特許第5906220号(P5906220)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社沖データの特許一覧

<>
  • 特許5906220-画像形成装置 図000011
  • 特許5906220-画像形成装置 図000012
  • 特許5906220-画像形成装置 図000013
  • 特許5906220-画像形成装置 図000014
  • 特許5906220-画像形成装置 図000015
  • 特許5906220-画像形成装置 図000016
  • 特許5906220-画像形成装置 図000017
  • 特許5906220-画像形成装置 図000018
  • 特許5906220-画像形成装置 図000019
  • 特許5906220-画像形成装置 図000020
  • 特許5906220-画像形成装置 図000021
  • 特許5906220-画像形成装置 図000022
  • 特許5906220-画像形成装置 図000023
  • 特許5906220-画像形成装置 図000024
  • 特許5906220-画像形成装置 図000025
  • 特許5906220-画像形成装置 図000026
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5906220
(24)【登録日】2016年3月25日
(45)【発行日】2016年4月20日
(54)【発明の名称】画像形成装置
(51)【国際特許分類】
   G03G 15/00 20060101AFI20160407BHJP
   G03G 15/16 20060101ALI20160407BHJP
【FI】
   G03G15/00 303
   G03G15/16
【請求項の数】9
【全頁数】23
(21)【出願番号】特願2013-150192(P2013-150192)
(22)【出願日】2013年7月19日
(65)【公開番号】特開2015-22151(P2015-22151A)
(43)【公開日】2015年2月2日
【審査請求日】2015年3月16日
(73)【特許権者】
【識別番号】591044164
【氏名又は名称】株式会社沖データ
(74)【代理人】
【識別番号】100082740
【弁理士】
【氏名又は名称】田辺 恵基
(72)【発明者】
【氏名】新山 英生
【審査官】 松本 泰典
(56)【参考文献】
【文献】 特開2008−309869(JP,A)
【文献】 特開平10−232522(JP,A)
【文献】 特開2005−316194(JP,A)
【文献】 特開2001−092195(JP,A)
【文献】 特開2003−098793(JP,A)
【文献】 特開2010−009018(JP,A)
【文献】 特開2007−140545(JP,A)
【文献】 特開2006−150627(JP,A)
【文献】 特開2006−053297(JP,A)
【文献】 特開2001−312194(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03G 15/00
G03G 15/16
G03G 21/00
G03G 21/14
(57)【特許請求の範囲】
【請求項1】
光の反射特性が周囲の表面と異なる反射特性不均一箇所が形成されたベルトと、
前記ベルトに照射光を照射し反射光を検出する検出動作を行う測定部と、
3回以上の前記検出動作を行い、当該検出動作を行う度に、前記ベルトの搬送方向に沿った前記反射特性不均一箇所の長さである反射特性不均一箇所長さよりも長い距離だけ前記ベルトを搬送させ制御部と、
3回以上の前記検出動作による検出結果のうち最大値を含む当該最大値近傍の値及び最小値を含む最小値近傍の値を除外した中間値を用いて画像形成に関する補正を行う補正部と
を有する画像形成装置。
【請求項2】
光の反射特性が周囲の表面と異なる反射特性不均一箇所が形成されたベルトと、
前記ベルトに照射光を照射し反射光を検出する検出動作を行う測定部と、
3回以上の前記検出動作を行い、当該検出動作を行う度に、前記ベルトの搬送方向に沿った前記反射特性不均一箇所の長さである反射特性不均一箇所長さよりも長い距離だけ前記ベルトを搬送させる制御部と、
3回以上の前記検出動作による検出結果において複数のほぼ同一値が検出された場合、当該同一値を用いて画像形成に関する補正を行う補正部と
