する。
図6に実施の形態1にかかる半導体装置1の動作を示すタイミングチャートを示す。
図6に示す例では、タイミングT10において、昇圧回路10が昇圧動作を開始する。そして、昇圧回路10は、出力電圧を上昇させて、タイミングT11において出力電圧が電圧保持回路14が保持する電圧レベルに達する。そのため、タイミングT11において、電圧検知回路12が電圧検出信号S11をディスイネーブル状態からイネーブル状態に切り替える。そして、電圧レベル変換回路13は、電圧検出信号S11がイネーブル状態となったことに応じて切替信号S12をロウレベルからハイレベルに切り替える。そして、タイミングT11において、切替信号S12に応じて第1のスイッチSW1は開状態に切り替わる。また、タイミングT11において電圧保持回路14は、第2のスイッチSW2を開状態として、それまでの期間に電圧保持コンデンサCV1に蓄積された電荷に基づき第2の昇圧電圧V1として、保持電圧レベルに達した時点における出力電圧を出力する。
【0033】
その後、昇圧回路10は出力電圧の昇圧動作を継続し、タイミングT12において出力電圧が第1の昇圧電圧Vcp1に達する。そして、タイミングT12以降は、半導体装置1は、第1の昇圧電圧Vcp1と第2の昇圧電圧V1を出力する。
【0034】
続いて、実施の形態1にかかる半導体装置1のレイアウト面積について説明する。まず、
図7に実施の形態1にかかる半導体装置1の比較例のレイアウト面積を説明する概略図を示す。この比較例は、実施の形態1にかかる半導体装置1の電圧保持回路14に代えて第2の昇圧回路を有するものであり、特許文献1に記載の半導体装置に相当するものである。
図7に示すように、比較例にかかる半導体装置では、昇圧回路10(例えば、第1の昇圧回路)よりもレイアウト面積が小さい第2の昇圧回路が配置される。
【0035】
一方、
図8に実施の形態1にかかる半導体装置1のレイアウト面積を説明する概略図を示す。
図8に示すように、実施の形態1にかかる半導体装置1は、電圧保持回路14を有する。
図8では、比較のために
図7の第2の昇圧回路のレイアウト領域を破線で囲まれる領域として示した。この電圧保持回路14は、第2の昇圧回路よりも小さなレイアウト面積で配置可能である。第2の昇圧回路は、第1の昇圧回路よりも電流出力能力が小さくコンデンサの容量が小さいものの、やはり多くのコンデンサを配置しなければならないため、回路面積が大きくなる。しかし、実施の形態1にかかる電圧保持回路14は、1つのコンデンサと1つのスイッチにより構成できるため、回路面積を第2の昇圧回路よりも格段に小さくすることができる。
【0036】
上記説明より、実施の形態1にかかる半導体装置1は、昇圧回路10が出力電圧を昇圧する途中で生成される電圧を第2の昇圧電圧V1として電圧保持回路14において保持する。これにより、1つの昇圧回路のみで第1の昇圧電圧Vcp1と、第1の昇圧電圧Vcp1とは異なる電圧値を有する第2の昇圧回路V1と、を生成することができる。また、第2の昇圧電圧V1を出力する電圧保持回路14は、昇圧回路よりも少ない素子数で構成できる。そのため、実施の形態1にかかる半導体装置1では、生成する昇圧電圧の電圧値の種類に対して回路面積の増大を抑制することができる。
【0037】
また、実施の形態1にかかる半導体装置1は、昇圧回路10の出力電圧が保持電圧レベルに達するまでの間第1のスイッチSW1を閉状態に制御する。電圧保持回路14は、昇圧途中の出力電圧が保持電圧レベルに達したことに応じて、その時点での出力電圧を第2の昇圧電圧V1として保持する。つまり、電圧保持回路14は、第2の昇圧電圧V1の供給対象となる負荷回路を駆動するための能力が小さい。そのため、第1のスイッチSW1がない場合、第2の昇圧電圧V1の駆動対象回路で消費される負荷電流に起因して第2の昇圧電圧V1の上昇速度が低下する問題がある。しかし、実施の形態1にかかる半導体装置1では、第1のスイッチを閉状態に制御した状態で、昇圧回路10の出力電圧が保持電圧レベルに達するまで第2の昇圧電圧V1の電圧を昇圧する。これにより、電圧保持回路14の駆動能力を小さく設定したとしても、実施の形態1にかかる半導体装置1は、第2の昇圧電圧V1の昇圧速度を高めることができる。
【0038】
また、実施の形態1にかかる半導体装置1は、制御回路11が電圧検知回路12と電圧レベル変換回路13とを備える。このように、電圧レベル変換回路13を用いて電圧検出信号S11の振幅の最大値を出力電圧に応じた電圧に変換することで、電圧検知回路12を耐圧の小さな回路素子により構成しながら、第1のスイッチSW1を制御する切替信号S12の振幅を大きくすることができる。トランジスタのレイアウト面積は、トランジスタの耐圧電圧が高いほど大きくなる傾向がある。そのため、電圧検知回路12を耐圧の小さな回路素子により構成することで、電圧検知回路12の回路面積を小さくすることができ、半導体装置1の回路面積をより小さくすることができる。
【0039】
実施の形態2
実施の形態2では、実施の形態1にかかる半導体装置1に関する技術を接地電圧よりも低い負の昇圧電圧を生成する負昇圧回路に適用した実施例について説明する。
【0040】
図9に実施の形態2にかかる半導体装置2のブロック図を示す。
図9に示すように、半導体装置1は、負昇圧回路30、制御回路31、電圧保持回路34、第1のスイッチSW3を有する。また、半導体装置2は、第1の昇圧電圧Vcp2を出力する第1の出力端子と、第2の昇圧電圧V2を出力する第2の出力端子を有する。
【0041】
負昇圧回路30は、入力電圧(例えば、接地電圧)を負側に昇圧して第1の昇圧電圧Vcp2を生成する。この第1の昇圧電圧Vcp2は、負昇圧回路30が出力する出力電圧の最終的な電圧である。つまり、負昇圧回路30は、出力電圧の電圧値を徐々に降下させて、最終的に出力電圧を第1の昇圧電圧Vcp2とする。
【0042】
制御回路31は、負昇圧回路30の出力電圧が電圧保持回路34に対して設定された保持電圧レベルに達したことに応じて第1のスイッチSW3を閉状態から開状態に切り替える切替信号S12を生成する。
図9に示す例では、制御回路31は、電圧検知回路32と電圧レベル変換回路33とを有する。
【0043】
電圧検知回路32は、電源電圧と接地電圧とに基づき動作し、負昇圧回路30の出力電圧が設定された保持電圧レベルを超えたことを検出して電圧検出信号S31を出力する。電圧レベル変換回路33は、電圧検出信号S31の振幅の最大値を負昇圧回路30の出力電圧に応じた電圧に変換する。
【0044】
電圧保持回路34は、第1の昇圧電圧Vcp2よりも低い第2の昇圧電圧V2を保持する。より具体的には、電圧保持回路34は、切替信号S32が第1のスイッチSW3を閉状態とすることを指示する期間は負昇圧回路30の出力電圧に応じて出力する第2の昇圧電圧V1の電圧値を上昇させる。そして、電圧保持回路34は、切替信号S32が第1のスイッチSW1を開状態とすることを指示する期間は切替信号の値が切り替わった時点における第2の昇圧電圧V2の電圧値を維持する。
【0045】
第1のスイッチSW3は、第1の昇圧電圧Vcp2が出力される第1の出力端子と、第2の昇圧電圧V2が出力される第2の出力端子と、の間に設けられる。そして、第1のスイッチSW3は、切替信号S32に応じて閉状態と開状態とが制御される。
【0046】
続いて、各回路ブロックの詳細についてさらに説明する。
図10に負昇圧回路30の詳細な回路図を示す。
図10に示すように、負昇圧回路30は、逆流防止回路40、昇圧段回路41〜4n(nは回路の段数を示す整数)を有する。逆流防止回路40は、トランジスタTr40を有する。トランジスタTr40は、ダイオード接続され、ダイオードとして機能する。トランジスタTr40により形成されるダイオードは、カソードが入力電圧(例えば、接地電圧)が供給される接地端子VSSに接続され、アノードが昇圧段回路41に接続される。
【0047】
昇圧段回路41〜4nは、同じ回路構成を有する。そこで、昇圧段回路41を例に昇圧段回路の回路構成について説明する。昇圧段回路41は、トランジスタTr41と、昇圧コンデンサC41と、を有する。トランジスタTr41は、ダイオード接続され、ダイオードとして機能する。トランジスタTr41により形成されるダイオードは、カソードが前段の回路に接続され、アノードが後段の回路に接続される。昇圧段回路41の場合、トランジスタTr41により形成されるダイオードは、カソードが前段に設けられる逆流防止回路40に接続され、アノードが後段に設けられる昇圧段回路42に接続される。そして、最も後段に配置される昇圧段回路4nのトランジスタTr4nにより形成されるダイオードのアノードが負昇圧回路30の出力端子となる。また、昇圧コンデンサC41は、トランジスタTr41により形成されるダイオードのカソードに一端が接続される。昇圧コンデンサC41の他端には、バッファを介して動作クロックCLKが与えられる。なお、負昇圧回路30では、隣り合う昇圧段回路には互いに反転する動作クロックが与えられる。
図1に示す例では、昇圧段回路41、43には動作クロックCLKが与えられ、昇圧段回路42、4nには動作クロックCLKの反転動作クロックCLKbが与えられる。なお、動作クロックCLK及び反転動作クロックCLKbは、図示しない発振回路により生成される。
【0048】
続いて、
図11に実施の形態2にかかる電圧検出回路32の回路図を示す。
図11に示すように、電圧検知回路32は、比較器CMP32、基準電圧生成回路VS、抵抗R31、R32を有する。抵抗R31、R32は、負昇圧回路30が出力する出力電圧が供給される昇圧ノードと所定の電圧が供給される所定の電圧が供給されるバイアス端子との間に直列に接続される。
図11に示す例では、昇圧ノードに対応する符号としてVcp2を用いた。また、
