(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
以下、図を参照して本発明を実施するための形態について説明する。
−第1の実施形態−
図1は、本発明の使用済燃料用キャスクの一実施形態を示す斜視図である。
図1では、内部構造を示すために一部を断面とした。また、
図2は、
図1に示したキャスク1を、その軸方向に垂直な面で断面した断面図である。
【0014】
キャスク1は、加圧水型軽水炉(PWR)で使用された燃料集合体7の貯蔵または輸送に使用するものであり、胴本体(内筒)3とバスケット2とが備えられている。胴本体3は、使用済の燃料集合体7から発生するγ線を遮蔽する機能を有するものである。バスケット2は、胴本体3内に設けられ、燃料集合体7を収納するための複数の収納区画Sを形成するものである。胴本体3は、例えば合金剛製の円筒状容器であり、
図1に示すように、開口側に一次蓋8、二次蓋9および三次蓋10がボルトによってそれぞれ取り付けられている。
【0015】
詳細は後述するが、バスケット2は、
図2に示すように板状部材であるバスケット板20を格子状に組み上げたものを、キャスク1の軸方向に積層したものである。各バスケット板20の端部は、胴本体3の内周面に形成された複数の溝30内に挿入されている。各溝30は、胴本体3の軸方向に沿って形成されている。胴本体3の外周側には、複数の伝熱フィン5が、周方向に等間隔で配設されている。また、胴本体3と外筒6との間には、中性子遮蔽体4が充填され、これにより、燃料集合体7から発生する中性子が遮蔽されるようになっている。中性子遮蔽体4は、中性子吸収力の高いホウ素(ボロン)を多量に含む樹脂で形成されている。
【0016】
図3,4は、バスケット2の壁材として用いられるバスケット板20の構造を説明する図である。
図3は、矩形板状のバスケット板20の、長手方向端部を含む一部を示した斜視図である。
図3に示すバスケット板20は、
図4に示す仕切り板200を2枚組み合わせた合わせ板構造体である。バスケット板20の両長辺には直角に切り込まれた様な形状の窪み21が、所定間隔で複数形成されている。後述するように、この窪み21には、直交するバスケット20が差し込まれる。以下では、この窪み21を差し込み部21と呼ぶことにする。
【0017】
図4に示すように、仕切り板200は、一方の面は平面であるが、他方の面には、長手方向に延在する凸部202が短辺方向(図示上下方向)の2箇所に形成されている。また、バスケット板20の上下の長辺には、垂直に切り欠いた切り欠き201が形成されている。切り欠き201の深さ方向寸法L2は、仕切り板200の短辺寸法Lの1/4に設定されている。また、切り欠き201の幅寸法は、ここに差し込まれるバスケット板20の厚さ寸法とほぼ等しく設定されている。
【0018】
仕切り板200の両長辺に形成された切り欠き201は、長手方向の位置が一致しており、長手方向に所定間隔(所定ピッチ)L1で複数形成されている。さらに、上下一対の切り欠き201の間の中央位置(短辺方向中央位置)には貫通孔203がそれぞれ形成されている。貫通孔203の長手方向の位置は、切り欠き201の長手方向中央の位置と一致するように形成されている。よって、隣接する貫通孔203の間隔は、切り欠き201の間隔L1と同一に設定されている。
【0019】
図3に示すように、バスケット板20は、一対の仕切り板200を凸部202が向かい合わせになるように配置した、合わせ板構造になっている。
図4に示す仕切り板200において、下側の凸部202の位置は、貫通孔203に関して上側の凸部202の位置と上下対称な位置よりも下側にずれている。
図4に示す例では、凸部202の短辺方向厚さの1/2だけ、対称な位置から下方にずれている。そのため、一方の仕切り板200を上下反転して他方の仕切り板200と合わせると、
図3に示すように、凸部202が上下に重なるような配置となる。
【0020】
上述したように、凸部202は短辺方向に厚さの1/2だけずれているので、2枚の仕切り板200を合わせたとき、一方の凸部202の下面が、他方の凸部202の上面に当接する。そのため、凸部202を利用して、一対の仕切り板200の上下方向の位置決めを行うことができる。その結果、切り欠き201同士、および貫通孔203同士が対向するように位置決めされる。ここで、対向する一対の切り欠き201はバスケット板20の一つの差し込み部21(窪み21)を構成し、対向する一対の貫通孔203はバスケット板20の一つの貫通孔23を構成している。以下では、バスケット板20に関しては、厚さ方向の一対の貫通孔203を貫通孔23と呼ぶことにする。
