(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態に係る超音波画像撮像装置について、図面を用いて説明する。
図1は、本実施の形態に係る超音波画像撮像装置を示すブロック図である。超音波画像撮像装置は、超音波を利用して被検体の診断部位について断層画像を得るとともに生体組織の硬さ又は軟らかさを表す弾性画像を表示するものである。
【0012】
図1に示すように、被検体1に当接して用いられる探触子(超音波探触子)2は、被検体1との間で超音波を送信及び受信する複数の振動子を有する。探触子2は、送信回路3から供給される超音波パルスにより駆動される。送受信制御回路4は、探触子2の複数の振動子を駆動する超音波パルスの送信タイミングを制御して、被検体1内に設定される焦点に向けて超音波ビームを形成する処理を行う。また、送受信制御回路4は、探触子2の振動子の配列方向に電子的に超音波ビームを走査する処理を行う。
【0013】
探触子2は、被検体1内から発生する反射エコー信号を受信して受信回路5に出力する。受信回路5は、送受信制御回路4から入力されるタイミング信号に従って、反射エコー信号を取り込んで増幅などの受信処理を行う。受信回路5により処理された反射エコー信号は整相加算回路6に入力される。整相加算回路6は、複数の振動子により受信された反射エコー信号の位相を合わせて加算することにより反射エコー信号を増幅する。整相加算回路6において整相加算された反射エコー信号は、信号処理部7に入力され、ゲイン補正、ログ圧縮、検波、輪郭強調、及びフィルタ処理などの信号処理が施される。
【0014】
信号処理部7により処理された反射エコー信号は、白黒スキャンコンバータ8に導かれて、超音波ビームの走査面に対応した2次元の断層画像データ(ディジタルデータ)に変換される。これらの信号処理部7と白黒スキャンコンバータ8によって断層画像(Bモード画像)の画像構成部が構成される。白黒スキャンコンバータ8から出力される断層画像データは、切替加算部9を介して表示部10に供給される。表示部10は、超音波画像である断層画像(Bモード画像)を表示する。
【0015】
また、整相加算回路6から出力される反射エコー信号は、フレームデータ取得部11に導かれる。フレームデータ取得部11は、超音波ビームの走査面(断層面)に対応する反射エコー信号をフレームデータとして取得し、複数のフレームデータをメモリなどの記憶部に格納する。変位・歪み演算部12は、フレームデータ取得部11に格納されている取得時刻が異なる複数のフレームデータを順次取り込み、取り込んだペアのフレームデータに基づいて断層面における計測点の変位又は歪みを求め、求められた変位又は歪みを変位フレームデータ又は歪みフレームデータ(変位・歪みフレームデータ)として弾性情報演算部13に出力する。
【0016】
圧力計測部17は、探触子2から被検体1の表面に印加された圧力を計測し、計測された圧力を圧力データとして応力演算部18に出力する。ここで、探触子2の圧力を求める方法は適宜選択可能であり、圧力センサーや音響カプラなどを用いて被検体1の表面圧力を求める方法などがある。
【0017】
応力演算部18は、圧力データに基づいて被検体1の内部の応力又は応力分布を応力フレームデータとして演算し、演算された応力フレームデータを弾性情報演算部13に出力する。
【0018】
弾性情報演算部13は、変位・歪みフレームデータと応力フレームデータに基づいて各計測点の生体組織の弾性率(例えば、ヤング率)などの弾性情報を弾性フレームデータとして求め、弾性フレームデータを弾性情報処理部14に出力する。
【0019】
弾性情報処理部14は、弾性情報演算部13から入力される弾性フレームデータに対して、弾性フレームデータの座標平面内におけるスムージング処理やコントラスト最適化処理を施し、複数の弾性フレームデータ間における時間軸方向のスムージング処理などを施すことにより、様々な画像処理を行い、画像処理された弾性フレームデータをカラースキャンコンバータ15に送出する。
【0020】
カラースキャンコンバータ15は、弾性情報処理部14により処理された弾性フレームデータ(弾性率などの弾性特性を示す弾性フレームデータ)を取り込み、弾性率に対応するカラーマップに従って、画素ごとに色調コードを付与してカラー弾性画像を生成する。
【0021】
カラースキャンコンバータ15により生成されたカラー弾性画像(超音波画像)は、切替加算部9を介して表示部10に表示される。また、切替加算部9は、白黒スキャンコンバータ8から出力される白黒の断層画像と、カラースキャンコンバータ15から出力されるカラー弾性画像とを入力し、両画像を切り替えていずれか一方を表示部10に表示させる機能と、両画像の一方を半透明にして加算合成して表示部10に重畳表示させる機能と、両画像を並べて表示部10に表示させる機能とを有する。また、切替加算部9から出力される画像データは、装置制御インターフェイス部19の制御に従って、シネメモリ20に格納される。シネメモリ20に格納された画像データは、装置制御インターフェイス部19の制御に従って、表示部10に表示される。
【0022】
本実施形態の特徴に係る応力演算部18は、被検体1の形状や被検体1の境界条件(拘束状態など)を取得し、それらの条件を考慮して各計測点に印加される応力を求める。
【0023】