図11に示す電圧検知回路32では、電源電圧が供給される電源端子VDDがバイアス端子に相当する。
【0049】
基準電圧生成回路VSは、基準電圧Vrefを生成する。この基準電圧生成回路VSは、例えば、バンドギャップ電圧源であって、バンドギャップ電圧を基準電圧Vrefとして出力する。
【0050】
比較器CMP32は、抵抗R31と抵抗R32とを接続する接続ノードに生成される分圧電圧Vdivと基準電圧Vrefとを比較して、電圧検出信号S31の論理レベルを切り替える。なお、電圧検出信号S31は、差動信号である。例えば、比較器CMP32は、分圧電圧Vdivが基準電圧Vrefを超えた(例えば、下回った)場合に電圧検出信号S31をイネーブル状態とする。つまり、電圧検知回路32は、負昇圧回路30の出力電圧が保持電圧レベルに達した時点での分圧電圧Vdivを基準電圧Vrefに設定することで出力電圧が保持電圧レベルに達したことを検出する。なお、分圧電圧Vdivの調整は、抵抗R31と抵抗R32との抵抗比を調整することで行うことができる。
【0051】
続いて、
図12に実施の形態2にかかる電圧レベル変換回路33の回路図を示す。
図12に示すように、電圧レベル変換回路33は、NMOSトランジスタMN31〜MN35、PMOSトランジスタMP31〜MP33を有する。
【0052】
PMOSトランジスタMP31のソースは、電源端子VDDに接続される。PMOSトランジスタMP31のドレインは、NMOSトランジスタMN31のドレインと接続される。PMOSトランジスタMP31のゲートとNMOSトランジスタMN31のゲートとは、共通に接続され、電圧検出信号S31の正転信号S311が入力される。PMOSトランジスタMP32のソースは、電源端子VDDに接続される。PMOSトランジスタMP32のドレインは、NMOSトランジスタMN32のドレインと接続される。PMOSトランジスタMP31のゲートとNMOSトランジスタMN31のゲートとは、共通に接続され、電圧検出信号S31の反転信号S312が入力される。
【0053】
NMOSトランジスタMN31のソースは、NMOSトランジスタMN33を介して昇圧ノードに接続される。NMOSトランジスタMN32のソースは、NMOSトランジスタMN34を介して昇圧ノードに接続される。
図12では、昇圧ノードに対応する符号としてVcp2を付した。NMOSトランジスタMN33のゲートは、PMOSトランジスタMP32のドレインとNMOSトランジスタMN32のドレインとを接続するノードに接続される。NMOSトランジスタMN34のゲートは、PMOSトランジスタMP31のドレインとNMOSトランジスタMN31のドレインとを接続するノードに接続される。
【0054】
PMOSトランジスタMN33とNMOSトランジスタMN35とは、電源端子VDDと昇圧ノードとの間に直列に接続され、インバータとして機能する。PMOSトランジスタMP33とNMOSトランジスタMN35とにより形成されるインバータは、PMOSトランジスタMP31のドレインとNMOSトランジスタMN31のドレインとを接続するノードに生成される信号の反転論理となる信号を出力する。PMOSトランジスタMP33とNMOSトランジスタMN35とにより形成されるインバータの出力信号は、切替信号S32となる。
【0055】
ここで、電圧レベル変換回路33の動作について説明する。まず、半導体装置2では、電圧検出信号S31がイネーブル状態のとき、正転信号S111をロウレベル(例えば、接地電圧)とし、反転信号S112をハイレベル(例えば、電源電圧)とする。そして、電圧レベル変換回路33は、電圧検出信号S31がイネーブル状態である場合、PMOSトランジスタMP31をオン状態とし、NMOSトランジスタMN31をオフ状態とする。これにより、PMOSトランジスタMP31のドレインとNMOSトランジスタMN31のドレインとを接続する接続ノードは、ハイレベル(例えば、電源電圧)となり、NMOSトランジスタMN34がオン状態となる。また、電圧レベル変換回路33は、電圧検出信号S31がイネーブル状態である場合、PMOSトランジスタMP32をオフ状態とし、NMOSトランジスタMN31をオン状態とする。これにより、PMOSトランジスタMP32のドレインとNMOSトランジスタMN32のドレインとを接続する接続ノードは、ロウレベル(例えば、昇圧ノードに供給される負昇圧回路30の出力電圧)となり、NMOSトランジスタMN33がオフ状態となる。
【0056】
また、PMOSトランジスタMP31のドレインとNMOSトランジスタMN31のドレインとを接続する接続ノードが、ハイレベルとなることにより、PMOSトランジスタMP33とNMOSトランジスタMN35とにより形成されるインバータは、ロウレベル(例えば、昇圧ノードに供給される負昇圧回路30の出力電圧)を出力する。
【0057】
つまり、電圧レベル変換回路33は、電圧検出信号S11がイネーブル状態である場合、切替信号S32をロウレベルとする。一方、電圧検知回路32は、電圧検出信号S31をディスイネーブル状態とする場合、正転信号S311をハイレベル(例えば、電源電圧)とし、反転信号S312をロウレベル(例えば、接地電圧)とする。このとき、電圧レベル変換回路33は、イネーブル状態の電圧検出信号S31に対する動作と相補的な動作により、切替信号S32をハイレベル(例えば、電源電圧)とする。
【0058】
なお、制御回路31は、第1のスイッチSW3に開状態となることを指示する場合切替信号S32をロウレベルとし、第1のスイッチSW3に閉状態となることを指示する場合切替信号S32をハイレベルとする。
【0059】
続いて、
図13に実施の形態2にかかる電圧保持回路34の回路図を示す。
図13に示すように、電圧保持回路34は、第2のスイッチSW4、電圧保持コンデンサCV2を有する。第2のスイッチSW4は、切替信号S32に応じて負昇圧回路30の出力電圧が保持電圧レベルよりも絶対値が大きい期間に開状態に制御される。一方、第2のスイッチSW4は、切替信号S12に応じて負昇圧回路30の出力電圧が保持電圧レベルよりも絶対値が小さい期間に閉状態に制御される。電圧保持コンデンサCV2は、一端が第2のスイッチSW4を介して負昇圧回路30の出力電圧が生成される昇圧ノードに接続され、他端が所定の電圧が供給されるバイアス端子に接続される。
図13に示す例では、昇圧ノードに対応する符号としてVcp2を付した。また、
図13に示す電圧保持回路34では、電源電圧が供給される接地端子VDDがバイアス端子に相当する。そして、電圧保持回路34は、電圧保持コンデンサCV2と第2のスイッチSW4とを接続する電圧保持ノードの電圧を第2の昇圧電圧V2として出力する。
【0060】
続いて、実施の形態2にかかる半導体装置2の動作について説明する。
図14に実施の形態2にかかる半導体装置2の動作を示すタイミングチャートを示す。
図14に示す例では、タイミングT20において、負昇圧回路30が昇圧動作を開始する。そして、負昇圧回路30は、出力電圧を上昇させて、タイミングT21において出力電圧が電圧保持回路34が保持する電圧レベルに達する。そのため、タイミングT21において、電圧検知回路32が電圧検出信号S31をディスイネーブル状態からイネーブル状態に切り替える。そして、電圧レベル変換回路33は、電圧検出信号S31がイネーブル状態となったことに応じて切替信号S32をハイレベルからロウレベルに切り替える。そして、タイミングT21において、切替信号S32に応じて第1のスイッチSW3は開状態に切り替わる。また、タイミングT21において電圧保持回路34は、第2のスイッチSW4を開状態として、それまでの期間に電圧保持コンデンサCV2に蓄積された電荷に基づき第2の昇圧電圧V2として、保持電圧レベルに達した時点における出力電圧を出力する。
【0061】
その後、負昇圧回路30は出力電圧の昇圧動作を継続し、タイミングT32において出力電圧が第1の昇圧電圧Vcp2に達する。そして、タイミングT22以降は、半導体装置1は、第1の昇圧電圧Vcp2と第2の昇圧電圧V2を出力する。
【0062】
上記説明より、実施の形態2にかかる半導体装置2は、実施の形態1と同様に電圧保持回路34により第2の昇圧電圧V2を出力することで、回路面積の増大を抑制することができる。また、実施の形態2にかかる半導体装置2は、負昇圧回路30の出力電圧が保持電圧レベルに達するまでの間第1のスイッチSW3を閉状態に制御する。これにより、実施の形態2にかかる半導体装置2は、実施の形態1と同様に、電圧保持回路34の駆動能力を小さく設定したとしても、第2の昇圧電圧V1の昇圧速度を高めることができる。さらに、実施の形態2にかかる半導体装置2は、制御回路31が電圧検知回路32と電圧レベル変換回路33とを備える。これにより、実施の形態2にかかる半導体装置2は、実施の形態1と同様に、電圧検知回路32を耐圧の小さな回路素子により構成し、電圧検知回路32の回路面積を小さくすることができる。
【0063】
実施の形態3
実施の形態3では、実施の形態1にかかる半導体装置1に関する技術により生成する昇圧電圧の種類を増加させる実施例について説明する。そこで、
図15に実施の形態3にかかる半導体装置3のブロック図を示す。なお、実施の形態3にかかる半導体装置3において、実施の形態1にかかる半導体装置1と同じ構成要素については実施の形態1と同じ符号を付して説明を省略する。
【0064】
図15に示すように、実施の形態3にかかる半導体装置3は、電圧保持回路が複数の電圧回路を含む。
図15に示す例では、半導体装置3は、電圧保持回路14a、電圧保持回路14bを有する。なお、電圧保持回路14a、14bは、実施の形態1にかかる電圧保持回路14と実質的に同じ回路であるため、ここでは詳細な説明を省略する。