【0021】
また、一対の仕切り板200の間の間隔(すなわち隙間寸法)は、凸部202の先端が対向する仕切り板200に当接することで、所定間隔に保持される。その結果、仕切り板200間に隙間24a,24bが形成される。この隙間24a,24bは水ギャップと呼ばれ、使用済み燃料プール内でキャスクに使用済み燃料集合体を装荷する際には、冷却水が満たされる。また、上下の隙間24aには後述する連通部材19が配置される。なお、
図3、4に示す例では、仕切り板200の長辺の部分の厚さが他の部分よりも厚くなっていて、隙間24aの幅も狭くなっているが、厚さを一様として隙間24aの幅を全領域で同一とするようにしても良い。
【0022】
図5〜9は、バスケット2の組立手順を説明する図である。
図5は、1段目のバスケット板群を示す図である。バスケット2を組み立てる際には、まず、
図5に示すように、1段目のバスケット板群を構成する複数のバスケット板20を、第2の径方向に所定間隔L1で平行に配置する。ここで、バスケット板20の長手方向を、バスケット2が収納される胴本体3(
図1参照)の第1の径方向とした場合、複数のバスケット板20の配置方向を第2の径方向と呼ぶことにする。第1の径方向と第2の径方向とは直交している。各バスケット板20の対応する差し込み部21同士、および対応する貫通孔203同士は、第2の径方向に沿って一直線に並ぶ。ここで、対応するとは、バスケット板20の長手方向端部から数えて同一番目であることを意味する。
【0023】
次に、
図6に示すように、第2の径方向に並べられた1段目のバスケット板20に対して、2段目のバスケット板20を組み付ける。2段目のバスケット板20は、第1の径方向に沿って複数配置される。2段目のバスケット板20は、1段目のバスケット板20の上側の差し込み部21に2段目のバスケット板20の下側の差し込み部21が差し込まれるように、組み付けられる。その結果、1段目のバスケット板20と2段目のバスケット板20とは、差し込み部21の部分で直角に交差した格子状に組み合わされる。このとき、2段目のバスケット板20の貫通孔23は、1段目のバスケット板20の上側の隙間24aに対向するように配置される。
【0024】
図6に示すように1段目のバスケット板20に対して2段目のバスケット板20を組み付けたならば、
図7に示すように連通部材19を組み付ける。連通部材19は、1段目のバスケット板20の隙間24aを通るように2段目のバスケット板20の貫通孔23に挿入される。連通部材19の長さはバスケット板20の長手方向寸法と同一に設定され、その断面形状は貫通孔23と同様の矩形とされる。連通部材19の幅寸法は、隙間24aの狭くなったところの隙間寸法と同一とされる。そのため、連通部材19は、1段目のバスケット板20の上側の隙間24aに配置されてバスケット板20と接触するとともに、2段目の全てのバスケット板20の貫通孔23を貫通している。
【0025】
次いで、
図8に示すように、3段目のバスケット板20を組み付ける。このとき、3段目の各バスケット板20は、それらの下側の差し込み部21が2段目の各バスケット板20の上側の差し込み部21に差し込まれるように、それぞれ組み付けられる。その結果、3段目のバスケット板20の下側の長辺は、1段目のバスケット板20の上側の長辺と接触する。2段目のバスケット板20の貫通孔23を貫通する連通部材19は、1段目のバスケット板20の上側の隙間24aと、3段目のバスケット板20の下側の隙間24aとに跨るように配置される。その連通部材19の両側面は、1段目および3段目のバスケット板20と接触している。
【0026】
その後、
図9に示すように、3段目のバスケット板20の貫通孔23を貫通するように連通部材19が配設される。各連通部材19は、2段目のバスケット板20の上側の隙間24aを通って、3段目の各バスケット板20の貫通孔23を貫通している。
【0027】
以後、同様にして、第1の径方向に間隔L1で並んだ複数のバスケット板20と、第2の径方向に間隔L1で並んだ複数のバスケット板20とを交互に積層し、隙間24aおよび貫通孔23を通るように連通部材19を配置することにより、