図2は、本実施の形態に係る応力演算部18の構成の一例を示すブロック図である。
図2に示すように、応力演算部18は、条件設定部180、条件調整部181、モデル選択部182、及び応力情報演算部184を備える。条件設定部180は、計測部位の条件を設定する。条件調整部181は、設定された条件を調整する。モデル選択部182は、計測部位における応力をシミュレーションするためのモデルをデータベース183から選択する。応力情報演算部184は、モデルに基づいて応力情報(応力又は応力分布)を演算し、応力フレームデータを生成する。
【0024】
次に、本実施形態の基本的な動作について説明する。まず、探触子2が被検体1を圧迫して、被検体1に超音波ビームを走査する。受信回路5が走査面からの反射エコー信号を連続的に受信する。整相加算回路6から出力される反射エコー信号に基づいて、信号処理部7及び白黒スキャンコンバータ8が断層画像を構成し、切替加算部9を介して表示部10が断層画像を表示する。
【0025】
フレームデータ取得部11は、反射エコー信号を取り込んでフレームレートに同期させてフレームデータを繰り返し取得し、内蔵された記憶部(フレームメモリなど)に時系列順に記憶する。そして、フレームデータ取得部11は、取得時刻が異なるペアのフレームデータを1単位として、複数ペアのフレームデータを連続的に選択して変位・歪み演算部12に出力する。変位・歪み演算部12は、選択された1つのペアのフレームデータを1次元もしくは2次元相関処理し、走査面における複数の計測点の変位を計測して変位フレームデータ又は歪みフレームデータ(変位・歪みフレームデータ)を生成する。
【0026】
変位ベクトルの検出法として、例えば特開平5−317313号公報に記載されているブロックマッチング法又はグラジェント法が知られている。ブロックマッチング法では、画像を例えばN×N画素からなるブロックに分け、現フレーム中の着目されているブロック(例えば、計測点のブロック)に最も近似しているブロックを前フレームから探索し、これらのブロック位置に基づいて計測点の変位が求められ、変位フレームデータが生成される。また、ペアのRF信号フレームデータの同一領域における自己相関を計算して変位が算出され、変位フレームデータが生成される。
【0027】
変位フレームデータに基づいて、各計測点の歪みが求められる。歪み演算は、例えば変位を空間微分することによって計算され、歪みフレームデータが生成される。
【0028】
圧力計測部17は、探触子2の超音波送受信面と被検体1との間に設けられた圧力センサー16や音響カプラにより、探触子2から被検体1の表面(圧迫面)に印加された圧力を計測して、計測された圧力を圧力データとして応力演算部18に出力する。応力演算部18は、圧力データに基づいて被検体1の内部の応力又は応力分布を応力フレームデータとして演算する。
【0029】
弾性情報演算部13は、変位・歪みフレームデータ、及び応力フレームデータを用いて、計測点の弾性情報を求める。例えば、弾性情報演算部13は、各計測点における応力と、弾性情報演算部13で求められた歪みから走査面上の各計測点の弾性率(例えば、ヤング率E)を演算し、弾性フレームデータを弾性情報処理部14に出力する。弾性情報処理部14は、弾性フレームデータにスムージング処理などの処理を施して、カラースキャンコンバータ15に出力する。カラースキャンコンバータ15は、弾性情報に基づいてカラー弾性画像を生成する。例えば、カラー弾性画像では、弾性率に応じた色が256階調化による色調のグラデーションで画素ごとに割り当てられる。なお、カラースキャンコンバータ15に代えて、白黒スキャンコンバータが用いられてもよい。この場合、白黒スキャンコンバータは弾性情報に基づいて白黒弾性画像を生成する。白黒弾性画像では、弾性率が大きい領域は輝度を明るくし、弾性率が小さい領域は輝度を暗くすることにより弾性情報を視覚的に認識でき、例えば正常組織、ガン細胞、及び腫瘍などの病変を鑑別することができる。
【0030】
上記のように、応力演算部18は、圧力データに基づいて被検体1の内部の応力又は応力分布を応力フレームデータとして演算し、弾性情報演算部13は、各計測点の弾性率(例えば、ヤング率E)などの弾性情報を算出する。応力演算部18は、被検体1の条件(形状や境界条件など)である計測部位の形状や境界条件(拘束状態など)を仮定して応力分布を求め、弾性情報演算部13は、各計測点の弾性率Eを演算する。例えば、計測部位を等方性弾性体と仮定し、つりあい方程式、歪み−変位関係式、及び応力−歪み関係式(フックの法則)の3つの式を用いると、式(1)に示すように、組織の各計測点の弾性率(例えば、ヤング率E)は、z軸方向の歪みεzと、x,y,z軸方向の応力σx,σy,σzから求められる。なお、応力分布は、空間(座標(x,y,z))における応力σx,σy,σzの分布である。
【0031】
E=(σz−ν(σx+σy))/εz (ν:ポアソン比) ・・・・・(1)
【0032】
式(2)に示すように、(σz−ν(σx+σy))をσと定義すると、弾性率(ヤング率E)は式(3)となる。
【0033】
σ≡(σz−ν(σx+σy)) ・・・・・(2)
E=σ/εz ・・・・・(3)
【0034】
また、
図3に示すように、有限要素法(FEM)による構造解析シミュレーションを用いることにより、応力σ又は応力分布σ(x,y,z)を求めることもできる。ここで、圧迫方向はz軸方向である。
