【実施例】
【0055】
以下、本発明を実施例に基づいてより具体的に説明する。しかし、下記実施例によって本発明の範囲が制限されるものではない。
【0056】
(実施例1〜実施例19及び比較例1〜比較例3):洗浄液組成物の製造
表1に記載した構成成分及び組成で混合して撹拌して洗浄液組成物を製造した。
【0057】
【表1】
【0058】
注)NHEP1:N−(2−ヒドロキシエチル)ピペラジン
HEMP:1−(2−ヒドロキシエチル)−4−メチルピペラジン
NHEM:N−(2−ヒドロキシエチル)モルホリン
TMAH:テトラメチルアンモニウムヒドロキシド
NH
4OH:アンモニウムヒドロキシド
MEA:モノエタノールアミン
*1):2,2’−[[[エチル−1H−ベンゾトリアゾール−1−イル]メチル]イミノ]ビスエタノール
*2):EMADOX−NA(商品名、LABEMA Co.社製)
*3):アスコルビン酸
*GE:量子性アルキレングリコールモノアルキルエーテル
*4):ジエチレングリコールモノメチルエーテル
*5):ジエチレングリコールモノブチルエーテル
*6):トリエチレングリコールモノエチルエーテル
*7):ポリアクリル酸重合体(PAA)
*8):ポリメチルアクリル酸共重合体(PMAA)
*9):ポリオキシエチレン/ポリオキシプロピレングリコール
*10):エチレンジアミン付加型ポリオキシエチレン/ポリオキシプロピレン縮合物
【0059】
(試験例1):洗浄液組成物の特性評価
1)銅エッチング速度評価
まず、銅が2500Å厚さで形成されたガラス基板を実施例1〜実施例12及び比較例1〜比較例3の洗浄液組成物に30分間ディッピングさせる。この際、洗浄液の温度は40℃であり、銅膜の厚さをディッピング以前及び以後に測定し、銅溶解速度を銅膜の厚さ変化から計算して測定する。その結果を表2に記載した。
【0060】
2)有機汚染物除去力評価−1
有機汚染物の除去力評価のために、5cm×5cmの大きさに形成されたガラス基板上にヒトの指紋跡または有機成分サインペンで汚染させ、汚染された基板をスプレー式ガラス基板洗浄装置を用いて2分間40℃で実施例4、実施例8、実施例12〜実施例19の洗浄液組成物で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。
【0061】
この際、下記の表2において、有機汚染物の除去有無は、除去されたときは○、除去されなかったときは×で表示した。また、実施例16による有機汚染物除去の結果を
図1〜
図4に示した。ここで、
図1は有機汚染物の中で有機サインペンの跡で汚染されたガラス基板を示す写真である。
図2は本発明の実施例16による洗浄液組成物を用いて
図1に示した有機サインペンの跡が除去される結果を示す写真である。
図3は有機汚染物の中でヒトの指紋で汚染されたガラス基板を示す写真である。
図4は本発明の実施例16による洗浄液組成物を用いて
図3に示したヒトの指紋成分が除去される結果を示す写真である。
【0062】
3)有機汚染物除去力評価−2
また、ガラス基板を大気中に24時間放置して、大気中の各種有機物、無機物、パーティクルなどで汚染させた後、スプレー式ガラス基板洗浄装置を用いて2分間40℃で実施例4、実施例8、実施例12〜実施例19の洗浄液組成物で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。前記ガラス基板上に0.5μlの超純水滴を落として洗浄後の接触角を測定した。その結果を表2に示した。
【0063】
4)有機汚染物除去力評価−3
実施例4、実施例8、実施例12、実施例13、実施例16及び実施例18の洗浄液組成物を持って、有機パーティクルソリューションで汚染させたガラス基板に対する洗浄を実施した。すなわち、ガラス平均粒度が0.8μmである有機パーティクルソリューションで汚染させ、1分間3000rpmでスピン(spin)ドライした後、スプレー式ガラス基板洗浄装置を用いて2分間40℃でそれぞれの洗浄液で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。洗浄前後のパーティクル数は表面粒子測定器(Topcon WM−1500)で0.1μm以上のパーティクル数を測定し、表2に示した。
【0064】
【表2】
【0065】
表2を参照すれば、実施例1〜12の洗浄液組成物は銅に対する腐食防止効果があった。しかし、環状アミン化合物ではないアルカリ性化合物が含まれている比較例1〜3の場合には、銅腐食現象が観察された。
【0066】
また、実施例4、実施例8、実施例12、実施例13、実施例16〜実施例19の洗浄液組成物はいずれも有機汚染物の除去力があることを示し、接触角が20°〜40°を持つことから有機汚染物の除去能力を示した。