【0065】
また、半導体装置3は、第1のスイッチが複数の電圧保持回路に対応した複数の第1のスイッチを含む。
図15に示す例では、半導体装置3は、第1のスイッチSW1a、第1のスイッチSW1bを有する。なお、第1のスイッチSW1a、SW1bは、実施の形態1にかかる第1のスイッチSW1と実質的に同じ回路であるため、ここでは詳細な説明を省略する。
【0066】
そして、実施の形態3にかかる半導体装置3は、制御回路51を有する。制御回路51は、昇圧回路10の出力電圧が複数の電圧保持回路のそれぞれに対して設定された複数の保持電圧レベルに達する毎に、検出した出力電圧の電圧値に対応した保持電圧レベルが設定される第1のスイッチと電圧保持回路との組みに切替信号を出力する。
【0067】
より具体的には、半導体装置3では、電圧保持回路14aが第2の昇圧電圧V1aを出力し、電圧保持回路14bが第2の昇圧電圧V1bを出力する。この第2の昇圧電圧V1aは、第2の昇圧電圧V1bよりも低い電圧値を有する。そのため、制御回路51は、昇圧回路10の出力電圧が第2の昇圧電圧V1aに対応した保持電圧レベルに達したことに応じて切替信号S12aを出力する。また、制御回路51は、昇圧回路10の出力電圧が第2の昇圧電圧V1bに対応した保持電圧レベルに達したことに応じて切替信号S12bを出力する。
【0068】
制御回路51は、電圧検知回路52、電圧レベル変換回路13a、13bを有する。なお、電圧レベル変換回路13a、13bは、実施の形態1にかかる電圧レベル変換回路13と実質的に同じ回路であるため、ここでは詳細な説明を省略する。
【0069】
電圧検知回路52は、検出電圧として複数の保持電圧レベルに対応した電圧が設定される。そして、電圧検知回路52は、昇圧回路10の出力電圧が複数の検出電圧のうち低い電圧を超えたときに電圧検出信号S11aをイネーブル状態とし、複数の検出電圧のうち高い電圧を超えたときに電圧検出信号S11bをイネーブル状態とする。
【0070】
図16に、実施の形態3にかかる電圧検出回路の回路図を示す。
図16に示すように、電圧検知回路52は、比較器CMP52a、CMP52b、基準電圧生成回路VSa、VSb、抵抗R51、R52、R53を有する。抵抗R51〜R53は、昇圧回路10が出力する出力電圧が供給される昇圧ノードと所定の電圧が供給される所定の電圧が供給されるバイアス端子との間に直列に接続される。
図16に示す例では、昇圧ノードに対応する符号としてVcp1を用いた。また、
図16に示す電圧検知回路52では、接地電圧が供給される接地端子VSSがバイアス端子に相当する。
【0071】
基準電圧生成回路VSaは、基準電圧Vref_aを生成する。基準電圧生成回路VBbは、基準電圧Vref_bを生成する。この基準電圧生成回路VSa、VSbは、例えば、バンドギャップ電圧源であって、バンドギャップ電圧を基準電圧Vref_a、Vref_bとして出力する。なお、基準電圧Vref_a、Vref_bの電圧値は、同一の電圧であっても、異なる電圧であっても良い。
【0072】
比較器CMP52aは、抵抗R51と抵抗R52とを接続する接続ノードに生成される分圧電圧Vdiv_aと基準電圧Vref_aとを比較して、電圧検出信号S11aの論理レベルを切り替える。比較器CMP52bは、抵抗R52と抵抗R53とを接続する接続ノードに生成される分圧電圧Vdiv_bと基準電圧Vref_bとを比較して、電圧検出信号S11bの論理レベルを切り替える。なお、電圧検出信号S11a、S11bは、差動信号である。例えば、比較器CMP52aは、分圧電圧Vdiv_aが基準電圧Vref_aを超えた場合に電圧検出信号S11aをイネーブル状態とする。また、比較器CMP52bは、分圧電圧Vdiv_bが基準電圧Vref_bを超えた場合に電圧検出信号S11bをイネーブル状態とする。つまり、電圧検知回路52は、昇圧回路10の出力電圧が保持電圧レベルに達した時点での分圧電圧Vdiv_a、Vdiv_bを基準電圧Vref_a、Vref_bに設定することで出力電圧が保持電圧レベルに達したことを検出する。なお、分圧電圧Vdiv_aの調整は、抵抗R51と抵抗R52、R53の合成抵抗との抵抗比を調整することで行うことができる。また、分圧電圧Vdiv_bの調整は、抵抗R51、R52の合成抵抗と抵抗R53との抵抗比を調整することで行うことができる。
【0073】
続いて、実施の形態3にかかる半導体装置3の動作について説明する。
図17に実施の形態3にかかる半導体装置3の動作を示すタイミングチャートを示す。
図17に示す例では、タイミングT30において、昇圧回路10が昇圧動作を開始する。そして、昇圧回路10は、出力電圧を上昇させて、タイミングT31において出力電圧が電圧保持回路14aが保持する電圧を示す保持電圧レベルに達する。そのため、タイミングT31において、電圧検知回路52が電圧検出信号S11aをディスイネーブル状態からイネーブル状態に切り替える。そして、電圧レベル変換回路13aは、電圧検出信号S11aがイネーブル状態となったことに応じて切替信号S12aをロウレベルからハイレベルに切り替える。そして、タイミングT31において、切替信号S12aに応じて第1のスイッチSW1aは開状態に切り替わる。また、タイミングT31において電圧保持回路14aは、第2のスイッチSW2a(不図示)を開状態として、それまでの期間に電圧保持コンデンサCV1a(不図示)に蓄積された電荷に基づき第2の昇圧電圧V1aとして、保持電圧レベルに達した時点における出力電圧を出力する。
【0074】
昇圧回路10は、タイミングT31以降も出力電圧の昇圧動作を継続する。そして、昇圧回路10は、タイミングT32において出力電圧が電圧保持回路14bが保持する電圧を示す保持電圧レベルに達する。そのため、タイミングT32において、電圧検知回路52が電圧検出信号S11bをディスイネーブル状態からイネーブル状態に切り替える。そして、電圧レベル変換回路13bは、電圧検出信号S11bがイネーブル状態となったことに応じて切替信号S12bをロウレベルからハイレベルに切り替える。そして、タイミングT32において、切替信号S12bに応じて第1のスイッチSW1bは開状態に切り替わる。また、タイミングT32において電圧保持回路14bは、第2のスイッチSW2b(不図示)を開状態として、それまでの期間に電圧保持コンデンサCV1b(不図示)に蓄積された電荷に基づき第2の昇圧電圧V1bとして、保持電圧レベルに達した時点における出力電圧を出力する。
【0075】
その後、昇圧回路10は出力電圧の昇圧動作を継続し、タイミングT33において出力電圧が第1の昇圧電圧Vcp1に達する。そして、タイミングT33以降は、半導体装置3は、第1の昇圧電圧Vcp1と第2の昇圧電圧V1a、V1bを出力する。
【0076】
続いて、実施の形態3にかかる半導体装置3のレイアウト面積について説明する。まず、
図18に実施の形態3にかかる半導体装置3の比較例のレイアウト面積を説明する概略図を示す。この比較例は、実施の形態3にかかる半導体装置3の電圧保持回路14a、14bに代えて第2の昇圧回路及び第3の昇圧回路を有するものである。
図18に示すように、比較例にかかる半導体装置では、昇圧回路10(例えば、第1の昇圧回路)よりもレイアウト面積が小さい第2の昇圧回路及び第3の昇圧回路が配置される。
【0077】
一方、
図19に実施の形態3にかかる半導体装置3のレイアウト面積を説明する概略図を示す。
図19に示すように、実施の形態3にかかる半導体装置3は、電圧保持回路14を有する。
図19では、比較のために
図18の第2の昇圧回路及び第3の昇圧回路のレイアウト領域を破線で囲まれる領域として示した。この電圧保持回路14a、14bは、第2の昇圧回路及び第3の昇圧回路よりも小さなレイアウト面積で配置可能である。第2の昇圧回路及び第3の昇圧回路は、第1の昇圧回路よりも電流出力能力が小さくコンデンサの容量が小さいものの、やはり多くのコンデンサを配置しなければならないため、回路面積が大きくなる。しかし、実施の形態3にかかる電圧保持回路14a、14bは、1つのコンデンサと1つのスイッチにより構成できるため、回路面積を第2の昇圧回路及び第3の昇圧回路よりも格段に小さくすることができる。また、
図19に示すように、半導体装置3は、実施の形態1にかかる半導体装置1よりもレイアウト面積の削減量が大きい。つまり、実施の形態1〜3にかかる半導体装置は、生成する電圧の数が増加する程レイアウト面積の削減量が大きくなる。
【0078】
ここで、面積削減の例について説明する。例えば、電圧保持回路は、第2の昇圧回路に比べて1/10程度の面積で配置することが可能である。この場合、3つの昇圧電圧を生成する半導体装置のレイアウト面積は、比較例では3、実施の形態3にかかる半導体装置では1.2である。つまり、実施の形態3にかかる半導体装置は、比較例にかかる半導体装置の40%程度の面積でレイアウト可能である。また、5つの昇圧電圧を生成する場合は、比較例と実施の形態3にかかる半導体装置との面積比は1.4/5となり、実施の形態3にかかる半導体装置は比較例にかかる半導体装置の28%程度の面積でレイアウト可能である。
【0079】
実施の形態4
実施の形態4では、実施の形態3にかかる半導体装置3の電圧検知回路52の別の形態について説明する。
図20に、実施の形態4にかかる電圧検知回路521のブロック図を示す。
図20に示した電圧検知回路521は、1つのコンパレータCMP521と検出電圧制御回路53とを用いて昇圧回路10の出力電圧が2つの保持電圧レベルを上回ったことを検出する。
【0080】