図3(a)に示すように、被検体1内部の応力分布を求めるために、計測部位の形状や境界条件(拘束状態など)が仮定される。
【0035】
<計測部位の条件>
形状:円柱形(直径:φ100[mm],厚さ:10、30、及び50[mm])
硬さ(弾性率):ヤング率E=1.0[kPa]
ポアソン比:ν=0.495
境界条件:圧迫面→拘束なし,底面→xyz方向で拘束(固定),側面→拘束なし
【0036】
図3(b)及び(c)は、z軸方向に1[kPa]の圧力を圧迫面に印加ときの応力分布を解析した結果を示した図である。
図3(b)及び(c)は、被検体1の厚さを10[mm]、30[mm]、50[mm]と変化させたときの応力分布σz,σの深度における変化を示している。組織の弾性情報を高精度に取得するためには、被検体1に圧迫力を加えて内部に生じた応力分布σ,σzを高精度に計測することが重要となる。通常の超音波診断装置は応力(又は、応力分布)を直接計測することができないため、応力分布σ,σzは上記のような計測部位の条件を設定することにより推定されるが、推定される応力分布σ,σzは設定される条件(被検体1の形状や境界条件など)に応じて大きく変化する。つまり、応力分布σ,σzの推定結果は設定される条件に依存している。
【0037】
例えば、
図3(b)及び(c)に示すように、応力分布σ,σzの推定結果は設定される計測部位の形状(厚さ)に依存している。また、底面の境界条件(拘束条件)である“xyz方向で拘束(固定)”を“拘束なし”に変更すると、特に底面の近傍において応力分布σ,σzが大きく変化する。本実施の形態に係る超音波画像撮像装置は、計測部位の形状や境界条件を正確に設定することにより、応力又は応力分布を高精度に計測することができる。
【0038】
次に、本実施の形態に係る超音波画像撮像装置が計測部位の形状や境界条件を設定することについて説明する。
図4は、乳腺組織を含む乳房部位に圧迫を印加して生成された断層画像(Bモード画像)及び弾性画像を示した図である。
図4に示すように、探触子2が被検体1に接触している接触面41から最深部の肋骨まで、脂肪、乳腺、腫瘍、大胸筋、及び肋骨が断層画像(Bモード画像)40に撮像されている。本実施の形態では、生体組織の各部位における計測点の弾性率(ヤング率E)が弾性情報として求められる。
【0039】
条件設定部180が、計測部位の条件を設定する。
図5は、断層画像(Bモード画像)40に基づいて、計測部位の条件が設定された状態を示した図である。
図5に示すように、条件設定部180は、表示部10に表示された断層画像(Bモード画像)40に基づいて、計測部位の条件(形状や境界条件など)を設定する。例えば、
図5に示すように、圧迫により変形しやすい軟組織部(脂肪から大胸筋まで)の距離(厚さ)は約30[mm]であり、圧迫により変形しにくい硬組織(肋骨)は軟組織を支持する底面(支持面)であり、xyz方向で拘束(固定)されている。
【0040】
この場合、条件設定部180は、後述するモデル(立体モデル)を参照するために、境界(境界線又は境界面)、境界条件、計測部位の形状(大きさを含む)、及び圧迫位置などの計測部位の条件を設定する。例えば、断層画像(Bモード画像)40に基づいて、軟組織である大胸筋と硬組織である肋骨の境界に境界線50が設定され、接触面41から境界線(肋骨)50までの距離(約30[mm])が計測され、上面(接触面41)と底面(境界線50を通るy方向の面)と側面(底面と上面に挟まれたz方向又は圧迫方向の面)の境界条件として“圧迫面(接触面41)→拘束なし,底面→xyz方向で拘束(固定),側面(z方向又は圧迫方向の面)→拘束なし”が設定される。ここで、軟組織と硬組織との間に境界線50(又は、境界面)を設定したのは、硬組織は圧迫による変形が小さく、一般的に圧迫による移動が小さいからである。
【0041】
境界条件は、各面(上面、底面、及び側面)の特性に応じて設定される。例えば、底面の境界条件は、“底面→xy方向で拘束(固定),z方向で拘束なし(自由)”や“底面→xy方向で拘束なし(自由),z方向で拘束(固定)”など、底面の特性に応じて設定される。各面(上面、底面、及び側面)の特性に応じて、各面を規定する線や面の表示が変化することにより、各面の特性が視覚的に識別されてもよい。例えば、底面の特性に応じて、境界線50(又は、境界面)の特徴(線又は点線の色、形状、及び太さなど)が変化し、例えば、境界条件が“底面→xyz方向で拘束(固定)”である場合は境界線50(又は、境界面)の色が赤く変化してもよい。また、各面の特性に応じて、境界条件を表す文字(例えば、“底面→xyz方向で拘束(固定)”)や記号や図形などが付されてもよい。
【0042】
また、条件設定部180は、底面の代わりに、側面に境界線50を設定することも可能である。
図6は、断層画像(Bモード画像)40に基づいて、甲状腺(軟組織)と気管(固定組織)の間に境界線50が設定された状態を示した図である。ここで、軟組織と固定組織との間に境界線50(又は、境界面)を設定したのは、固定組織は圧迫による移動が小さいからである。軟組織は、固定組織までは変形可能であり、固定組織を超えて変形しない。つまり、甲状腺(軟組織)と気管(固定組織)の間の境界線50(又は、境界面)は、x軸方向に固定されている。この場合、条件設定部180は、境界条件として“側面(z方向又は圧迫方向の面)→x軸方向で拘束(固定)”を設定する。