【0067】
実施例4、実施例8、実施例12、実施例13、実施例16及び実施例18の洗浄液組成物で、有機パーティクルソリューションで汚染させたガラス基板に対する洗浄を実施したとき、77〜86%に近いパーティクル除去力を示した。
【0068】
(実施例20〜実施例38):洗浄液組成物の製造
表3に記載した構成成分及び組成で混合して撹拌して洗浄液組成物を製造した。
【0069】
【表3】
【0070】
注)NHEP2:N−(2−ヒドロキシエチル)ピペリジン
NHPP:N−(2−ヒドロキシプロピル)ピペリジン
HEP:1−(2−ヒドロキシエチル)−2−ピロリドン
*1):2,2’−[[[エチル−1H−ベンゾトリアゾール−1−イル]メチル]イミノ]ビスエタノール
*2):EMADOX−NA(商品名、LABEMA Co.社製)
*3):アスコルビン酸
*GE:量子性アルキレングリコールモノアルキルエーテル
*4):ジエチレングリコールモノメチルエーテル
*5):ジエチレングリコールモノブチルエーテル
*6):トリエチレングリコールモノエチルエーテル
*7):ポリアクリル酸重合体(PAA)
*8):ポリメチルアクリル酸共重合体(PMAA)
*9):ポリオキシエチレン/ポリオキシプロピレングリコール
*10):ポリオキシエチレン/ポリオキシプロピレンエチレンジアミン縮合物
【0071】
(試験例2):洗浄液組成物の特性評価
1)銅エッチング速度評価
まず、銅が2500Å厚さで形成されたガラス基板を実施例20〜実施例31及び比較例1〜比較例3の洗浄液組成物に30分間ディッピングさせる。この際、洗浄液の温度は40℃であり、銅膜の厚さをディッピング以前及び以後に測定し、銅膜の溶解速度を銅膜の厚さ変化から計算して測定する。その結果を表4に記載した。
【0072】
2)有機汚染物除去力評価−1
有機汚染物の除去力評価のために、5cm×5cmの大きさに形成されたガラス基板上にヒトの指紋跡または有機成分サインペンで汚染させ、汚染された基板をスプレー式ガラス基板洗浄装置を用いて2分間40℃で実施例23、実施例27、実施例31〜実施例38の洗浄液組成物で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。
【0073】
この際、下記の表4において、有機汚染物の除去有無は、除去されたときは○、除去されなかったときは×で表示した。また、実施例35による有機汚染物除去の結果を
図5〜
図8に示した。ここで、
図5は有機汚染物の中で有機サインペンの跡で汚染されたガラス基板を示す写真である。
図6は本発明の実施例32による洗浄液組成物を用いて
図5に示した有機サインペンの跡が除去される結果を示す写真である。
図7は有機汚染物の中でヒトの指紋で汚染されたガラス基板を示す写真である。
図8は本発明の実施例32による洗浄液組成物を用いて
図7に示したヒトの指紋成分が除去される結果を示す写真である。
【0074】
3)有機汚染物除去力評価−2
また、ガラス基板を大気中に24時間放置して大気中の各種有機物、無機物、パーティクルなどで汚染させた後、スプレー式ガラス基板洗浄装置を用いて2分間40℃で実施例23、実施例27、実施例31〜実施例38の洗浄液組成物で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。前記ガラス基板上に0.5μlの超純水滴を落として洗浄後の接触角を測定した。その結果を表4に示した。
【0075】
4)有機汚染物除去力評価−3
実施例23、実施例27、実施例31、実施例32、実施例35及び実施例37の洗浄液組成物を持って、有機パーティクルソリューションで汚染させたガラス基板に対する洗浄を実施した。すなわち、ガラス平均粒度が0.8μmである有機パーティクルソリューションで汚染させ、1分間3000rpmでスピン(spin)ドライした後、スプレー式ガラス基板洗浄装置を用いて2分間40℃でそれぞれの洗浄液で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。洗浄前後のパーティクル数は表面粒子測定器(Topcon WM−1500)で0.1μm以上のパーティクル数を測定して表4に示した。
【0076】
【表4】
【0077】
表4を参照すれば、実施例20〜31の洗浄液組成物は銅に対する腐食防止効果があった。また、実施例27、実施例31、実施例32、実施例35〜実施例38の洗浄液組成物はいずれも有機汚染物の除去力があることを示し、接触角が20°〜40°を持つようになって有機汚染物の除去能力を示した。また、実施例23、実施例27、実施例31、実施例32、実施例35及び実施例37の洗浄液組成物で有機パーティクルソリューションで汚染させたガラス基板に対する洗浄を実施したとき、77〜86%に近いパーティクル除去力を示した。