図1,2に示すようなバスケット2が形成される。なお、本実施の形態では、バスケット板20を格子状に積層したものを積層体2Aと呼び、バスケット2は、積層体2Aと複数の連通部材19とで構成される。バスケット2には、上述した第1および第2の径方向と直交する方向(胴本体3の軸方向)に延在し、バスケット板20により囲まれた正方形断面の収納区画Sが複数形成される。
【0028】
全てのバスケット板20が組み上がったならば、
図10に示すように、各バスケット板20の長手方向端部に、端部カバー34を装着する。端部カバー34にはバスケット板20の端部と対向する面にブロック状の凸部34a,34bが形成されている。端部カバー34をバスケット板20の端部に装着すると、凸部34bが端部中央の隙間24bに填り込む。また、凸部34bの上下に形成された2つの凸部34aは、隙間24bの上下に形成された隙間24aにそれぞれ填り込む。
【0029】
なお、
図10に示す例では、端部カバー34の長さをバスケット板20の短辺と同一の長さに設定しているが、これに限定されず、任意の長さであってもよい。また、端部カバー34を設ける代わりに、
図18に示すように、バスケット板20の端部が中実構造となるように、仕切り板200の端部形状を変更しても良い。さらに、端部カバーを設けなくても良い。
【0030】
図18は、仕切り板200の端の部分の3面図である。なお、バスケット板20を構成するもう一方の仕切り板200、および連通部材19を二点差線で示した。仕切り板200の端部には、隙間24a,24bを閉塞するための壁部205が形成されている。一対の仕切り板200を合わせてバスケット板20を構成すると、互いの壁部205が密着して、隙間24a,24bの端部が閉塞される。
【0031】
図2に示したように、バスケット2を胴本体3内に収納する際に、各バスケット板20の端部は、胴本体3の内周面に形成された複数の溝30内に挿入される。このように、胴本体3の内周面の軸方向に沿って形成された溝30内に、各バスケット板20の端部を胴本体開口部分から底部方向に挿入することで、バスケット2が胴本体3内部に装着される。
図11は、溝30内に挿入されたバスケット板20の端部の横断面図である。端部カバー34の凸部34aは、バスケット板2を構成する一対の仕切り板200の間の隙間24a内に填り込んでいる。
【0032】
このように、バスケット板20の端部に端部カバー34を設けたり、仕切り板200の端部に隙間24a,24bを閉塞するための壁部205を形成することで、バスケット板端部が中実構造となり、バスケット板20の端部の強度が向上する。その結果、溝30によるバスケット板端部の支持がより強固になる。
【0033】
なお、仕切り板200の材質としては、強度と熱伝導性が高く中性子吸収能を有する材料が好ましく、例えば、ホウ素(ボロン)を添加した合金(アルミニウム合金)等が好適である。また、連通部材19、端部カバー34の材質としては、強度および熱伝導性の高い材料が好ましく、例えば高強度のアルミニウムやアルミ合金が好適である。
【0034】
本実施の形態のキャスクに用いられるバスケット2は、
図5〜9に示したようにバスケット板20を差し込み部21同士が差し込まれるように格子状に積層し、連通部材19を貫通孔23に貫通させるだけで組み上がる。さらに、バスケット板20の端部を溝30内にスライド挿入するだけでバスケット2の胴本体3への装着が行われ、バスケット2は格子状態を維持した状態で胴本体内部に保持される。このように、バスケット2の組立や、バスケット2の胴本体3への装着に際して、ボルト等の締結治具を用いたり溶接を用いたりしていないので、構造が簡単で組み立て作業が容易である。そのため、コスト低減を図ることができる。
【0035】
ところで、PWR用燃料集合体を収納するバスケット2には、(a)燃料集合体を安全に保持するための構造強度、(b)燃料集合体で発生する熱を胴本体3へ伝達するための伝熱特性、(c)未臨界状態に維持できるための特性(未臨界特性)が要求される。(c)の未臨界特性に関しては、バスケット板20を一対の仕切り板200を用いた合わせ板構造とし、隙間24a,24bを形成したことで、要求に応えるようにしている。
【0036】
しかしながら、