【0043】
また、
図6に示すように、条件設定部180は、曲線を境界線50として設定することも可能である。例えば、条件設定部180は、気管の曲面に沿って境界線50を設定する。甲状腺(軟組織)と気管(固定組織)の間の境界線50(又は、境界面)は、境界線50の法線方向に固定されている。この場合、条件設定部180は、境界条件として“側面(曲面)→法線方向で拘束(固定)”を設定する。
【0044】
また、条件設定部180は、上面(接触面41)に境界線50を設定することも可能である。探触子2の形状がリニアかコンベックスかにより上面(接触面41)の境界条件が変化する。また、探触子2の接触面の曲率により上面(接触面41)の境界条件が変化する。したがって、上面(接触面41)の境界条件(形状)などに応じて、境界線50が設定される。
【0045】
境界線50は、断層画像(Bモード画像)40の代わりに、弾性画像で入力するようにすることも可能である。
【0046】
また、条件調整部181が設定された条件を調整してもよい。条件調整部181は、トラックボールやマウスなどの装置制御インターフェイス部19からの入力に従って、超音波画像(断層画像又は弾性画像)上で境界線50などの境界条件を調整(変更、移動、回転、拡大、及び縮小など)する。例えば、
図5に示すように、条件調整部181は、水平に設定された境界線50の角度や接触面41からの距離を調整してもよい。また、
図6に示すように、条件調整部181は、境界線50が気管の曲面に沿うように境界線50の形状を調整してもよい。
【0047】
モデル選択部182は、条件設定部180により設定され又は条件調整部181により調整された条件(境界条件など)に対応するモデルであって、計測部位における応力をシミュレーションするためのモデルをデータベース183から選択する。つまり、モデル選択部182は、設定された計測部位の条件に適合したモデル(応力分布テンプレート)をデータベース183から読み込む。
【0048】
データベース183は、計測部位の特徴に応じて複数のモデルを格納している。例えば、
図7に示すように、データベース183は、様々な形状(円柱形や四角柱形など)、大きさ、支持体(硬組織や固定組織など)の位置(底面や側面や中央部など)、及び圧迫面の大きさや位置や方向などを組み合わせたモデルを格納する。計測部位が乳房である場合は、
図7(a)に示す円柱形のモデルが適している。また、計測部位が足(大腿直筋など)や腕(回内筋など)である場合は、
図7(c)や(d)のモデルが適している。モデルの大きさは、1[mm]単位で複数のモデルがデータベース183に格納されている。
【0049】
例えば、
図5に示すように、条件設定部180により設定された計測部位の条件が“形状:円柱形(直径:φ100[mm],厚さ:30[mm])”、“硬さ(弾性率):ヤング率E=1.0[kPa]”、“ポアソン比:ν=0.495”、及び“境界条件:圧迫面→拘束なし,底面→xyz方向で拘束(固定),側面→拘束なし”である場合、データベース183は、設定された条件に適合する円柱形のモデル(例えば、
図7(a)のモデル)が選択され、選択されたモデルの応力特性情報(例えば、応力分布σTx(i,j),σTy(i,j),σTz(i,j)又は応力分布σT(i,j))をデータベース183から読み出す。応力分布σTx(i,j),σTy(i,j),σTz(i,j)は、各モデルにおいて予めシミュレーションされたx,y,z軸方向の応力分布であり、座標(i:x軸方向の座標,j:z軸方向の座標)における応力分布である。応力分布σT(i,j)は式(4)で表される。
【0050】
σT≡(σTz−ν(σTx+σTy)) ・・・・・(4)
【0051】
応力演算部18は、計測部位における応力をシミュレーションするためのモデルを用いて、有限要素法(FEM)の構造解析シミュレーションにより、応力情報を演算してもよい。
図3では、中央ラインにおける応力分布σを示したが、全ラインの応力分布を有限要素法(FEM)でシミュレーションすることにより、座標(i,j)における応力分布σTを算出することができる。また、有限要素法(FEM)の代わりに、他の解析手法を用いることにより、モデル(応力分布テンプレート)の応力分布が予め算出され、データベース183に格納されてもよい。
【0052】
モデル(応力分布テンプレート)の応力分布σTx,σTy,σTz,σTは、圧迫面に均一に1[Pa]の圧力が加えられた場合に生じる応力分布であり、規格化された応力分布である。したがって、圧迫面にP[Pa]の圧力が加えられた場合の応力分布は、モデル(応力分布テンプレート)の応力分布σTx,σTy,σTz,σTをP倍することにより算出される。
【0053】
つまり、式(5)又は式(6)に示すように、応力情報演算部184がモデルに基づいて応力情報を演算し、応力フレームデータを生成する。
【0054】
σz(i,j)=P×σTz(i,j) ・・・・・(5)
σ(i,j)=P×σT(i,j) ・・・・・(6)
【0055】
また、圧迫面に均一に1[Pa]の圧力が加えられた場合に生じる応力分布の代わりに、圧迫面における圧力分布P(i,j)[Pa]に基づいて応力分布が予め算出され、データベース183に格納されてもよい。