を有する画像形成装置。
【請求項3】
光の反射特性が周囲の表面と異なる反射特性不均一箇所が形成されたベルトと、
前記ベルトに照射光を照射し反射光を検出する検出動作を行う測定部と、
今回の検出動作を行い、前記ベルトの搬送方向に沿った前記反射特性不均一箇所の長さである反射特性不均一箇所長さよりも長い距離だけ前記ベルトを搬送させた後、次回の検出動作を行う制御部と、
今回の検出動作及び次回の検出動作における前記測定部の検出結果に基づいて前記照射光の強度を所定値に調整することにより、濃度補正の前段階であるキャリブレーションを行う補正部と
を有する画像形成装置。
【請求項4】
光の反射特性が周囲の表面と異なる反射特性不均一箇所が形成されたベルトと、
前記ベルトにトナーを転写してパッチパターンを形成する画像形成部と、
前記パッチパターンに照射光を照射して反射された反射光を検出することにより前記パッチパターンの濃度を取得する測定部と、
前記ベルトの搬送方向に沿った前記反射特性不均一箇所の長さである反射特性不均一箇所長さよりも長い距離内で複数回前記パッチパターンの濃度を取得する制御部と、
取得した複数回の前記パッチパターンの濃度のうち、最大値を含む当該最大値近傍の値及び最小値を含む最小値近傍の値を除外した中間値を用いて前記画像形成部における画像形成条件を調整し濃度補正を行う補正部と
を有する画像形成装置。
【請求項5】
コート層が表面に形成され、光の反射特性が周囲の表面と異なる反射特性不均一箇所において当該コート層が重なっているベルトと、
前記ベルトに照射光を照射し反射光を検出する検出動作を行う測定部と、
今回の検出動作を行い、前記ベルトの搬送方向に沿った前記反射特性不均一箇所の長さである反射特性不均一箇所長さよりも長い距離だけ前記ベルトを搬送させた後、次回の検出動作を行う制御部と、
今回の検出動作及び次回の検出動作における前記測定部の検出結果に基づいて、画像形成に関する補正を行う補正部と
を有する画像形成装置。
【請求項6】
前記反射特性不均一箇所長さをW1、前記ベルトの周長をW2、i−1回目の検出動作を行う検出位置からi回目の検出動作を行う検出位置までの前記ベルトの送り量をLi、合計の検出動作回数をnとしたとき、下記(1)式を満たす
【数1】
請求項1乃至請求項3又は請求項5の何れかに記載の画像形成装置。
【請求項7】
前記照射光が前記ベルトに照射された際の照射スポットの直径をdとしたとき、下記(2)式を満たす
【数2】
請求項に記載の画像形成装置。
【請求項8】
下記(3)式を満たす
【数3】
請求項に記載の画像形成装置。
【請求項9】
前記パッチパターンの濃度を取得する複数の測定位置の間隔をD5とし、最小値を含む下からs個の値を除外するとき、下記(4)式を満たす
【数4】
請求項に記載の画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は画像形成装置に関し、例えば画像形成ユニットが記録紙の搬送方向に沿って直列に並んで配設された、いわゆるタンデム方式の画像形成装置に適用して好適なものである。
【背景技術】
【0002】
従来、画像形成装置では、搬送ベルトに記録紙を載せた状態で、各色の画像形成ユニットに記録紙を順次搬送しながら各色の画像を記録紙に重畳転写することよりカラー画像を形成するものがある。そのような画像形成装置においては、記録紙を所定枚数印刷したとき等、印刷する濃度が変位する可能性がある事象が発生した場合に、画像形成条件を補正して、形成する画像の濃度補正を行うことにより、安定した画像形成を行うものがある(例えば、特許文献1参照)。
【0003】
この濃度補正において、画像形成装置は、搬送ベルトに照射光を照射し反射光を読み取り、当該反射光の光量が予め定められた所定値になるよう、照射光の強度を調整するキャリブレーションを行う。続いて画像形成装置は、搬送ベルト上に濃度補正用のパッチパターンを印刷し、当該パッチパターンに照射光を照射し反射光を読み取ることにより、パッチパターンの濃度を検出し、当該濃度に基づき、画像形成条件を補正する。このような濃度補正は、搬送ベルト表面における光の反射特性が、当該搬送ベルトの何れの箇所においてもほぼ同等であるという前提のもとに行われる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2011−197417号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、搬送ベルトの表面において反射特性が周囲の表面と異なる箇所が存在した場合、そのような箇所に照射光を照射してしまうと、反射光の強度が適切でなくなり、精度良い濃度補正が行えず、良好な画像を形成できないおそれがあった。