図8,9のように、差し込み部21を有するバスケット板20を格子状に積層する構造の場合、以下に説明するように、上述した(a)構造強度および(b)伝熱特性に関して構造面で課題があった。そこで、本実施の形態では、連通部材19を用いることで強度特性および伝熱特性の向上を図り、格子状組立構造が有する課題を解決した。
【0037】
図12は、連通部材19を設けない場合の積層体2Aの課題を説明する図であり、
図8の軸方向に積層された1段目のバスケット板20と3段目のバスケット板20とを示したものである。差し込み部21が形成された部分においては、直交するバスケット板20(不図示)が交差している。
図12のハッチングを施した領域S2は、交差するバスケット板20が接触する領域を示したものであり、隙間24aの周囲を囲む仕切り板200の断面形状に対応している。
【0038】
例えば、キャスク1が横倒しの姿勢となって、燃料集合体7に矢印F方向(第2の径方向)の重力が作用した場合を考える。この場合、燃料集合体7の荷重は、差し込み部21と差し込み部21との間のバスケット板20に負荷される。しかし、ラインL11,12の外側の帯状領域Bには差し込み部21が形成されているため、バスケット板20において燃料集合体7の荷重を負担できる部分は、実質的に帯状領域Aの部分だけとなってしまう。
【0039】
すなわち、差し込み部21を有するバスケット板20を格子状に積層する構造の場合、帯状領域Bの部分が荷重負担に対して有効に利用されず、構造強度(断面二次モーメント)の面で向上が望まれていた。なお、バスケット板20の両端部(
図12では右端部)においては、バスケット2単体では片持ち梁構造となるが、胴本体3内に収納された状態では、
図10に示すようにバスケット板20の端部が溝30に挿入されるため、強度的には他の箇所と同程度となっている。
【0040】
また、伝熱特性に関して見た場合、胴本体3の軸方向(
図12の上下方向)の伝熱に関しては、燃料集合体7が接触している面(領域AおよびBの面)の全体が伝熱に寄与している。軸方向に配置されたバスケット板20は、それらの長辺端部が接触しているため、軸方向への熱伝達が効果的に行われる。一方、バスケット板20の長手方向の伝熱に関しては、領域Bの面は差し込み部21によって分離されている。そのため、バスケット板20の一つの収納区画の部分から隣接する収納区画への熱伝達に関しては、領域Aに比べ領域Bの寄与が小さくなっている。
【0041】
本実施の形態では、このような課題を解決するために、バスケット2に上述したような連通部材19を設けた。
図13は、連通部材19を有するバスケット2の構造を説明する図であり、
図9のD−D断面図である。
図13は、1段目、2段目、3段目および4段目のバスケット板20を示したものである。なお、
図13においては、1〜4段目のバスケット板をそれぞれ符号20A〜20Dで示した。また、1段目のバスケット板20Aに関しては、バスケット板20Aの内部構造が分かりやすいように、一対の仕切り板200の一方のみを示した。バスケット板20Bおよび20Dは、バスケット板20Aおよび20Cに対して直角に交差している。
【0042】
バスケット板20Aを表裏方向に貫通する連通部材19は、バスケット板20Bの下側の隙間24aの部分に長手方向(図面に垂直な第2の径方向)に沿って配置されている。また、バスケット板20Cを表裏方向に貫通する連通部材19は、バスケット板20Bの上側の隙間24aの部分に長手方向(図面に垂直な第2の径方向)に沿って配置されるとともに、バスケット板20Dの下側の隙間24aの部分に長手方向に沿って配置されている。そのため、例えば、バスケット板20Bの領域Bの面に第1の径方向に燃料集合体の荷重が作用した場合でも、領域Bの部分は連通部材19によって支持され、荷重による変形が抑制される。すなわち、バスケット板20Bの断面二次モーメントが増加し、バスケット板20Bの構造強度が向上する。
【0043】
また、伝熱特性に優れた材料(アルミニウムやアルミニウム合金等)で形成された連通部材19は、バスケット板20に接触するように隙間24aに配置される。そのため、領域Bの部分の熱は、連通部材19を介して隣接収納区画の領域Bの部分に伝達されるとともに、連通部材19が貫通しているバスケット板20へも伝達される。すなち、課題であったバスケット板20の長手方向に関する伝熱特性の向上を図ることができる。