図20に示すように、電圧検知回路521は、コンパレータCMP521、基準電圧生成回路VS、検出電圧制御回路53、抵抗R51、R52、R54、R55、スイッチSW11、SW12を有する。この電圧検知回路521では、抵抗R51が第1の抵抗に相当し、抵抗R52が第2の抵抗に相当し、抵抗R54、R55、及び、スイッチSW11、SW12により第3の抵抗を構成する。
【0081】
抵抗R51、R52は、昇圧ノードと所定の電圧が供給されるバイアス端子との間に直列に接続される。
図20に示す例では、昇圧ノードに対応する符号としてVcp1を用いた。また、
図20に示す電圧検知回路521では、接地電圧が供給される接地端子VSSがバイアス端子に相当する。
【0082】
第3の抵抗は、第1、第2の抵抗と直列に接続される。また、第3の抵抗は、並列に接続される複数の抵抗(例えば、抵抗R53、R54)を含む。そして、スイッチSW11は抵抗R54と並列に接続され、スイッチSW12は抵抗R55と並列に接続される。ここで、抵抗R54、R55は、異なる抵抗値を有する抵抗である。つまり、第3の抵抗は、スイッチSW11とスイッチSW12のいずれが閉状態となるかによって異なる抵抗値を示す。
【0083】
基準電圧生成回路VSは、基準電圧Vrefを生成する。この基準電圧生成回路VSは、例えば、バンドギャップ電圧源であって、バンドギャップ電圧を基準電圧Vrefとして出力する。
【0084】
コンパレータCMP521は、抵抗R51と抵抗R52との接続ノードに生成される検出対象電圧(例えば、分圧電圧Vdiv)と予め設定された基準電圧Vrefとを比較して、検出信号Vcompの論理レベルを切り替える。
【0085】
検出電圧制御回路53は、コンパレータCMP521が出力する検出信号Vcompがイネーブル状態となったことに応じて複数の切替信号のいずれかをイネーブル状態とする。また、検出電圧制御回路53は、複数の切替信号のいずれかをイネーブル状態とともに第3の抵抗に含まれる複数の抵抗のうち短絡状態とされる抵抗を切り替える。
【0086】
より具体的には、昇圧回路10の出力電圧が複数の検出電圧のうち低い電圧よりも低い場合には、抵抗切替信号VD1、VD2により抵抗R54を抵抗として機能させ、抵抗R55を短絡させる。そして、昇圧回路10の出力電圧が複数の検出電圧のうち低い電圧を超えたことに応じてコンパレータCMP521は、検出信号Vcompをイネーブル状態とする。検出電圧制御回路53は、検出信号Vcompがイネーブル状態となったことに応じて、電圧検出信号S11aをイネーブル状態とする。また、検出電圧制御回路53は、検出信号Vcompがイネーブル状態となったことに応じて、抵抗切替信号VD1、VD2により抵抗R54を短絡させ、抵抗R55を抵抗として機能させる。これにより、第3の抵抗の抵抗値は小さくなるため、分圧電圧Vdivが低下して、コンパレータCMP521が出力する検出信号Vcompがディスイネーブル状態となる。このとき、検出電圧制御回路53は、検出信号Vcompの状態によらず電圧検出信号S11aをイネーブル状態で維持する。
【0087】
その後、昇圧回路10の出力電圧が複数の検出電圧のうち高い電圧を超えたことに応じてコンパレータCMP521は、検出信号Vcompをイネーブル状態とする。検出電圧制御回路53は、検出信号Vcompがイネーブル状態となったことに応じて、電圧検出信号S11bをイネーブル状態とする。このとき、検出電圧制御回路53は、検出すべき電圧の検出が全て完了していれば、抵抗切替信号VD1、VD2の状態を維持する。
【0088】
なお、分圧電圧Vdivの調整は、抵抗R51と抵抗R52、R54の合成抵抗との抵抗比及び、抵抗R51と抵抗R52、R55の合成抵抗との抵抗比を調整することで行うことができる。
【0089】
続いて、
図20に示した電圧検出回路を有する半導体装置の動作の動作について説明する。
図21に、
図20に示した電圧検出回路を有する半導体装置の動作を示すタイミングチャートを示す。
【0090】
図21に示すように、半導体装置は、タイミングT40において、昇圧回路10が昇圧動作を開始する。そして、昇圧回路10は、出力電圧を上昇させて、タイミングT41において出力電圧が電圧保持回路14aが保持する電圧を示す保持電圧レベルに達する。そのため、タイミングT41において、コンパレータCMP521が検出信号Vcompをイネーブル状態とする。また、検出信号Vcompがイネーブル状態となったことに応じて、検出電圧制御回路53が電圧検出信号S11aをディスイネーブル状態からイネーブル状態に切り替える。そして、電圧レベル変換回路13aは、電圧検出信号S11aがイネーブル状態となったことに応じて切替信号S12aをロウレベルからハイレベルに切り替える。そして、タイミングT41において、切替信号S12aに応じて第1のスイッチSW1aは開状態に切り替わる。また、タイミングT31において電圧保持回路14aは、第2のスイッチSW2a(不図示)を開状態として、それまでの期間に電圧保持コンデンサCV1a(不図示)に蓄積された電荷に基づき第2の昇圧電圧V1aとして、保持電圧レベルに達した時点における出力電圧を出力する。また、検出電圧制御回路53は、所定の回路遅延時間を経て抵抗切替信号VD1、VD2の論理レベルを切り替え、第3の抵抗の抵抗値を切り替える。そして、抵抗切替信号VD1、VD2の論理レベルの切り替わりに応じて分圧電圧Vdivの電圧が低下するため、コンパレータCMP521が出力する検出信号Vcompがイネーブル状態からディスネーブル状態に切り替わる。
【0091】
昇圧回路10は、タイミングT41以降も出力電圧の昇圧動作を継続する。そして、昇圧回路10は、タイミングT42において出力電圧が電圧保持回路14bが保持する電圧を示す保持電圧レベルに達する。そのため、タイミングT42において、コンパレータCMP521が出力する検出信号Vcompがイネーブル状態となる。そして、検出電圧制御回路53は、検出信号Vcompがイネーブル状態となったことに応じて電圧検出信号S11bをディスイネーブル状態からイネーブル状態に切り替える。そして、電圧レベル変換回路13bは、電圧検出信号S11bがイネーブル状態となったことに応じて切替信号S12bをロウレベルからハイレベルに切り替える。そして、タイミングT42において、切替信号S12bに応じて第1のスイッチSW1bは開状態に切り替わる。また、タイミングT42において電圧保持回路14bは、第2のスイッチSW2b(不図示)を開状態として、それまでの期間に電圧保持コンデンサCV1b(不図示)に蓄積された電荷に基づき第2の昇圧電圧V1bとして、保持電圧レベルに達した時点における出力電圧を出力する。なお、タイミングT42では、検出電圧制御回路53は、抵抗切替信号VD1、VD2の論理レベルを維持する。
【0092】
その後、昇圧回路10は出力電圧の昇圧動作を継続し、タイミングT43において出力電圧が第1の昇圧電圧Vcp1に達する。そして、タイミングT43以降は、半導体装置3は、第1の昇圧電圧Vcp1と第2の昇圧電圧V1a、V1bを出力する。
【0093】
なお、電圧検知回路521と同じ回路動作を行う回路を負昇圧回路を有する半導体装置に適用することも可能である。そこで、負昇圧回路に対応した電圧検出回路522の例について説明する。
図22に、
図20に示した電圧検出回路を負昇圧回路を有する半導体装置に適用する場合の電圧検出回路の回路図を示す。
【0094】
図22に示すように、電圧検知回路522は、コンパレータCMP522、基準電圧生成回路VS、検出電圧制御回路54、抵抗R56、R57、R58、R59、スイッチSW13、SW14を有する。この電圧検知回路522では、抵抗R57が第1の抵抗に相当し、抵抗R56が第2の抵抗に相当し、抵抗R58、R59、及び、スイッチSW13、SW14により第3の抵抗を構成する。
【0095】
抵抗R56、R57は、昇圧ノードと所定の電圧が供給されるバイアス端子との間に直列に接続される。
図22に示す例では、昇圧ノードに対応する符号としてVcp2を用いた。また、
図22に示す電圧検知回路522では、電源電圧が供給される電源端子VSSがバイアス端子に相当する。
【0096】
第3の抵抗は、第1、第2の抵抗と直列に接続される。また、第3の抵抗は、並列に接続される複数の抵抗(例えば、抵抗R58、R59)を含む。そして、スイッチSW13は抵抗R58と並列に接続され、スイッチSW14は抵抗R59と並列に接続される。ここで、抵抗R58、R59は、異なる抵抗値を有する抵抗である。つまり、第3の抵抗は、スイッチSW13とスイッチSW14のいずれが閉状態となるかによって異なる抵抗値を示す。
【0097】
基準電圧生成回路VSは、基準電圧Vrefを生成する。この基準電圧生成回路VSは、例えば、バンドギャップ電圧源であって、バンドギャップ電圧を基準電圧Vrefとして出力する。
【0098】
コンパレータCMP522は、抵抗R56と抵抗R57との接続ノードに生成される検出対象電圧(例えば、分圧電圧Vdiv)と予め設定された基準電圧Vrefとを比較して、検出信号Vcompの論理レベルを切り替える。
【0099】
検出電圧制御回路54は、コンパレータCMP521が出力する検出信号Vcompがイネーブル状態となったことに応じて複数の切替信号のいずれかをイネーブル状態とする。また、検出電圧制御回路54は、第3の抵抗に含まれる複数の抵抗のうち短絡状態とされる抵抗を切り替える。
【0100】