【0006】
本発明は以上の点を考慮してなされたもので、良好な画像を形成し得る画像形成装置を提案しようとするものである。
【課題を解決するための手段】
【0007】
かかる課題を解決するため本発明の画像形成装置においては、光の反射特性が周囲の表面と異なる反射特性不均一箇所が形成されたベルトと、ベルトに照射光を照射し反射光を検出する検出動作を行う測定部と、3回以上の検出動作を行い、当該検出動作を行う度に、ベルトの搬送方向に沿った反射特性不均一箇所の長さである反射特性不均一箇所長さよりも長い距離だけベルトを搬送させ制御部と、3回以上の検出動作による検出結果のうち最大値を含む当該最大値近傍の値及び最小値を含む最小値近傍の値を除外した中間値を用いて画像形成に関する補正を行う補正部とを設けるようにした。
【0008】
これにより本発明の画像形成装置は、他の表面とは異なる反射特性不均一箇所における光の反射特性の影響を回避しつつ、補正を行うことができる。
【発明の効果】
【0009】
本発明によれば、他の表面とは異なる反射特性不均一箇所における光の反射特性の影響を回避しつつ、補正を行うことができる。かくして本発明は、良好な画像を形成し得る画像形成装置を実現できる。
【図面の簡単な説明】
【0010】
図1】カラープリンタの内部構成を示す略線図である。
図2】コート層の構成を示す略線図である。
図3】コート層の形成の様子を示す略線図である。
図4】カラープリンタの回路構成を示すブロック図である。
図5】濃度センサの構成を示す略線図である。
図6】コート層からの反射光の様子を示す略線図である。
図7】キャリブレーション時の鏡面反射光量値測定位置(1)の説明に供する略線図である。
図8】キャリブレーション時の鏡面反射光量値測定位置(2)の説明に供する略線図である。
図9】キャリブレーション処理手順を示すフローチャートである。
図10】鏡面反射測定センサの検出結果を示す表である。
図11】パッチパターンの構成を示す略線図である。
図12】パッチパターン印刷処理手順を示すフローチャートである。
図13】濃度補正時の鏡面反射光量値測定位置(1)の説明に供する略線図である。
図14】濃度補正時の鏡面反射光量値測定位置(2)の説明に供する略線図である。
図15】パッチパターンの濃度測定のタイミングを示すタイムチャートである。
図16】パッチパターン読取処理手順を示すフローチャートである。
【発明を実施するための形態】
【0011】
以下、発明を実施するための形態(以下実施の形態とする)について、図面を用いて説明する。
【0012】
[1.実施の形態]
[1−1.カラープリンタの内部構成]
図1に示すように、カラープリンタ1は、所謂ダイレクトタンデム方式であり、略箱型のプリンタ筐体2を有している。以下のカラープリンタ1及び画像形成ユニット10の説明においては、カラープリンタ1のうち利用者がプリンタ筐体2の正面に対峙する側を前側とし、その反対を後側とし、当該前側に対峙した利用者から見て左及び右をそれぞれ左側及び右側とし、さらに上側及び下側を定義して説明する。
【0013】
プリンタ筐体2内には、記録紙Sの表面に印刷対象のカラー画像を印刷するようにして印刷画像を形成するための画像形成部7が設けられている。画像形成部7は、印刷画像のそれぞれ異なる色成分であるシアン(C)、マゼンタ(M)、イエロー(Y)及びブラック(K)を表す静電潜像をトナーを用いて現像してトナー画像を形成する4個の画像形成ユニット10(10A乃至10D)を有している。この場合、4個の画像形成ユニット10A乃至10Dは、静電潜像の現像に異なる色のトナーを用いることを除いて同様に構成されており、プリンタ筐体2内の上端部に、前から後へ順に並び着脱可能に装着されている。画像形成ユニット10A乃至10Dは、印刷画像の形成時、感光ドラム40を回転させながら、LED(Light Emitting Diode)ヘッド42により感光ドラム40の表面を露光して印刷画像の所定の色成分を表す静電潜像を形成すると共に、その静電潜像をトナーを用いて現像してトナー画像を形成する。