【0044】
本実施の形態のバスケット板20は、凸部202が形成された一対の仕切り板200を、凸部202の面を向かい合わせに配置した合わせ板構造としている。仕切り板200は一方の面に凸部202が形成された単純な形状であるため、容易に製造することができる。さらに、上述のような合わせ板構造でバスケット板20を構成するようにしたので、隙間24a,24bを有するバスケット板20を容易に形成することができる。
【0045】
上述したように、本実施形態では、隙間24aのスペースを利用して連通部材19を配置することで、バスケット2の構造強度向上を図るとともに、バスケット板20の長手方向への伝熱特性の向上を図った。なお、本実施形態では、
図4に示すように隙間寸法を規定する凸部202を、仕切り板200の長手方向に延在するように設けたことにより、長手方向への伝熱特性の向上が図れると共に、構造強度向上も図れる。特に、
図3に示すように、仕切り板200とその凸部202とが形成する断面形状が矩形リング状を形成するように、凸部202を設けることで、バスケット板20の断面二次モーメントの向上が図られる。
【0046】
もちろん、隙間寸法を規定する部材としての凸部202の形状は
図4に示すものに限らず、様々な形状が可能である。例えば、
図20(a)や
図20(b)に示すような凸部202a,202を形成するようにしても良い。
図20(a)に示す例では、凸部202aの下面の位置は、短辺方向(図示上下方向)中心位置と一致しており、貫通孔203の部分を除いて、長手方向に沿って形成されている。G1−G1断面図に示すように、仕切り板200を上下反転して重ね合わせると、凸部202a同士が上下に接触し、これによって短辺方向の位置決めが行われる。貫通孔203には上述した連通部材19が挿入されるので、貫通孔203の左右の凸部202aは、連通部材19を介して熱的に接触することになる。その結果、バスケット板20の長手方向の伝熱性能の向上を図ることができる。また、凸部202aは、一部が切り欠き201の形成範囲(直交するバスケット板20によって挟まれる範囲)に含まれるので、構造強度が若干向上する。
【0047】
図20(b)に示す例の場合、凸部202bは、切り欠き201の幅の範囲内に設けられている。この場合、
図20(a)に凸部202aのように長手方向の伝熱特性向上にはほとんど寄与しないが、仕切り板200同士の隙間寸法の規定、および短辺方向に位置決めを行う部材としての機能は有している。
【0048】
(変形例1)
図14は、本実施の形態の第1の変形例を示す図であり、
図13に示したC−C断面図に対応する図である。なお、上述した実施の形態と同一の構成要素には同一符号を付し、以下では異なる構成要素を中心に説明する。上述した実施形態では、連通部材19は、径方向に平行に配置された複数のバスケット板20の全てを貫くような寸法とされている。例えば、
図9に示した連通部材19の長さは、バスケット板20の長手方向寸法と同一とされている。
【0049】
一方、
図14に示す変形例1では、上述した長尺の連通部材19に代えて、長さが差し込み部21の配置間隔L1と等しく設定された連通部材190を使用している。例えば、1段目のバスケット板20Aの上側の隙間24aに配設される連通部材190は、2段目の隣接する2つのバスケット板20Bの両方の貫通孔23に挿入される。
【0050】
上述した連通部材19を用いる構成では、
図9に示すように一段分のバスケット板20を全て組み付けた後に、一段分の全てのバスケット板20の貫通孔23に連通部材19を挿入するように組み付ける。一方、変形例の連通部材190を使用する場合には、1枚のバスケット板20を組み付ける毎に連通部材190を装着することができる。そのため、連通部材190を組み付ける際の作業スペースが小さくて済み、装着作業が行いやすくなる。また、キャスク1の内部でバスケット2を組み立てることが可能となる。
【0051】
また、バスケット板20Aの上側の隙間24aに配置される連通部材190は、その両端がバスケット板20Bにより支持されている。そのため、バスケット板20に径方向の荷重が加わった場合に、その荷重を連通部材190でも支えることができる。また、連通部材190の両端面が隣り合う連通部材190の端面に接する構造とすることで、熱を径方向に伝達する経路として機能し、胴本体3への熱伝達性能の向上を図ることができる。