【0056】
応力演算部18は、圧力データPに基づいて被検体1の内部の応力又は応力分布を応力フレームデータとして演算し、演算された応力フレームデータを弾性情報演算部13に出力する。
【0057】
弾性情報演算部13は、変位フレームデータD(i,j)、歪みフレームデータεz(i,j)、及び応力フレームデータσz(i,j),σ(i,j)を入力し、式(7)に示すように、弾性情報(ヤング率Eなど)の弾性フレームデータE(i,j)を求め、弾性フレームデータE(i,j)を弾性情報処理部14に出力する。
【0058】
E(i,j)=σ(i,j)/εz(i,j) ・・・・・(7)
【0059】
出力された弾性フレームデータE(i,j)は、弾性情報処理部14、カラースキャンコンバータ15、及び切替加算部9を介して、カラー弾性画像(超音波画像)として表示部10に表示される。
【0060】
以上のように、本実施の形態に係る超音波画像撮像装置は、被検体の条件(形状や境界条件など)を考慮することにより、被検体の条件(形状や境界条件など)に起因する被検体の内部の応力(又は、応力分布)の変化に対応でき、被検体の条件(形状や境界条件など)の設定を高精度で行うことにより、応力分布を高精度に計測することができる。なお、本実施の形態に係る超音波画像表示方法は、被検体に印加された圧力を計測し、前記被検体の超音波画像に基づいて計測部位に関する条件を設定し、前記圧力に基づいて前記条件における前記計測部位の応力情報を演算する。
【0061】
以上、本発明にかかる実施の形態について説明したが、本発明はこれらに限定されるものではなく、請求項に記載された範囲内において変更・変形することが可能である。
【0062】
図7では、モデル選択部182は、モデル(応力分布テンプレート)をデータベース183から選択する。この場合、モデル選択部182は、複数のモデルを選択して、線形補完などを用いることにより、計測部位の条件に適合したモデル(応力分布テンプレート)を生成してもよい。例えば、円柱形の厚さ25[mm]のモデルを生成する場合、
図8及び式(8)に示すように、円柱形の厚さ10[mm]のモデルの応力σ(10mm)と円柱形の厚さ30[mm]のモデルの応力σ(30mm)を1/4:3/4の重み付けで線形補完して、モデル選択部182は計測部位の条件に適合したモデルを生成してもよい。
【0063】
σz(25mm)=σz(10mm)×1/4+σz(30mm)×3/4
・・・・・(8)
【0064】
このように、モデル選択部182は、複数のモデルを組み合わせることにより、計測部位の条件に適合したモデル(応力分布テンプレート)を生成することができる。
【0065】
また、条件設定部180は、モデル(立体モデル)を参照するために、境界線50(又は、境界面)を計測部位の条件として設定する。この場合、条件設定部180は、複数の境界線(又は、境界面)を設定してもよい。
図9は、断層画像(Bモード画像)40に基づいて、複数の境界線が設定された状態を示した図である。
図9に示すように、軟組織である大胸筋と硬組織である肋骨の境界に境界線50の他に、軟組織(脂肪、乳腺、及び大胸筋)においてもそれぞれの境界に境界線51,52が設定される。また、腫瘍などの特定部位(ターゲット部位)がある場合は、特定部位(ターゲット部位)の境界に境界線53が設定されてもよい。軟組織であっても、脂肪、乳腺、及び大胸筋ではそれぞれ応力特性が異なるので、それぞれの境界に境界線50,51,52,53を設定することにより、より高精度な応力情報又は弾性情報を取得することができる。なお、複数の境界線50,51,52,53において境界条件をそれぞれ設定することも可能である。モデル選択部182は、設定された複数の境界線50,51,52,53に基づいて複数のモデルをデータベース183から選択し、複数のモデルを組み合わせることにより、計測部位の条件に適合したモデル(応力分布テンプレート)を生成することができる。
【0066】
弾性情報演算部13は、弾性率(例えば、ヤング率E)を演算するが、歪み比を弾性情報として演算してもよい。この場合、弾性情報演算部13は、弾性率(ヤング率E)の弾性フレームデータE(i,j)の代わりに、歪み比フレームデータSR(i,j)を生成し、表示部10は、歪み比画像を弾性画像として表示する。
【0067】
例えば、2次元のフレームで考えた場合、
図10に示すように、ライン(i:x軸方向の座標)における音響カプラ内のカプラ歪みを“ε0(i)”とし、変位・歪み演算部12により演算された計測部位の計測点歪みを“ε(i,j)”とすると、同一ラインにおける歪み比SR(i,j)は式(9)で表される。
【0068】
SR(i,j)=ε0(i)/ε(i,j) ・・・・・(9)
【0069】
ただし、応力の減衰の影響により、深度方向(z軸方向)の深度が大きくなるにつれて、計測部位の歪み比SR(i,j)は小さくなる。
【0070】
そこで、応力情報演算部184は、モデル(応力分布テンプレート)の応力分布σT(i,j)を用いて、応力の減衰率σaを演算する。例えば、各ライン(i:x軸方向の座標)の深度(j:z軸方向の座標)における応力σTの減衰率σaは、深度0(ゼロ)の応力σT(i,0)に対して式(10)で表される。
【0071】