【0014】
また画像形成部7には、画像形成ユニット10Aの下から画像形成ユニット10Dの下に亘って、画像形成ユニット10A乃至10Dにより形成されたトナー画像を記録紙Sの表面に転写する転写部12が配置されている。転写部12は、画像形成ユニット10Dの後斜め下及び画像形成ユニット10Aの下に、それぞれドライブローラ4及びテンションローラ6が回転可能に設けられている。ドライブローラ4の下方には、搬送ベルト8に照射光を照射して反射した反射光を測定することにより、後述するキャリブレーション処理及び濃度補正処理において用いられる測定結果を取得する濃度センサ64が設けられている(詳細は後述する)。また転写部12は、ドライブローラ4からテンションローラ6に亘り、記録紙Sをトナー画像の転写用に静電吸着して搬送する無端状の搬送ベルト8が張架されている。搬送ベルト8は、ドライブローラ4の回転駆動によりベルト進行方向Dbに沿って搬送される。この搬送ベルト8は、外周面の全周に亘って、図2に一部拡大図を示すように、ベルト部33の表面にコート層34が形成されている。ベルト部33は、トナーを転写させるための電気的特性を得るために、材料であるフィルム中にカーボンを分散させたものが使用される。このため搬送ベルト8は、表面が黒色であるために赤外光を吸収して拡散反射が殆ど発生しないが、当該表面が高い光沢度で仕上げられているため鏡面反射が多く発生する特性を有している。
【0015】
コート層34は、図3に示すコート液塗布装置80により、搬送ベルト8がカラープリンタ1に組み込まれる前にベルト部33の表面に形成される。このコート液塗布装置80は、ドライブローラ82、テンションローラ84及び塗布ローラ86により構成され、ロールコート法を用いて搬送ベルト8にコート層34を形成する。搬送ベルト8は、ドライブローラ82とテンションローラ84とにより張架され、ドライブローラ82の回転駆動によってベルト進行方向Db’に沿って搬送される。ドライブローラ82の上部には、搬送ベルト8を挟んで塗布ローラ86が設けられ、当該塗布ローラ86の外周面が搬送ベルト8のベルト部33(図2)に接触している。塗布ローラ86は、外周面にアクリルのコート液を保持することによりコート液膜88を形成している。コート液塗布装置80は、ドライブローラ82を図3中時計回りに、塗布ローラ86を反時計回りにそれぞれ回転させることにより、塗布ローラ86のコート液膜88を搬送ベルト8のベルト部33に塗布し、コート層34(図2)を形成する。
【0016】
ロールコート法を用いた場合、コート液塗布装置80は、図2に示す塗布開始位置PASからコート液膜88の塗布を開始し、ベルト進行方向Db’に沿って搬送ベルト8を一周搬送させた後に塗布開始位置PASを越えた塗布終了位置PAEでコート液膜88の塗布を終了する。すなわち、コート液塗布装置80は、塗布開始位置PASと塗布終了位置PAEとの間にコート層34をオーバーラップさせた領域である複層部34Mを設けることにより、無端状の搬送ベルト8における表面の全周に亘って隙間なくコート層34を形成する。このためコート層34は、表面が平坦に形成された単層部34Sと、表面が凸形状に膨らむよう形成された複層部34Mとが形成されている。この複層部34Mのベルト進行方向Dbに沿った長さである複層部長さW1は、約5mmに形成されている。因みに複層部長さW1は、複層部34Mに直接定規を当てて目視することにより測定した値である。
【0017】
また転写部12(図1)において搬送ベルト8の内側には、4個の感光ドラム40に対応する4個の転写ローラ14が、前から後へ順に並び回転可能に設けられている。これにより転写部12は、印刷画像の形成時、繰出搬送路16を介して搬送ベルト8によって搬送される記録紙Sを転写ローラ14の表面の上側部分と、対応する4個の感光ドラム40の表面の下側部分との間に順に挟み込みながら、当該転写ローラ14への転写バイアス電圧の印加により4個の感光ドラム40の表面上のトナー画像を記録紙Sの表面に転写する。このようにして転写部12は、記録紙Sの表面に4色分のトナー画像を転写して、当該トナー画像を転写した記録紙Sを定着部18に引き渡す。
【0018】