【0052】
(変形例2)
図15は、本実施の形態の第2の変形例を示す図であり、
図13に示したC−C断面図に対応する図である。なお、上述した実施の形態と同一の構成要素には同一符号を付し、以下では異なる構成要素を中心に説明する。変形例2における連通部材191は、
図15に示すように、十字形状の断面を有し、両側面に凸部191aを、上下面に凸部191bを備えている。各バスケット板40A〜40Dには、連通部材191の断面形状に対応した十字形状の貫通孔43がそれぞれ形成されている。
【0053】
例えば、3段目のバスケット板40Cを貫通する連通部材191の場合、上下の凸部191bが上下のバスケット板40D,40Bの隙間24a内に納められ、両側面の凸部191aは、バスケット板40D,40Bを構成する仕切り板200の端部の間に挟まれている。
【0054】
連通部材191の幅寸法(側面方向の厚さ)は、バスケット板40A〜40Dの厚さ寸法と同一に形成することで、収納区画に収納された燃料集合体はバスケット板40A〜40Dの面だけでなく、連通部材191の側面(凸部101aの面)にも接触することになる。連通部材191はアルミニウムやアルミ合金等の高熱伝導率の材料で形成されているので、連通部材191に燃料集合体の熱が直接伝達されることにより、除熱性能(胴本体3への伝熱性能)の向上を図ることができる。また、凸部191bの側面が仕切り板400の内周面に接触すると共に、凸部191bの側面が仕切り板400の長辺端部に接触しているので、連通部材191を介した上下のバスケット板40間の伝熱性能が向上する。
【0055】
さらに、隙間24aに納められた凸部191bが、バスケット板40A〜40Dの径方向への変形に対する支持部として機能する。そのため、上述した実施形態の場合と同様に、径方向の荷重に対するバスケット板40A〜40Dの構造強度向上を図ることができる。なお、
図15に示す例では、連通部材191の長さをバスケット板40A〜40Dの長手方向寸法とほぼ同一としているが、
図14に示す連通部材190の場合と同様に、隣り合うバスケット板の中心間距離L1と同一としても良い。それにより、上述した変形例1の場合と同様の作用効果を奏する。
【0056】
−第2の実施形態−
図16は、本発明の第2の実施形態を示す図である。なお、
図16は、
図13に示したC−C断面図に対応する図である。また、上述した実施の形態と同一の構成要素には同一符号を付し、以下では異なる構成要素を中心に説明する。
図16に示すバスケット2では、バスケット板20の表裏両面に遮蔽板51をさらに備えている。遮蔽板51の形状は、バスケット板の外表面の形状とほぼ同一とされている。すなわち、バスケット板20の貫通孔23に対向する位置には、貫通孔23とほぼ同一形状の貫通孔51aが形成されている。同様に、バスケット板20の差し込み部21に対向する位置には、差し込み部21とほぼ同一形状の切り欠き51bが形成されている。
【0057】
連通部材19はバスケット板20の貫通孔23と遮蔽板51の貫通孔51aとを貫通するように組み付けられる。また、遮蔽板51は、切り欠き51bが設けられて幅が狭くなった部分がバスケット板20の差し込み部21内に差し込まれるように、組み付けられる。そのため、特別な固定治具を用いなくても、遮蔽板51はバスケット板20の外表面の位置に保持される。
【0058】
ところで、
図13に示した遮蔽板51を設けない構成の場合には、バスケット板20は構造強度部材としての役割とともに中性子吸収材としての役割も担っている。そのため、
図13のバスケット板20の材料には、強度、伝熱性および中性子吸収性を有するボロン添加アルミニウム合金等が用いられる。ボロン添加アルミニウム合金等を用いた場合、強度および熱伝導性の点でより優れたアルミニウム合金等を用いる場合に比べて、板厚を厚くする必要がある。しかし、ボロン量を含んだ材料は高価なため、板厚を厚くした分だけコストが高くなる。
【0059】
一方、本実施形態においては、遮蔽板51にはボロン(ホウ素)を豊富に含有する中性子遮へい材から構成され、バスケット2において中性子吸収材としての役割を担っている。そして、構造強度部材としての役割を担っているバスケット板20には、強度特性に優れたアルミニウム合金等が材料として用いられる。このように、中性子吸収材としての役割と、構造強度部材としての役割とを別々の部材に担わせることにより、ボロンの使用量を抑えることができ、コスト低減を図ることができる。なお、本実施形態においても、第1の実施形態おける変形例1,2の構成を適用することができる。