より具体的には、負昇圧回路30の出力電圧が複数の検出電圧のうち高い電圧よりも高い場合には、抵抗切替信号VD1、VD2により抵抗R58を抵抗として機能させ、抵抗R59を短絡させる。そして、負昇圧回路30の出力電圧が複数の検出電圧のうち高い電圧を超えたことに応じてコンパレータCMP522は、検出信号Vcompをイネーブル状態とする。検出電圧制御回路54は、検出信号Vcompがイネーブル状態となったことに応じて、電圧検出信号S31aをイネーブル状態とする。また、検出電圧制御回路54は、検出信号Vcompがイネーブル状態となったことに応じて、抵抗切替信号VD1、VD2により抵抗R58を短絡させ、抵抗R59を抵抗として機能させる。これにより、第3の抵抗の抵抗値は大きくなるため、分圧電圧Vdivが低下して、コンパレータCMP522が出力する検出信号Vcompがディスイネーブル状態となる。このとき、検出電圧制御回路54は、検出信号Vcompの状態によらず電圧検出信号S31aをイネーブル状態で維持する。
【0101】
その後、負昇圧回路30の出力電圧が複数の検出電圧のうち低い電圧を超えたことに応じてコンパレータCMP522は、検出信号Vcompをイネーブル状態とする。検出電圧制御回路54は、検出信号Vcompがイネーブル状態となったことに応じて、電圧検出信号S31bをイネーブル状態とする。このとき、検出電圧制御回路54は、検出すべき電圧の検出が全て完了していれば、抵抗切替信号VD1、VD2の状態を維持する。
【0102】
なお、分圧電圧Vdivの調整は、抵抗R56と抵抗R57、R58の合成抵抗との抵抗比及び、抵抗R56と抵抗R57、R59の合成抵抗との抵抗比を調整することで行うことができる。
【0103】
上記説明より、実施の形態3で用いた電圧検知回路52は、
図16で示した構成に限られず、種々の回路例が考えられることは明らかである。
【0104】
実施の形態5
実施の形態5では、実施の形態1にかかる電圧保持回路14の別の形態について説明する。
図23に実施の形態5にかかる電圧レベル変換回路141の回路図を示す。電圧保持回路141は、実施の形態1で説明した電圧保持回路14の変形例の第1の例である。
【0105】
図23に示すように、実施の形態5にかかる電圧保持回路141は、電圧保持回路14にバッファ回路BUF1を追加したものである。バッファ回路BUF1は、第2のスイッチSW2と電圧保持コンデンサCV1とを接続する電圧保持ノードの電圧に基づき第2の昇圧電圧V1を出力する。
【0106】
また、
図23に示した電圧レベル変換回路の詳細な回路の一例を
図24に示す。
図24に示す例は、バッファ回路BUF1をソースフォロワ回路により実現したものである。ソースフォロワ回路は、電圧保持ノードの電圧に基づき第2の昇圧電圧を出力する。より具体的には、ソースフォロワ回路は、第1のトランジスタMND1と電流源Is10とを有する。第1のトランジスタMND1は、電圧保持ノードの電圧が制御端子(例えば、ゲート)に入力され、ドレインが昇圧ノードに接続され、ソースが電流源Is10に接続される。電流源Is10は、第1のトランジスタMND1と接地端子VSSとの間に接続される。電流源Is10は、第1のトランジスタMND1に動作電流を与える。そして、バッファ回路BUF1は、第1のトランジスタMND1のソースから第2の昇圧電圧V1を出力する。
【0107】
バッファ回路BUF1は、高い入力インピーダンスと、高い駆動能力と、を有する。このように、バッファ回路BUF1を介して第2の昇圧電圧V1を出力することで、電圧保持コンデンサCV1に蓄積された電荷の漏れを防ぐことができる。また、バッファ回路BUF1を用いることで、電圧保持回路の駆動能力を高めることができる。
【0108】
ここで、バッファ回路BUF1として
図24で示したソースフォロワ回路を用いた場合、電圧保持ノードの電圧と第2の昇圧電圧との間に第1のトランジスタMND1のしきい値電圧分の電圧降下が生じる。そこで、この電圧降下を解消する電圧保持回路14の変形例について説明する。
図25に、実施の形態5にかかる電圧レベル変換回路142の回路図を示す。電圧保持回路142は、電圧保持回路14の変形例の第2の例である。
【0109】
図25に示すように、電圧保持回路142は、電圧保持回路14に第1のトランジスタMPD1、第2のトランジスタMPD1、電流源Is11、Is12を追加したものである。
【0110】
第1のトランジスタMPD2は、ドレインが接地端子に接続され、制御端子(例えば、ゲート)に電圧保持ノードの電圧が与えられ、ソースが電流源Is12を介して昇圧ノードに接続される。そして、第1のトランジスタMPD2は、ソースから第2の昇圧電圧V1を出力する。つまり、第1のトランジスタMPD2と、電流源Is12は、ソースフォロワ回路を構成する。
【0111】
第2のトランジスタMPD1は、第1のトランジスタMPD2と同一の導電型のトランジスタであって、ダイオード接続されたものである。第2のトランジスタMPD1は、ソースが昇圧ノードに接続され、ゲートがドレインと接続され、ドレインが第2のスイッチSW2に接続される。つまり、電圧保持回路142では、第2のスイッチSW2は第2のトランジスタMPD1を介して昇圧ノードに接続される。また、第2のトランジスタMPD1のソースと接地端子VSSとの間には電流源Is11が接続される。電流源Is11は、第2のトランジスタMPD1に動作電流を供給する。
【0112】
この電圧保持回路142では、第2のスイッチSW2と電圧保持コンデンサCV1とを接続する電圧保持ノードに昇圧回路10の出力電圧を第2のトランジスタMPD1のしきい値電圧分電圧降下させた電圧が供給される。そして、第1のトランジスタMPD2は、電圧保持ノードの電圧を自トランジスタのしきい値電圧分上昇させて第2の昇圧電圧V1を出力する。このとき、第1のトランジスタMPD2と第2のトランジスタMPD1は同一の導電型のトランジスタであるため、しきい値電圧が等しい。従って、電圧保持回路142が出力する第2の昇圧電圧V1におけるトランジスタのしきい値電圧によるずれが解消される。また、同一の導電型のトランジスタを用いることで、基板温度に対するしきい値電圧の変動を一致させることができる。そのため、電圧保持回路142では第2の昇圧電圧V1の値を基板温度によらず安定させることができる。
【0113】
実施の形態6
実施の形態6では、実施の形態2にかかる電圧保持回路34の別の形態について説明する。
図26に実施の形態6にかかる電圧レベル変換回路341の回路図を示す。電圧保持回路341は、実施の形態2で説明した電圧保持回路34の変形例の第1の例である。
【0114】
図26に示すように、実施の形態6にかかる電圧保持回路341は、電圧保持回路34にバッファ回路BUF2を追加したものである。バッファ回路BUF2は、第2のスイッチSW4と電圧保持コンデンサCV2とを接続する電圧保持ノードの電圧に基づき第2の昇圧電圧V2を出力する。
【0115】
また、
図26に示した電圧レベル変換回路の詳細な回路の一例を
図27に示す。
図27に示す例は、バッファ回路BUF2をソースフォロワ回路により実現したものである。ソースフォロワ回路は、電圧保持ノードの電圧に基づき第2の昇圧電圧を出力する。より具体的には、ソースフォロワ回路は、第1のトランジスタMND2と電流源Is20とを有する。第1のトランジスタMND2は、電圧保持ノードの電圧が制御端子(例えば、ゲート)に入力さ、ドレインが昇圧ノードに接続され、ソースが電流源Is20に接続される。電流源Is20は、第1のトランジスタMND2と昇圧ノードとの間に接続される。電流源Is20は、第1のトランジスタMND2に動作電流を与える。そして、バッファ回路BUF2は、第1のトランジスタMND2のソースから第2の昇圧電圧V1を出力する。
【0116】
バッファ回路BUF2は、高い入力インピーダンスと、高い駆動能力と、を有する。このように、バッファ回路BUF2を介して第2の昇圧電圧V1を出力することで、電圧保持コンデンサCV2に蓄積された電荷の漏れを防ぐことができる。また、バッファ回路BUF2を用いることで、電圧保持回路の駆動能力を高めることができる。
【0117】
ここで、バッファ回路BUF1として
図27で示したソースフォロワ回路を用いた場合、電圧保持ノードの電圧と第2の昇圧電圧との間に第1のトランジスタMND2のしきい値電圧分の電圧降下が生じる。そこで、この電圧降下を解消する電圧保持回路34の変形例について説明する。
図28に、実施の形態6にかかる電圧レベル変換回路342の回路図を示す。電圧保持回路342は、電圧保持回路34の変形例の第2の例である。
【0118】
図28に示すように、電圧保持回路342は、電圧保持回路14に第1のトランジスタMND4、第2のトランジスタMND3、電流源Is21、Is22を追加したものである。
【0119】
第1のトランジスタMND4は、ドレインが電源端子VDDに接続され、制御端子(例えば、ゲート)に電圧保持ノードの電圧が与えられ、ソースが電流源Is22を介して昇圧ノードに接続される。そして、第1のトランジスタMND4は、ソースから第2の昇圧電圧V1を出力する。つまり、第1のトランジスタMND4と、電流源Is22は、ソースフォロワ回路を構成する。
【0120】
第2のトランジスタMND3は、第1のトランジスタMND4と同一の導電型のトランジスタであって、ダイオード接続されるものである。第2のトランジスタMND3は、ソースが昇圧ノードに接続され、ゲートがドレインと接続され、ドレインが第2のスイッチSW2に接続される。つまり、電圧保持回路342では、第2のスイッチSW2は第2のトランジスタMND3を介して昇圧ノードに接続される。また、第2のトランジスタMMD3のソースと電源端子VDDとの間には電流源Is21が接続される。電流源Is21は、第2のトランジスタMMD3に動作電流を供給する。
【0121】