画像形成部7には、転写部12の後方に、トナー画像を記録紙Sの表面に定着させる定着部18が配置されている。定着部18は、中央部に記録紙Sを通すための記録紙通路が形成され、当該記録紙通路の上側及び下側に、発熱ローラ20及び加圧ローラ22が回転可能に設けられている。これにより定着部18は、印刷画像の形成時、転写部12から表面にトナー画像が転写された記録紙Sを記録紙通路内に取り込んで、互いに逆回転している発熱ローラ20及び加圧ローラ22の間に挟み込む。そして定着部18は、その記録紙Sを、互いに逆回転している発熱ローラ20及び加圧ローラ22の間で加熱しながら加圧することにより、当該記録紙Sの表面にトナー画像を定着させた後、搬送方向の下流に位置する排出用搬送路24に引き渡す。このようにして定着部18は、記録紙Sの表面に4色分のトナー画像を定着させて印刷画像を形成し、当該印刷画像を形成した記録紙Sを、排出用搬送路24を介して搬送して記録紙受渡部26へ排出する。
【0019】
また転写部12は、搬送ベルト8の表面に付着したトナーを除去するベルトクリーニングブレード27が設けられた略偏平箱型の廃棄トナータンク28を有している。廃棄トナータンク28は、ベルトクリーニングブレード27において後斜め上側に向いた縁部を、搬送ベルト8の下平坦部分の表面に押し付けている。これにより転写部12は、搬送ベルト8を搬送方向へ搬送させた場合、当該搬送ベルト8の表面に付着しているトナーをベルトクリーニングブレード27により除去して廃棄トナータンク28内に落とし込む。このようにして転写部12は、搬送ベルト8の表面に付着したトナーを除去することで、記録紙Sへのトナー画像の転写に搬送ベルト8を繰り返し使用し得るようにしている。また上述したように、搬送ベルト8の表面にはコート層34が形成されている。これによりカラープリンタ1は、搬送ベルト8の表面摩耗による凹凸の発生や、トナー又はカラープリンタ1内部の紙粉に由来する物質の付着による搬送ベルト8の表面のクリーニング不良を防止し、当該搬送ベルト8に対するクリーニング特性を維持できる。
【0020】
[1−2.画像形成ユニットの構成]
画像形成ユニット10A乃至10Dは、静電潜像の現像に用いるトナーの色が異なるだけで同一に構成されている。このため以下では、画像形成ユニット10A乃至10Dをまとめて画像形成ユニット10として説明する。図1に示したように、画像形成ユニット10は、現像装置30とトナーカートリッジ32とを有している。現像装置30は、略J字形状に形成されたケースを有し、供給ローラ36、現像ローラ38、感光ドラム40、LEDヘッド42、帯電ローラ44及びクリーニング部46が設けられている。供給ローラ36は、トナーカートリッジ32に収容されたトナーを現像ローラ38側へ供給する。帯電ローラ44は、感光ドラム40の表面を一様に帯電する。LEDヘッド42は、帯電された感光ドラム40の表面を、印刷データに基づいて露光して静電潜像を形成する。現像ローラ38は、トナーを帯電させ、感光ドラム40上に形成された静電潜像上に静電的に付着させて、一定層厚のトナー像を形成する。クリーニング部46は、転写後に感光ドラム40の表面に残留したトナーを除去する。感光ドラム40は、静電潜像を担持し、また当該静電潜像をトナーによって現像して得られるトナー画像を担持する。
【0021】
かかる構成において、画像形成ユニット10は、トナーカートリッジ32から現像装置30にトナーを供給する。続いて画像形成ユニット10は、感光ドラム40を回転させながら、帯電ローラ44により当該感光ドラム40の表面を一様に帯電させ、LEDヘッド42により当該感光ドラム40の表面を印刷データに基づいて露光して静電潜像を形成する。続いて画像形成ユニット10は、現像バイアス電圧を現像ローラ38に印加することにより、感光ドラム40上に形成された静電潜像上に、供給ローラ36により供給されたトナーを静電的に付着させてトナー画像を形成する。さらに画像形成ユニット10は、搬送ベルト8によって搬送される記録紙Sを転写ローラ14と感光ドラム40との間に挟み込み、感光ドラム40の表面上のトナー画像を記録紙Sの表面に転写する。
【0022】
[1−3.カラープリンタの回路構成]
カラープリンタ1は、図4に示すように、制御部50が各部を統轄制御する。制御部50は、CPU(Central Processing Unit)を中心に構成されており、ROM(Read Only Memory)54から所定のプログラムを読み出してRAM(Random Access Memory)56をワークメモリとして用いて各部を制御してキャリブレーション処理や濃度補正処理等の種々の処理を実行する。