σa(i,j)=σT(i,0)/σT(i,j) ・・・・・(10)
【0072】
弾性情報演算部13は、式(11)に示すように、減衰率σaに基づいて、応力の減衰の影響を除去した補正歪み比SR’(i,j)を算出する。
【0073】
SR‘(i,j)=(ε0(i)/ε(i,j))/σa(i,j)
・・・・・(11)
【0074】
補正歪み比SR’(i,j)の値を階調化して表示したものが歪み比画像(弾性画像)となる。弾性情報処理部14は、補正歪み比SR’の弾性フレームデータに対して画像処理を行い、カラースキャンコンバータ15は、弾性フレームデータ(補正歪み比SR’の弾性特性を示す弾性フレームデータ)を取り込み、歪み比SR’に対応するカラーマップに従って、画素ごとに色調コードを付与してカラー弾性画像を生成し、表示部10が歪み比画像を表示する。
【0075】
このように、応力の減衰の影響を除去した補正歪み比SR’に基づいて歪み比画像(弾性画像)が生成され、計測部位(被検体1の関心部位)の弾性情報を高精度に評価することが可能となる。
【0076】
なお、音響カプラの歪みは、変位・歪み演算部12により求められた歪みフレームデータに基づいて求められる。また、音響カプラの歪みは、音響カプラと被検体1の境界の座標により求められた音響カプラの厚さの変化に基づいて求められてもよい。
【0077】
条件設定部180は、超音波画像の輝度に基づいて計測部位の条件(境界及び境界条件の少なくとも1つ)を設定してもよい。
【0078】
計測部位が軟組織である場合、軟組織は骨などの硬組織により支持されている。例えば、被検体1の対象が乳房(軟組織)であれば肋骨が乳房を支持し、被検体1の対象が大腿直筋(軟組織)であれば大腿骨が支持している。したがって、条件設定部180は、軟組織と硬組織の境界を境界線(又は、境界面)として設定する。
【0079】
超音波は、音響インピーダンスが大きく変化する境界でより強く反射するという特性を有する。軟組織と硬組織(骨など)は音響インピーダンスが大きく異なるため、軟組織と硬組織の境界では音響インピーダンスが大きく変化する。したがって、断層画像(Bモード画像)上で軟組織と硬組織の境界は高輝度で表示され、境界から深度が深い部位(硬組織内部)ではエコーが減弱するので、硬組織内部は低輝度となる。条件設定部180は、超音波画像の輝度(輝度変化を含む)に基づいて軟組織と硬組織の境界座標を検出し、軟組織と硬組織の境界を境界線(又は、境界面)として設定する。例えば、条件設定部180は、所定の閾値より低い輝度を有する部分(硬組織内部)の境界座標を検出し、境界座標に基づいて境界線(又は、境界面)として設定する。また、条件設定部180は、設定された境界線(又は、境界面)と接触面41との距離を計測部位の形状(厚さ)として設定する。
【0080】
条件設定部180は、計測部位の変位及び歪みの少なくとも1つに基づいて計測部位の条件(形状や境界条件など)を設定してもよい。
【0081】
軟組織と硬組織は硬さが異なるため、軟組織と硬組織の境界では変位又は歪み(例えば、z軸方向の歪みεz(i,j))が変化する。例えば、骨は軟組織と比較して顕著に硬いので、骨と軟組織の境界で歪みεz(i,j)の大きさが急激に減少する。条件設定部180は、超音波画像の変位又は歪み(変位又は歪みの変化を含む)に基づいて軟組織と硬組織の境界座標を検出し、軟組織と硬組織の境界を境界線(又は、境界面)として設定する。例えば、条件設定部180は、所定の閾値より小さい変位又は歪みを有する部分(硬組織内部)の境界座標を検出し、境界座標に基づいて境界線(又は、境界面)として設定する。また、条件設定部180は、所定の閾値より大きいz軸方向の歪みの変化率を有する部分(硬組織内部)の境界座標を検出し、境界座標に基づいて境界線(又は、境界面)として設定する。条件設定部180は、設定された境界線(又は、境界面)と接触面41との距離を計測部位の形状(厚さ)として設定する。
【0082】
また、条件設定部180は、超音波画像の計測部位の変位及び歪みの少なくとも1つに基づいて境界条件を設定してもよい。条件設定部180は、計測部位の境界方向(境界線方向又は境界面方向)の変位及び歪みの少なくとも1つに基づいて計測部位の境界条件を設定してもよい。
【0083】
例えば、条件設定部180は、境界が所定の閾値より小さい境界方向の変位又は歪みを有する場合は、“境界がxyz方向で拘束(固定)”又は“境界がx方向で拘束(固定)”を設定し、境界が所定の閾値より大きい境界方向の変位又は歪みを有する場合は、“境界がxyz方向で拘束なし(自由)”又は“境界がx方向で拘束なし(自由)”を設定する。
【0084】
また、境界線の方向がx軸方向である場合、条件設定部180は、境界座標(j=jb)において、x軸方向の歪みεx(i,jb)を評価することにより、境界座標における境界条件(拘束状態)を設定する。この場合、条件設定部180は、式(12)に示すように、z軸方向の歪みεz(i,jb)とx軸方向の歪みεx(i,jb)の比率(ポアソン比ν)を求め、比率(ポアソン比ν)に基づいて境界条件を設定してもよい。
【0085】
ポアソン比ν(i,jb)=−εx(i,jb)/εz(i,jb)
・・・・・(12)
【0086】