この電圧保持回路342では、第2のスイッチSW2と電圧保持コンデンサCV2とを接続する電圧保持ノードに負昇圧回路30の出力電圧を第2のトランジスタMND3のしきい値電圧分電圧を上昇させた電圧が供給される。そして、第1のトランジスタMND4は、電圧保持ノードの電圧を自トランジスタのしきい値電圧分電圧降下させて第2の昇圧電圧V1を出力する。このとき、第1のトランジスタMND4と第2のトランジスタMND3は同一の導電型のトランジスタであるため、しきい値電圧が等しい。従って、電圧保持回路342が出力する第2の昇圧電圧V1におけるトランジスタのしきい値電圧によるずれが解消される。また、同一の導電型のトランジスタを用いることで、基板温度に対するしきい値電圧の変動を一致させることができる。そのため、電圧保持回路342では第2の昇圧電圧V1の値を基板温度によらず安定させることができる。
【0122】
実施の形態7
実施の形態7では、実施の形態5にかかる電圧保持回路142の変形例について説明する。実施の形態7にかかる電圧保持回路143の回路図を
図29に示す。
図29に示す電圧保持回路143は、実施の形態1にかかる電圧保持回路14の変形例でもある。
【0123】
図29に示すように、電圧保持回路143は、電流源Is12に代えて電流制御回路60を備える。電流制御回路60は、第1のトランジスタMPD2の動作電流を生成する。また、電流制御回路60は、予め設定された値に応じて出力する電流量が制御される。
【0124】
図29では、電圧保持回路143が駆動する負荷回路として抵抗Ra、Rbを示した。この抵抗Ra、Rbは、昇圧ノードと接地端子VSSとの間に直列に接続される形態となる。また、抵抗Raと抵抗Rbとを接続する点に第2の昇圧電圧V2が供給される。このような負荷回路が接続された場合、負荷回路のリーク電流は、抵抗Raの大きさと抵抗Rbの大きさの関係に応じて2つの経路で流れる。例えば、抵抗Raが抵抗Rbに対して極めて小さな抵抗値の場合、リーク電流は、昇圧ノードからから抵抗Raを介して第1のトランジスタMPD2にいたる経路(
図29のIleak1で示した経路)で流れる。一方、抵抗Rbが抵抗Raに対して極めて小さな抵抗値の場合、リーク電流は、電流制御回路60から抵抗Rbを介して接地端子VSSにいたる経路(
図29のIleak2で示した経路)で流れる。
【0125】
ここで、経路Ileak1でリーク電流が流れる場合、第1のトランジスタMPD2のオン電流をリーク電流の大きさに対して十分に大きく取れば、リーク電流は、第1のトランジスタMPD2によって消費される。そのため、リーク電流が経路Ileak1で流れる場合は、第2の昇圧電圧V1の電圧値に悪影響は及ばない。
【0126】
一方、経路Ileak2でリーク電流が流れる場合、電流制御回路60が出力する電流を抵抗Rbに流れるリーク電流の大きさに対して大きくする必要がある。電流制御回路60が出力する電流が抵抗Rbに流れるリーク電流よりも小さい場合、2つの電流が釣り合う電圧まで第2の昇圧電圧V1が低下する問題が生じるためである。
【0127】
このようなことから、電圧保持回路143では、電流制御回路60が出力する電流を制御して、第2の昇圧電圧V1の電圧の低下を防止する。そこで、電流制御回路60の詳細な回路図を
図30に示す。
【0128】
図30に示すように、電流制御回路60は、制御論理回路61、制御電圧生成回路62、電流源Is6、PMOSトランジスタMP61〜MP67を有する。制御論理回路61は、例えば、不揮発生の記憶装置であって、電流制御回路60が出力する電流の設定値を記憶する。制御電圧生成回路62は、第1の昇圧電圧に基づき動作し、制御論理回路61に記憶された設定値に基づき制御信号を生成する。
【0129】
PMOSトランジスタMP61〜MP64は、カレントミラー回路を構成する。より具体的には、PMOSトランジスタMP61は、ゲートとドレインが共通に接続される。また、PMOSトランジスタMP61のドレインと接地端子VSSとの間には電流源Is6が接続される。電流源Is6は、電流制御回路60が出力する電流Ioutの最も少ない電流値となる電流を出力する。PMOSトランジスタMP62〜MP64は、ゲートがPMOSトランジスタMP61のゲートと共通に接続される。また、PMOSトランジスタMP61のソースは互いに接続される。また、PMOSトランジスタMP61のトランジスタサイズを1とした場合、PMOSトランジスタMP62のトランジスタサイズは1、PMOSトランジスタMP63のトランジスタサイズは2、PMOSトランジスタMP64のトランジスタサイズは4となるように設定される。
【0130】
PMOSトランジスタMP65は、PMOSトランジスタMP62のソースと昇圧ノードとの間に接続される。PMOSトランジスタMP66は、PMOSトランジスタMP63のソースと昇圧ノードとの間に接続される。PMOSトランジスタMP67は、PMOSトランジスタMP64のソースと昇圧ノードとの間に接続される。そして、PMOSトランジスタMP65〜MP67のゲートには、制御電圧生成回路62から制御信号が与えられる。
【0131】
この制御信号は、
図30に示す例の場合、3ビットである。そして、PMOSトランジスタMP65〜MP67のうち導通状態に制御されるトランジスタによって、PMOSトランジスタMP62〜64の少なくとも1つが電流を流す。具体的には、PMOSトランジスタMP65のみが導通状態に制御される場合、PMOSトランジスタMP62のみが電流を流し、電流Ioutの電流値は、電流源Is6が出力する電流の電流値と等しくなる。PMOSトランジスタMP65、MP66が導通状態に制御される場合、PMOSトランジスタMP62、MP63が電流を流し、電流Ioutの電流値は、電流源Is6が出力する電流の電流値の3倍となる。
【0132】
このように、電流制御回路60では、制御論理回路61に記憶された設定値に応じて出力する電流の大きさを制御することができる。上述したように、電流制御回路60が出力する電流の大きさは、抵抗Rbに流れるリーク電流よりも大きくする必要がある。ここで、抵抗Rbに流れる電流よりも大きな電流を電流制御回路60が流せるような設定値は、出荷テストや設計段階の見積もりにより求めることができる。制御論理回路61には、このような手法で算出した設定値を予め設定しておく必要がある。
【0133】
上記実施の形態7の説明では、昇圧回路10に対応した電圧保持回路143について説明したが、
図31に示した電流制御回路60をNMOSトランジスタで構成することで負昇圧回路30に対応した電流制御回路を構成することができる。
【0134】
実施の形態8
実施の形態8にかかる半導体装置4のブロック図を
図31に示す。
図31に示すように、実施の形態8にかかる半導体装置4は、実施の形態1にかかる半導体装置1の別の形態を示すものである。実施の形態8にかかる半導体装置4は、第2の昇圧電圧V1のオーバーシュート量を低減するための構成を有する。なお、実施の形態8の説明において実施の形態1と同じ構成要素については、実施の形態1と同じ符号を用いて説明を省略する。
【0135】
そこで、まず第2の昇圧電圧V1のオーバーシュートの問題を説明する。
図32に第2の昇圧電圧のオーバーシュートの問題を説明するためのタイミングチャートを示す。
図32に示したタイミングチャートは、実施の形態1にかかる半導体装置1において顕著に問題が発生する場合のものである。
【0136】
図32に示したタイミングチャートでは、タイミングT70において昇圧回路10が昇圧動作を開始する。そして、タイミングT71において出力電圧が第2の昇圧電圧の目標電圧レベルVtrgに達する。しかしながら、電圧検知回路12において回路応答遅延が発生するために、タイミングT71よりも遅れたタイミングT72において電圧検出信号S11がイネーブル状態となる。また、電圧レベル変換回路13において回路応答遅延が発生するためにタイミングT72からさらに遅れたタイミングT73において切替信号S12がロウレベルとなる。そして、
図32に示す例では、タイミングT73において、電圧保持回路14がその時点での出力電圧に基づき第2の昇圧電圧V1を出力する。
【0137】
このように、電圧検知回路12及び電圧レベル変換回路13における回路応答遅延が大きな場合、第2の昇圧電圧V1の電圧が目標電圧レベルVtrgに対して大きくなるオーバーシュートの問題が発生する。このオーバーシュートの問題は、昇圧回路10の昇圧速度が高いほどより顕著になる。なお、
図32では、オーバーシュートにより生じた電圧のずれをVgapで示した。
【0138】
上記オーバーシュートの問題を解決するために、実施の形態8にかかる半導体装置4では、制御回路11に代えて制御回路70を設けた。また、実施の形態8にかかる半導体装置4では、周波数制御回路73を追加した。なお、
図31では、昇圧回路10に動作クロックを供給する発振回路72を示した。
【0139】
制御回路70は、出力電圧が、保持電圧レベルよりも絶対値が小さな周波数切替電圧レベルVswに達したことに応じて、所定の期間、周波数制御回路73に動作クロックCLK1の周波数を低くすることを指示する周波数切替信号S71を出力する。制御回路70は、電圧検知回路12に代えて電圧検知回路71を有する。この電圧検知回路71は、電圧検知回路12と同様に出力電圧が保持電圧レベルに達したこと検出する。このとき、電圧検知回路71は、電圧検出信号S11と同時に、周波数切替信号S71をイネーブル状態とすることで、周波数制御回路73に動作クロックCLK1の周波数を低下させることを指示する。なお、電圧検知回路71は、周波数切替信号S71をイネーブル状態とした後に所定の期間が経過した時点で周波数切替信号S71をディスイネーブル状態とする。
【0140】
周波数制御回路73は、発振回路72から出力される動作クロックCLK0の周波数を制御回路70から出力される周波数切替信号S71に応じて切り替えた動作クロックCLK1を生成する。そして、昇圧回路10は、動作クロック信号CLK1に基づき動作する。
【0141】