【0060】
図17は、
図16に示した実施の形態の変形例を示す図である。
図17に示す例では、遮蔽板52,53をバスケット板60の内部に配置するようにした。バスケット板60は、仕切り板600a,600bを合わせ板構造としたものである。なお、
図17では、バスケット板60の内部構造を示すために、一方の仕切り板600bの図示を省略している。
【0061】
仕切り板600aには長手方向に延在する一対の凸部601が形成され、仕切り板600bには長手方向に延在する一対の凸部602が形成されている。一対の凸部602の外側面の間隔は、一対の凸部601の内側面の間隔よりも小さく設定されている。そのため、仕切り板600a,600bを合わせたときに、一対の凸部602は一対の凸部601の間に挿入されることになる。
【0062】
遮蔽板52は、一対の凸部601によって挟まれた空間の、凸部602の先端と仕切り板600aとの間に配置されている。また、2枚の遮蔽板53の一方は、上側の凸部602の上側空間の仕切り板600bと凸部601の先端との間に配置されている。他方の遮蔽板53は、下側の凸部602の下側空間の仕切り板600bと凸部601の先端との間に配置されている。すなわち、遮蔽板52,53は隙間24a,24bの空間を利用して設けられている。
図17に示す例では、遮蔽板52と2枚の遮蔽板53の幅寸法の合計は、バスケット板60の幅寸法と同一となるように設定されている。そのため、図示上下方向(バスケット2の軸方向)に関して、遮蔽板52および遮蔽板53は隙間無く積層されている。
【0063】
図16に示した構成の場合も同様であるが、遮蔽板52,53の断面積(すなわち厚さ)は燃料の燃焼度の条件に依存するが、構造強度部材として機能する仕切り板600a,600bの断面積よりも小さくすることができる。そのため、
図17に示すように、熱伝導性により優れた仕切り板600a,600bを燃料集合体と接する側に配置することで、燃料集合体で発生する熱を効率的に胴本体3へ伝達することができる。また、
図17に示す遮蔽板構成では、遮蔽板52,53は、バスケット板60の貫通孔63が形成された幅が狭くなった部分には設けられていないので、
図16に示す場合に比べて遮蔽部材の量を少なくすることができ、コスト低減を図ることができる。
【0064】
ところで、使用済み燃料プール内でキャスクに使用済み燃料集合体を装荷する際には、合わせ構造のバスケット板20の隙間24a、24bには冷却水が満たされる。その後、隙間24a、24b内の冷却水は抜き取られる。そこで、冷却水の抜き取りが効率良く行われるように、
図19(a)に示すように、凸部202や連通部材19に、上下方向(胴本体3の軸方向)に貫通する貫通孔19h,202hを複数形成するようにしても良い。また、貫通孔202hに代えて、
図19(b)に示すように軸方向の溝202gを形成するようにしても良い。
【0065】
上述した実施の形態は、以下に示すような作用効果を奏する。
(1)バスケットは、両長辺に複数の差し込み部(窪み)21が所定間隔L1で形成された矩形板状の第1のバスケット板20を、キャスク1の第1の径方向に複数配置して成る第1のバスケット板群と、両長辺に複数の差し込み部(窪み)21が所定間隔で形成された矩形板状の第2のバスケット板20を第1の径方向と直交する第2の径方向に複数配置して成る第2のバスケット板群とが、差し込み部21同士が差し込まれるように交互に積層配置された積層体2Aと、第1および2のバスケット板20のいずれか一方を貫通すると共に、そのバスケット板20の差し込み部21に差し込まれた他方のバスケット板20の長辺端部に配置される連通部材19と、を備える。そして、第1および2のバスケット板20は、片面に形成された凸部202と差し込み部21を構成する切り欠き201とを有する一対の矩形仕切り板200を、凸部202が形成された面が互いに対向するように隙間24a,24bを空けて対向配置して構成される。また、連通部材19は、他のバスケット板20に接触してそれを支持するように隙間24aに配置されている。
【0066】