境界座標(j=jb)において、ポアソン比ν(i,jb)が十分に大きい場合(所定の閾値より大きい場合)は、z軸方向の縦歪みεz(i,jb)に比べてx軸方向の横歪み−εx(i,jb)が十分に大きいことを意味し、条件設定部180は、“境界がxyz方向で拘束なし(自由)”又は“境界がx方向で拘束なし(自由)”を設定する。一方、ポアソン比ν(i,jb)が0(ゼロ)に近い場合(所定の閾値より小さい場合)は、条件設定部180は、“境界がxyz方向で拘束(固定)”又は“境界がx方向で拘束(固定)”を設定する。
【0087】
また、境界線の方向がx軸方向である場合、条件設定部180は、境界座標(j=jb)において、x軸方向の変位Dx(i,jb)を評価することにより、境界座標における境界条件(拘束状態)を設定する。この場合、条件設定部180は、境界を挟む複数個所の変位を求め、境界を挟む複数個所の変位に基づいて境界条件を設定してもよい。例えば、式(13)及び式(14)に示すように、条件設定部180は、硬組織(骨など)と軟組織の境界座標(j=jb)の上下(硬組織の内外)の2個所(i,jb−1)及び(i,jb+1)の計測点におけるx軸方向の変位Dx(i,jb−1)及びDx(i,jb+1)を求め、変位の比D1又は差D2に基づいて境界条件を設定してもよい。
【0088】
D1=Dx(i,jb−1)/Dx(i,jb+1) ・・・・・(13)
D2=Dx(i,jb−1)−Dx(i,jb+1) ・・・・・(14)
【0089】
条件設定部180は、変位の比D1又は差D2を評価することにより、境界を挟む複数箇所の連動性として、複数箇所が同方向に動いたのか、複数箇所が逆方向に動いたのか、複数箇所の動きの大きさの違いはどのくらいなのかを評価することができる。つまり、条件設定部180は、変位の比D1又は差D2を評価することにより、境界の近傍(例えば、境界の上下又は硬組織の内外)でのズリを評価することができる。例えば、x軸方向のズリが大きい場合(変位の比D1又は差D2が所定の閾値より大きい場合)は、条件設定部180は、“境界がxyz方向で拘束なし(自由)”又は“境界がx方向で拘束なし(自由)”を設定する。一方、x軸方向のズリが0(ゼロ)に近い場合(変位の比D1又は差D2が所定の閾値より小さい場合)は、条件設定部180は、“境界がxyz方向で拘束(固定)”又は“境界がx方向で拘束(固定)”を設定する。
【0090】
また、条件設定部180は、硬組織(骨など)と軟組織の境界座標(j=jb)の上下(硬組織の内外)の複数個所(a1≦i≦a2,b1≦j≦b2)の計測点におけるx軸方向の変位Dx(a1≦i≦a2,b1≦j≦b2)を求め、変位の統計的バラツキ(分散や標準偏差など)に基づいて境界条件を設定してもよい。つまり、条件設定部180は、境界を挟む複数個所の変位を求め、境界を挟む複数個所の変位に基づいて境界条件を設定してもよい。
【0091】
条件設定部180は、硬組織(骨など)と軟組織の境界座標(j=jb)において、x軸方向の変位Dx(i,jb)の近傍(a1≦i≦a2,b1≦jb≦b2)の局所的なバラツキを評価することにより、境界座標(j=jb)の近傍における境界条件(拘束状態)を識別することができる。例えば、条件設定部180は、硬組織と軟組織の境界座標(j=jb)の計測点において、境界座標(j=jb)を中心とした局所領域として、5×5の局所領域(i−2≦i≦i+2,jb−2≦jb≦jb+2)を設定し、その25個の計測点におけるx軸方向の変位Dx(i−2≦i≦i+2,jb−2≦jb≦jb+2)の標準偏差を求める。x軸方向の変位Dx(i−2≦i≦i+2,jb−2≦jb≦jb+2)の標準偏差が大きい場合(所定の閾値より大きい場合)は、条件設定部180は、“境界がxyz方向で拘束なし(自由)”又は“境界がx方向で拘束なし(自由)”を設定する。一方、変位Dx(i−2≦i≦i+2,jb−2≦jb≦jb+2)の標準偏差が0(ゼロ)に近い場合(所定の閾値より小さい場合)は、条件設定部180は、“境界がxyz方向で拘束(固定)”又は“境界がx方向で拘束(固定)”を設定する。
【0092】
このように、条件設定部180は、計測部位の境界を挟む複数個所の変位の比、差、及びバラツキの少なくとも1つに基づいて計測部位の境界条件を設定する。
【0093】
図11は、表示部10が選択されたモデルを表示することを示した図である。モデル(応力分布テンプレート)を選択する場合は、計測部位における応力をシミュレーションするためのモデルがデータベース183に予め格納されている。また、有限要素法(FEM)を用いる場合にも、計測部位における応力をシミュレーションするためのモデルが必要となる。表示部10は、データベース183から選択されたモデル60又は有限要素法(FEM)に用いられるモデル60を表示する。表示部10は、モデル60をアイコンとして図案化して構築し、断層画像(Bモード画像)や弾性画像とともにモデルを表示してもよい。
【0094】