【0078】
(実施例39〜実施例60及び比較例1〜比較例3):洗浄液組成物の製造
表5に記載した構成成分を表5に記載した組成で残量の水とともに混合して撹拌して洗浄液組成物を製造した。
【0079】
【表5】
【0080】
注)AEE:アミノエトキシエタノール
DAEE:ジメチルアミノエトキシエタノール
MEA:モノエタノールアミン
MIPA:モノイソプロパノールアミン
TMAH:テトラメチルアンモニウムヒドロキシド
NH
4OH:アンモニウムヒドロキシド
*1):2,2’−[[[エチル−1H−ベンゾトリアゾール−1−イル]メチル]イミノ]ビスエタノール
*2):EMADOX−NA
*3):アスコルビン酸
*GE:量子性アルキレングリコールモノアルキルエーテル
*4):ジエチレングリコールモノメチルエーテル
*5):ジエチレングリコールモノブチルエーテル
*6):トリエチレングリコールモノエチルエーテル
*7):ポリアクリル酸重合体(PAA)
*8):ポリメチル(メタ)アクリル酸共重合体(PMAA)
*9):ポリオキシエチレン/ポリオキシプロピレングリコール
*10):ポリオキシエチレン/ポリオキシプロピレンエチレンジアミン縮合物
【0081】
(試験例3):洗浄液組成物の特性評価
1)銅エッチング速度評価
まず、銅が2500Å厚さで形成されたガラス基板を実施例38〜実施例50及び比較例1〜比較例3の洗浄液組成物に30分間ディッピングさせる。この際、洗浄液の温度は40℃であり、銅膜の厚さをディッピング以前及び以後に測定し、銅膜の溶解速度を銅膜の厚さ変化から計算して測定する。その結果を表6に記載した。
【0082】
2)有機汚染物除去力評価−1
有機汚染物の除去力評価のために、5cm×5cmの大きさに形成されたガラス基板上にヒトの指紋跡または有機成分サインペンで汚染させて、汚染された基板をスプレー式ガラス基板洗浄装置を用いて2分間40℃で実施例42、実施例46、実施例47、実施例49、実施例51〜実施例60の洗浄液組成物で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。
【0083】
この際、下記の表6で有機汚染物の除去有無は、除去されたときは○、除去されなかったときは×で表示した。また、実施例51による有機汚染物除去結果を
図9〜
図12に示した。ここで、
図9は有機汚染物の中で有機サインペンの跡で汚染されたガラス基板を示す写真である。
図10は本発明の実施例51による洗浄液組成物を用いて有機汚染物の中で有機サインペンの跡が除去される結果を示す写真である。
図11は有機汚染物の中でヒトの指紋で汚染されたガラス基板を示す写真である。
図12は本発明の実施例51による洗浄液組成物を用いて有機汚染物の中でヒトの指紋成分が除去される結果を示す写真である。
【0084】
3)有機汚染物除去力評価−2
また、ガラス基板を大気中に24時間放置して大気中の各種有機物、無機物、パーティクルなどで汚染させた後、スプレー式ガラス基板洗浄装置を用いて2分間40℃で実施例42、実施例46、実施例47、実施例49、実施例51〜実施例60の洗浄液組成物で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。前記ガラス基板上に0.5μlの超純水滴を落として洗浄後の接触角を測定した。その結果を表6に示した。
【0085】
4)有機汚染物除去力評価−3
実施例42、実施例46、実施例55、実施例57及び実施例59の洗浄液組成物を持って、有機パーティクルソリューションで汚染させたガラス基板に対する洗浄を実施した。すなわち、ガラス平均粒度が0.8μmである有機パーティクルソリューションで汚染させ、1分間3000rpmでスピン(spin)ドライした後、スプレー式ガラス基板洗浄装置を用いて2分間40℃でそれぞれの洗浄液で洗浄した。洗浄の後、超純水で30秒間洗浄した後、窒素で乾燥させた。洗浄前後のパーティクル数は表面粒子測定器(Topcon WM−1500)で0.1μm以上のパーティクル数を測定して表6に示した。
【0086】
【表6】
【0087】
表6を参照すれば、実施例39〜50の洗浄液組成物は銅に対する腐食防止効果があった。また、実施例42、実施例46、実施例47、実施例49、実施例51〜実施例60の洗浄液組成物はいずれも有機汚染物の除去力があることを示し、接触角が20°〜40°を持つようになって有機汚染物の除去能力を示した。また、実施例42、実施例46、実施例55、実施例57及び実施例59の洗浄液組成物で有機パーティクルソリューションで汚染させたガラス基板に対する洗浄を実施したとき、80%以上のパーティクル除去力を示した。