一つの収納区間に関して見た場合、その部分の連通部材19は、収納区間を挟む2つのバスケット板20によって支持される構成となっている。そのため、燃料集合体7による径方向の荷重がバスケット板20に働いた場合、差し込み部21によって荷重の支持機能が低下しているバスケット板長辺端部側(領域B)が、連通部材19を介して上記2つのバスケット板20によって支えられる構造となる。
【0067】
さらに、連通部材19は上下段のバスケット板20の隙間24aにも挿入されているため、バスケット板長辺端部側は、平行する上下のバスケット板20によっても支えられることになる。その結果、バスケット2の構造強度の向上を図ることができる。
【0068】
また、伝熱特性の面に関しては、バスケット板20の領域Bの部分は差し込み部21によって分離されているが、連通部材19を接触するように設けたことにより、領域Bの部分の熱は、連通部材19が貫通しているバスケット板20や、連通部材19が接触している隣接収納区画の領域Bの部分に伝達される。その結果、バスケット板20の長手方向への伝熱特性が向上する。
【0069】
さらに、バスケット板20は、凸部202が形成された一対の仕切り板200を、凸部202の面を向かい合わせに配置した合わせ板構造であるため、隙間24a,24bを有する長尺のバスケット板20を容易に形成することができる。
【0070】
(2)また、凸部202を、仕切り板200の長手方向に一様に延在させることにより、バスケット板20の構造強度の向上および長手方向への伝熱特性の向上をさらに図ることができる。
【0071】
(3)なお、連通部材19の長さは、所定間隔L1と同一に設定しても良いし、連通部材19が配置される隙間24aが形成されたバスケット板20の長辺方向の長さと同一に設定しても良い。なお、
図9に示す例では、連通部材19の長さをバスケット板20の長手方向長さと同一としているが、厳密に同一でなくても良い。
図14の連通部材190のように、その長さを所定間隔L1と同一に設定した場合、1枚のバスケット板20を組み付ける毎に連通部材190を装着することができる。そのため、連通部材190を組み付ける際の作業スペースが小さくて済み、装着作業が行いやすくなる。また、キャスク1の内部でバスケット2を組み立てることが可能となる。
【0072】
一方、短尺の連通部材190を複数設けた場合には、接触熱抵抗によって胴本体3までの熱伝導率が低下するが、連通部材19のようにバスケット板20の長手方向寸法とほぼ同一長さの場合、そのような接触熱抵抗の発生を避けることができる。その結果、胴本体3への除熱をより効果的に行うことができる。
【0073】
(4)また、連通部材191の形状を
図15に示すような形状とし、連通部材191の一部(凸部191a)が収納区画に露出するようにすることで、露出部である凸部191aが燃料集合体7と接触することができる。このような構造とすることにより、燃料集合体7の熱を連通部材191を介して胴本体3へ効率良く伝達することができる。
【0074】
(5)また、
図16や
図17に示すように、中性子吸収能力を有する板部材である遮蔽板51〜53を、バスケット板20を構成する矩形の仕切り板200の燃料集合体対向面に、または、対向面と表裏反対側の隙間24a,24b内に配置することによって、中性子遮蔽機能を遮蔽板51〜53に分担させると共に、構造強度面および伝熱面の機能をバスケット板20に分担させる。このような構成とすることにより、中性子遮蔽物質であるホウ素の使用量を抑えることができ、バスケット2のコスト低減を図ることができる。
【0075】
(6)さらに、
図19に示すように凸部202および/または連通部材に、キャスク軸方向に貫通する開口としての貫通孔202h、19hや溝202gを形成したことにより、隙間24a,24b内の冷却水を、より速く抜くことができる。
【0076】
(7)また、
図10,11および20のように、バスケット板20の長手方向端部に、隙間24a,24bを封止する封止部としての端部カバー34や壁部205を形成することで、バスケット板端部が中実構造となり、バスケット板20の端部の強度が向上する。その結果、胴本体3に設けられた溝30によるバスケット板端部の支持がより強固になる。
【0077】
上述した各実施形態および変形例はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。