モデル選択部182は、被検体1と探触子2の位置関係を表すボディマークに基づいてモデルをデータベース183から選択してもよい。ボディマークは、計測部位のボリュームデータから作成された3次元立体ボディマークであってもよい。ボディマークは計測部位を模式的に表したものであるので、ボディマークから計測部位の種類や形状などを把握することができる。また、ボディマークは、計測部位の超音波画像に関連付けてデータベースに格納されている。被検体1の計測部位に対応するボディマークがモデルに関連付けられてデータベースに格納されている。例えば、乳房には乳腺用のボディマークが乳腺用のモデルに関連付けられてデータベースに格納されており、甲状腺には甲状腺用のボディマークが甲状腺用のモデルに関連付けられてデータベースに格納されている。探触子2により取得される断層画像の断面位置を記録するために、ボディマーク上に探触子2の配置(位置や角度など)が記録される。モデル選択部182は、計測部位に対応するボディマークからモデルの形状を選択し、探触子2の配置から圧迫面の配置(圧迫面の大きさや位置や方向など)を選択する。
【0095】
モデル選択部182は、被検体1と探触子2の位置関係に対応するボリュームデータに基づいてモデルをデータベース183から選択してもよい。近年、RVS(Real−time Virtual Sonography)などの技術により、探触子2の位置情報がリアルタイムで検出されて、超音波画像で観察されている断層画像の断面位置に対応するCT画像やMRI画像が3次元立体ボディマークとしてボリュームデータから構築される。モデル選択部182は、超音波画像の断面位置に対応して被検体1のボリュームデータから構築されるボディマークに基づいて、計測部位に対応するモデルの形状を選択し、探触子2の配置から圧迫面の配置(圧迫面の大きさや位置や方向など)を選択する。
【0096】
条件設定部180は、計測部位の境界座標(境界線又は境界面の座標)を追跡(トラッキング)し、応力情報演算部184は、追跡されている境界座標に基づいてリアルタイムの応力情報を演算し、応力フレームデータをリアルタイムで生成する。上記のように、条件設定部180は、計測部位の軟組織と硬組織との間に境界を設定する。被検体1を圧迫することにより弾性情報が所得されるため、探触子2が被検体1に接触する接触面から計測部位の境界までの距離は、圧迫量に応じて短くなったり長くなったりと、応力情報の計測中でも変化する。条件設定部180は、境界座標を検出し、任意の時刻における境界座標をトラッキングして追従し、応力情報演算部184は、境界座標に応じた応力フレームデータをリアルタイムで構築する。例えば、乳房などの非常に軟らかい組織では、圧迫量の増減によって探触子2の接触面から境界(肋骨などの硬組織)までの距離が大きく変化するため、トラッキングされている境界座標に応じた応力フレームデータをリアルタイムで構築することは効果的である。
【0097】
応力情報演算部184は、モデルに基づいて計測部位の自重を演算して、応力情報を演算してもよい。計測部位の厚さが大きいほど、圧迫面に近い浅部と圧迫面から遠い深部の間では計測部位の自重による初期応力の影響が異なり、深部ほど計測部位の自重による初期応力の大きさが大きくなる。被検体1の比重を1g/cm
3とすると、例えば厚さ30[mm]の計測部位の底面(xz面)には、z軸方向の初期応力(σz0=3gf/cm
2)が印加されている。よって、応力情報演算部184は、厚さ30[mm]のモデルに基づいて計測部位の自重(初期応力)を演算して、応力情報を演算する。また、応力情報演算部184は、任意の深度の計測部位の自重(初期応力)を演算して、応力情報を演算することもできる。このように、計測部位の自重による初期応力を計測点における応力情報の演算に考慮することにより、より高精度な応力分布を計測することができる。
【0098】
図12は、表示部10が弾性情報と応力情報を表示することを示した図である。
図12に示すように、断層画像40の画像領域にROI(関心領域)が設定され、表示部10は、ROI内の弾性情報及び応力情報を情報表示領域61に表示する。
図12では、表示部10が、圧迫の強さを経時的に変化させて取得した各時刻(各フレーム)におけるROI内の弾性情報と応力情報の関係を情報表示領域61に表示している。表示部10が弾性情報と応力の関係を情報表示領域61に表示することにより、ROI内の組織の弾性特性を詳細に解析することが可能となる。
図12では、断層画像(Bモード画像)40にROIが設定されているが、弾性画像にROIが設定されてもよい。
【0099】
情報表示領域61にプロットされた値は、近似関数(例えば、1次関数y=ax+b)で近似されて、表示部10は、近似線を表す値(傾き:a及びy切片:bなど)を表示してもよい。また、近似関数は、1次関数に限られず、プロットされた値の特性を適切に評価する任意の関数であってもよい。
【0100】
図13は、表示部10がROI内の音速情報と応力情報を表示することを示した図である。
図13に示すように、放射圧により対象組織を圧迫し、組織を伝搬する横波(shear wave:せん断弾性波)の音速などを弾性情報として構築及び表示する動的エラストグラフィ(SSIやARFIなど)を用いる場合に、表示部10は、ROI内の組織の弾性情報(横波音速を含む)及び応力情報を情報表示領域61に表示する。
図13では、表示部10が、圧迫の強さを経時的に変化させて取得した各時刻(各フレーム)におけるROI内の弾性情報(横波音速を含む)と応力情報の関係を情報表示領域61に表示している。表示部10が弾性情報と応力の関係を情報表示領域61に表示することにより、ROI内の組織の弾性特性を詳細に解析することが可能となる。
【0101】
条件設定部180は、設定されたROIの境界を前記条件として設定してもよい。