続いて、実施の形態8にかかる半導体装置4の動作について説明する。実施の形態8にかかる半導体装置4の動作を示すタイミングチャートを
図33に示す。
図33に示す例では、タイミングT70において昇圧回路10の昇圧動作が開始される。そして、タイミングT74において、昇圧回路10の出力電圧が周波数切替電圧レベルVswに達する。これにより、制御回路70は、周波数切替信号S71をイネーブル状態とする。そして、周波数切替信号S71がイネーブル状態になったことに応じて周波数制御回路73は、動作クロックCLK1の周波数を低い周波数に切り替える。昇圧回路10は、供給される動作クロックCLK1の周波数が低下したことに伴い昇圧速度を低下させる。
【0142】
続いて、タイミングT75において、昇圧回路10の出力電圧がV1の目標電圧レベルVtrgに達する。そして、出力電圧がV1の目標電圧レベルVtrgに達したことに応じてタイミングT76で電圧検出信号S11がイネーブル状態となり、タイミングT77で切替信号S12がロウレベルとなる。従って、タイミングT77において、電圧保持回路14は、その時点での出力電圧に基づき第2の昇圧電圧V1を出力し、これ以降この電圧を維持する。その後、タイミングT78でタイミングT74から予め設定された所定の期間が終了する。従って、タイミングT78において、周波数切替信号S71はディスイネーブル状態となる。そして、周波数切替信号S71はディスイネーブル状態となったことに応じて、周波数制御回路73は、動作クロックCLK1の周波数を元の周波数に復帰させる。これにより、昇圧回路10は再度昇圧速度を早くする。
【0143】
上記説明より、実施の形態8にかかる半導体装置4では、目標電圧レベルVtrgよりも低い周波数切替電圧レベルVswに昇圧回路10の出力電圧が達した時点で昇圧回路10の動作クロックCLK1の周波数を低くする。これにより、実施の形態8にかかる半導体装置4では、電圧検知回路71及び電圧レベル変換回路13において回路遅延が発生したとしても、第2の昇圧電圧V1のオーバーシュート量を削減することができる。
【0144】
実施の形態9
実施の形態9においても第2の昇圧電圧のオーバーシュートを防止するための構成を有する半導体装置について説明する。つまり、実施の形態9にかかる半導体装置5は、実施の形態8にかかる半導体装置4の別の形態を示すものである。なお、実施の形態9にかかる説明においては以前の実施の形態において説明した構成要素については、以前の実施の形態と同じ符号を付して説明を省略する。
【0145】
図34に実施の形態9にかかる半導体装置5のブロック図を示す。
図34に示すように、半導体装置5は、実施の形態8にかかる半導体装置4の制御回路70に代えて制御回路80を有する。また、半導体装置5は、半導体装置4の周波数制御回路73に代えて周波数制御回路83を有する。なお、
図34においても、昇圧回路10の動作クロックCLK0を生成する発振回路72を示した。
【0146】
制御回路80は、電圧検知回路81、遅延回路82、電圧レベル変換回路13を有する。電圧検知回路81は、昇圧回路10の出力電圧が保持電圧レベルに達したことに応じて、所定の期間周波数制御回路83に動作クロックCLK1の供給と動作クロックCLK1の停止とを所定の間隔で切り替える指示を行うクロック切替信号S81を出力する。また、電圧検知回路81は、昇圧回路10の出力電圧が保持電圧レベルに達したことに応じて電圧検出信号S11をイネーブル状態とする。
【0147】
遅延回路82は、予め設定された遅延時間に応じて電圧検出信号S11を遅延させた遅延電圧検出信号S11dを出力する。そして、電圧レベル変換回路13は、遅延電圧検出信号S11dに応じて切替信号S12の論理レベルを切り替える。
【0148】
周波数制御回路83は、昇圧回路に対する動作クロックCLK1の供給状態を制御する。より具体的には、周波数制御回路83は、クロック切替信号S81がイネーブル状態(例えば、ハイレベル)である期間には停止状態となり、クロック切替信号S81がディスイネーブル状態(例えば、ロウレベル)である期間は動作クロックCLK0に応じたクロック波形を有する動作クロックCLK1を出力する。
【0149】
続いて、実施の形態9にかかる半導体装置5の動作について説明する。実施の形態9にかかる半導体装置5の動作を示すタイミングチャートを
図35に示す。
図35に示す例では、タイミングT80において昇圧回路10が昇圧動作を開始する。このタイミングT80の時点ではクロック切替信号S81は、ディスイネーブル状態である。そして、タイミングT81において、昇圧回路10の出力電圧が第2の昇圧電圧V1の目標電圧レベルであるVtrgに達する。
【0150】
その後、タイミングT81から電圧検知回路81の回路応答遅延に起因する遅延時間を経てタイミングT82で電圧検出信号S11がイネーブル状態となる。また、タイミングT82から所定の期間の間、電圧検知回路81は所定の間隔でクロック切替信号S81の状態をイネーブル状態とディスイネーブル状態との間で切り替える。これにより、クロック切替信号S81がイネーブル状態の期間は、昇圧回路10への動作クロックの供給が停止し、昇圧回路10の出力電圧が低下する。また、クロック切替信号S81がディスイネーブル状態の期間は、昇圧回路10に動作クロックが供給され出力電圧が上昇する。そして、このクロック切替信号S81の状態の切り替わりに応じて昇圧回路10の出力電圧は徐々に低下して第2の昇圧電圧V1の目標電圧レベルVtrgに近づく。
【0151】
そして、タイミングT82から遅延回路82に設定された遅延時間が経過したタイミングT83で遅延電圧検出信号S11dがイネーブル状態となる。そして、タイミングT83から電圧レベル変換回路13の回路遅延に起因する遅延時間を経たタイミングT84において切替信号S12がロウレベルとなる。これにより、半導体装置5の電圧レベル変換回路13は、タイミングT84の時点における出力電圧に基づき第2の昇圧電圧V1を維持する状態となる。
【0152】
上記説明より、実施の形態9にかかる半導体装置5は、昇圧回路10の出力電圧が第2の昇圧電圧V1の目標電圧レベルVtrgを上回ったことを検出した後に出力電圧の電圧値を調整するために間欠的に昇圧回路10に動作クロックを与える。これにより、半導体装置5では、出力電圧のオーバーシュートを低減することができる。また、動作クロックを間欠的に昇圧回路10に与える時間を確保するために、遅延回路82により電圧検出信号S11の論理レベルの切り替わりが電圧レベル変換回路13に伝達されるまでの遅延時間を設定する。これにより、半導体装置5では、電圧検知回路81及び電圧レベル変換回路13の回路遅延よりも長い期間、動作クロックを間欠的に供給する時間を確保し、出力電圧の調整時間を確保する。
【0153】
実施の形態10
実施の形態10では、上記実施の形態で説明した昇圧電圧を利用する不揮発性メモリセルを有する半導体装置6について説明する。
図36に実施の形態10にかかる半導体装置6のブロック図を示す。
【0154】
図34に示すように、実施の形態10にかかる半導体装置6は、CPU(Central Processing Unit)90、メモリ制御回路91、Yデコーダ回路92、Xデコーダ回路93、メモリセルアレイ94、センスラッチ95、電源回路96、電圧分配回路97を有する。
【0155】
CPU90は、半導体装置6の情報処理部である。メモリ制御回路91は、CPU90からの指示に基づきメモリセルアレイ94に対してデータの書き込み、消去及び読み出し等の制御を行う。Yデコーダ回路92は、メモリ制御回路91から与えられるワード線アドレスに基づきメモリセルアレイ94において活性化させるメモリセルが配置される行のワード線を活性化させる。Xデコーダ回路93は、メモリ制御回路91から与えられるビット線アドレスに基づきメモリセルアレイ94において活性化させるメモリセルが配置される列のビット線とセンスラッチ95とを接続する。メモリセルアレイ94は、データを記憶するメモリセルが行列状に配置される。センスラッチ95は、Xデコーダ回路93が選択したビット線からデータを読み出してCPU90に読み出したデータを出力する。なお、センスラッチ95は、データの書き込みを行う場合は、Xデコーダ回路93が選択したビット線を駆動して選択されたメモリセルにデータを書き込む。
【0156】
電源回路96は、上記実施の形態で説明した半導体装置に相当する回路が配置されるブロックである。つまり、電源回路96は、昇圧回路、制御回路、電圧保持回路、第1のスイッチ等を有し、少なくとも第1の昇圧電圧と第2の昇圧電圧を生成する。電圧分配回路97は、電源回路96で生成された複数の昇圧電圧をメモリ制御回路91からの指示に基づきYデコーダ回路92及びXデコーダ回路93に分配する。このとき、メモリセルアレイでは、書き込み、消去及び読み出しのそれぞれの動作で異なる電圧をワード線、ビット線、メモリセルのバックゲート等に与える。そのため、電圧分配回路97は、メモリ制御回路91からの指示に基づき動作に応じた昇圧電圧をYデコーダ回路92及びXデコーダ回路93に分配する。
【0157】
ここで、実施の形態10にかかる半導体装置6では、メモリセルアレイ94に含まれるメモリセルの1つとしてMONOS(Metal-Oxide-Nitride-Oxide Semiconductor)型の不揮発性メモリを用いる。このMONOS型不揮発性メモリセルは、書き込み、消去及び読み出しのそれぞれの動作において複数の電源を要する。そこで、以下ではMONOS型不揮発制メモリセルの書き込み動作を動作の一例として、上記実施の形態にかかる半導体装置により構成される昇圧回路との関係を説明する。
【0158】
また、MONOS型不揮発性メモリセルは、その構造に複数の種類がある。そこで、まず第1の例として、1本のワード線により動作状態が制御される第1のMONOS型不揮発性メモリセルに対する書き込み動作と上記実施の形態にかかる昇圧回路との関係について説明する。なお、第1のMONOS型不揮発性メモリセルは、単一トランジスタのゲートにONO膜を形成したメモリセルである。
【0159】
図37に実施の形態10にかかる半導体装置のメモリセルアレイの第1の例を示す回路図を示す。
図37に示す回路図では、4つのメモリセルCE11〜CE22を示した。第1のMONOS型不揮発性メモリセルは、ゲートGにワード線が接続され、ソースSLがビット線対の一方に接続され、ドレインBLがビット線対の他方に接続される。
【0160】
また、
図37に示す例は、第1のMONOS型不揮発性メモリセルに対する書き込み動作時に印加される電圧を示した。つまり、メモリセルCE11、CE21に接続されるワード線に選択電圧Vwl1が供給され、メモリセルCE12、CE22に接続されるワード線に選択電圧Vwl2が供給される。また、モリセルCE11、CE12に接続されるビット線対の一方には電圧Vsl1が供給され、ビット線対の他方には電圧Vbl1が供給される。また、モリセルCE21、CE22に接続されるビット線対の一方には電圧Vsl2が供給され、ビット線対の他方には電圧Vbl2が供給される。
【0161】
ここで、メモリセルCE11に対する書き込み動作時の印加電圧を示す表を
図38に示した。
図38に示すように、メモリセルCE11に対して書き込み動作を行う場合、メモリセルCE11〜CE22のウェル領域Wellには−11.5Vの電圧が印加される。また、選択されるメモリセルCE11は、ゲートGに1.5Vの電圧が印加され、ソースSL及ドレインBLに−11.5Vが印加される。メモリセルCE11にこのような電圧を印加することでメモリセルCE11へのデータの書き込みが行われる。
【0162】
一方、メモリセルCE11と同一行に配置される非選択のメモリセルCE21のゲートGにも1.5Vが印加される。また、メモリセルCE11と同一列に配置される非選択のメモリセルCE12のソースSL及びドレインBLにも−11.5Vが与えられる。
【0163】
このような場合、非選択のメモリセルへのディスターブを防止するために、メモリセルCE12、CE22に接続されるワード線にはウェル電圧よりも若干高い電圧(例えば、−10.5V)を与え、メモリセルCE21、CE22に接続されるビット線対に−4.5V程度の電圧を与える必要がある。このような電圧を与えることで、メモリセルCE21のゲートとバックゲートとの間の電界を緩和してディスターブを防止することができる。また、メモリセルCE22はゲートGに非選択電圧として−11.5Vを与えてしまった場合、ビット線対に印加される−4.5Vによりゲートとバックゲートとの間の電界が高まりディスターブが生じることがある。そこで、メモリセルCE22のゲートGに非選択電圧として−11.5Vよりも小さい−10.5Vを与えることで、ゲートとバックゲートとの間の電界を緩和してディスターブを防止する。
【0164】
このように、第1のMONOS型不揮発性メモリセルを利用する場合、書き込み動作において4つの電圧が必要になる。この4つの電圧のうち1.5Vの電圧については、電源端子VDDから供給される電源電圧を利用することができる。しかし、他の3つの電圧については、負昇圧回路を利用しなければならない。このような場合、上記実施の形態で説明した半導体装置により構成される負昇圧回路を用いることで、回路面積を削減することができる。より具体的には、第1の昇圧電圧Vcp2により−11.5Vを生成し、第2の昇圧電圧V2aにより−10.5Vを生成し、第2の昇圧電圧V2bにより−4.5Vを生成することができる。
【0165】
また、データの書き換えにおいて、書き換え時間の高速化、すなわち高速な昇圧電圧生成が必要とされている。特許文献2のような方法でも回路面積の削減は可能ではあるが、高速な昇圧電圧生成を実現しようとした場合、ソースフォロワ回路の駆動電流を大きくしなければならず、結果としてソースフォロワ回路を負荷とする昇圧回路の面積が大きくなり、面積低減効果を大きく得ることができない。一方、上記実施の形態で説明した半導体装置では、昇圧と保持の切り替えによる電圧生成方法を用いることで、既に生成し終わった昇圧電圧から降圧や分圧して電圧生成する方法に比べ、高速な複数の高電圧生成が可能となり、ソースフォロワ回路の駆動電流についても必要最小値で設計可能となるため、面積低減効果を大きく得ることができる。
【0166】
続いて、メモリセルアレイを第2のMONOS型不揮発性メモリセルにより構成した場合の書き込み動作について説明する。第2のMONOS型不揮発性メモリセルは、2つのゲート電圧によりデータの書き込み、消去及び読み出しを制御するものである。
【0167】
図39に実施の形態10にかかる半導体装置のメモリセルアレイの第2の例を示す回路図を示す。
図39に示す回路図では、6つのメモリセルCEA〜CEFを示した。第2のMONOS型不揮発性メモリセルは、コントロールゲートCGに第1のワード線が接続され、メモリゲートMGに第2のワード線が接続され、ソースSLがソース電圧供給線に接続され、ドレインBLがビット線に接続される。
【0168】
また、
図39に示す例は、第2のMONOS型不揮発性メモリセルに対する書き込み動作時に印加される電圧を示した。つまり、メモリセルCEA、CEBに接続される第1のワード線に選択電圧Vwl1が供給され、メモリセルCEC、CEDに接続される第1のワード線に選択電圧Vwl2が供給され、メモリセルCEE、DEFに接続される第1のワード線に選択信号Vwl3が供給される。また、メモリセルCEA、CEB、CEE、DEFに接続される第2のワード線に選択電圧Vmg1が供給され、メモリセルCEC、CEDに接続される第2のワード線に選択電圧Vmg2が供給される。また、モリセルCEA〜CEDに接続されるソース電圧供給線には電圧Vsl1が供給され、モリセルCEE、CEFに接続されるソース電圧供給線には電圧Vsl2が供給される。また、モリセルCEA、CEC、CEE接続されるビット線には電圧Vbl1が供給され、モリセルCEB、CED、CEFに接続されるビット線には電圧Vbl2が供給される。
【0169】
ここで、メモリセルCEAに対する書き込み動作時の印加電圧を示す表を
図40に示した。
図40に示すように、メモリセルCEAに対して書き込み動作を行う場合、メモリセルCEAは、メモリゲートMGに10.0Vの電圧が印加され、コントロールゲートCEに1.0Vが印加され、ソースSLに5.0Vが印加され、ドレインBLに0.8Vが印加される。メモリセルCEAにこのような電圧を印加することでメモリセルCEAへのデータの書き込みが行われる。
【0170】
一方、メモリセルCEAと同じ選択電圧Vmg2が印加される非選択のメモリセルCEB、CEE、CEFのメモリゲートMGにも10.0Vが印加される。また、メモリセルCEAと同一行に配置されるメモリセルCEBのコントロールゲートCGにも1.0Vが印可される。また、メモリセルCEAと同一のソース電圧供給線が接続される非選択のメモリセルCEB〜CEDのソースSLにも5.0Vが印加される。また、メモリセルCEAと同一列に配置される非選択のメモリセルCEC、CEEのドレインBLにも5.0Vが与えられる。
【0171】
つまり、選択したメモリセルに対して書き込みを行う場合、選択したメモリセルと共通の配線が接続される非選択のメモリセルにおいて意図しない電界が生じ非選択のメモリセルにおいてディスターブの問題が生じる。そこで、このような意図しない電界を緩和するために、メモリセルCEC、CEDのメモリゲートMGには3.5V程度の電圧を印加する。メモリセルCEC〜CEFのコントロールゲートCGには0.0V程度の電圧を印加する。メモリセルCEE、CEFのソースSLには、1.5V程度の電圧を印加する。メモリセルCEB、CED、CEFのドレインBLには1.5V程度の電圧を印加する。非選択のメモリセルに対してこのような電圧を与えることで、非選択メモリセルにおける電界を緩和し、意図しない高電界によるディスターブを防止することができる。
【0172】
このように、第2のMONOS型不揮発性メモリセルを利用する場合、書き込み動作において6つの電圧が必要になる。この6つの電圧のうち1.5V、0.8V、0.0Vの電圧については、電源端子VDDから供給される電源電圧と接地端子VSSから供給される接地電圧を利用することができる。しかし、他の3つの電圧については、昇圧回路を利用しなければならない。このような場合、上記実施の形態で説明した半導体装置により構成される昇圧回路を用いることで、回路面積を削減することができる。より具体的には、第1の昇圧電圧Vcp1により−10.0Vを生成し、第2の昇圧電圧V2aにより3.5Vを生成し、第2の昇圧電圧V2bにより5.0Vを生成することができる。また、高速な昇圧電圧生成を必要とされる場合においても、第1のMONOS型不揮発性メモリセルを利用する場合で説明したように、上記実施の形態で説明した半導体装置では、面積低減効果を大きく得ることができる。
【0173】
上記説明のように、不揮発性メモリでは、動作させるために複数の昇圧電圧が必要となる。そのため、このような不揮発性メモリに供給する昇圧電圧を生成する回路として上記実施の形態で説明した半導体装置による昇圧回路を利用することで半導体装置全体の面積を削減することができる。また、上記実施の形態で説明した半導体装置による昇圧回路は、高速に昇圧電圧を生成できるため、不揮発性メモリのデータ書き込み速度高速化を実現することができる。
【0174】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。