【0023】
ベルト駆動部58は、制御部50の制御に基づきベルト駆動モータ60を一定速度で駆動することにより搬送ベルト8を所定距離搬送させる。発光駆動部62は、制御部50の制御に基づき濃度センサ64のLED66を駆動し、所定の強度の赤外光である照射光を出射させる。濃度検出部71のブラック濃度検出部72は、濃度センサ64の鏡面反射測定センサ68からの検出結果として鏡面反射光量値を取得する。濃度検出部71のカラー濃度検出部74は、濃度センサ64の拡散反射測定センサ70からの検出結果として拡散反射光量値を取得する。また制御部50は、濃度補正処理を行う際、画像形成部7にパッチパターンの印刷データを供給することにより、搬送ベルト8にパッチパターンの印刷を行わせる。
【0024】
図5に示すように、濃度センサ64は、LED66、鏡面反射測定センサ68及び拡散反射測定センサ70により構成されている。LED66は、発光駆動部62(図4)により駆動され、赤外光である照射光SIを入射角Θ1で搬送ベルト8に照射する。鏡面反射測定センサ68は、照射光SIの入射角Θ1と同一角度の反射角Θ2で鏡面反射する鏡面反射光SRSの光量(強さ)を検出して受光電圧値に変換し、測定結果として鏡面反射光量値をブラック濃度検出部72(図4)に供給する。拡散反射測定センサ70は、照射光SIの入射角Θ1と異なる角度で反射する拡散反射光SRDの光量(強さ)を検出して受光電圧値に変換し、測定結果として拡散反射光量値をカラー濃度検出部74(図4)に供給する。以下では、鏡面反射光SRSと拡散反射光SRDとをまとめて反射光SRとも呼ぶ。
【0025】
ところで記録紙Sへの画像形成は、感光ドラム40の表面上に担持されたトナー像を記録紙Sに転写することにより行われるため、感光ドラム40の表面上に担持されたトナー量が多いほど、記録紙Sに形成される画像は濃くなる。一方、記録紙Sへの画像形成の回数が増えると、トナーが劣化してトナーの帯電能力が徐々に弱くなっていくため、一定の現像バイアス電圧を現像ローラ38に印加して画像を形成し続けた場合、現像ローラ38から感光ドラム40に移動して付着するトナーの量が増加し、それに伴って、記録紙Sに形成される画像が徐々に濃くなっていく。このように、印刷した記録紙Sの枚数が増えていくにも拘わらず一定の現像バイアス電圧を保っていると、画像の濃度が適切でなくなり、良好な印刷結果を得られない可能性がある。また、画像の濃度が変化する原因としては、他に、カラープリンタ1内部において所定値以上の温度変化が発生した場合、又はトナーカートリッジ32を交換した場合等が考えられる。
【0026】
そこで制御部50は、記録紙Sを所定枚数印刷する毎等、濃度が変位する可能性がある事象が発生した場合に、画像形成部7により濃度検知用のパッチパターンを搬送ベルト8上に形成し、そのパッチパターンの濃度を濃度センサ64で検出した後、濃度検出部71により鏡面反射光量値及び拡散反射光量値を取得する。続いて制御部50は、その取得結果に基づいて、現像ローラ38に対する現像バイアス電圧、LEDヘッド42の露光明るさ、又はガンマ補正等の画像形成条件を補正部77により補正し濃度の補正を行うことにより、安定した印刷を行うことができるようにしている。
【0027】
制御部50は、濃度補正処理を行う前段階として、鏡面反射光SRSの光量が予め定められた所定値になるよう照射光SIの強度を調整するキャリブレーション処理を行う。これは、濃度補正処理に先立ち、濃度センサ64の動作のばらつきを抑え、動作特性を所定範囲に収めるものである。このようなキャリブレーション処理は、搬送ベルト8のコート層34における、単層部34Sからの鏡面反射光SRSの鏡面反射光量値に基づいて行われる。キャリブレーション処理の終了後、制御部50は、搬送ベルト8にパッチパターンを印刷すると共に当該パッチパターンからの反射光SRを検出することにより濃度補正処理を実行する。
【0028】
[1−4.キャリブレーション処理]
制御部50は、濃度補正処理を行う前段階として、鏡面反射光SRSの光量が予め定められた所定値になるよう照射光SIの強度を調整するキャリブレーション処理を行う。図6(A)に示すように、搬送ベルト8において表面が平坦に形成された単層部34Sに照射光SIが照射された場合、当該照射光SIは、殆ど拡散反射することなく鏡面反射し、鏡面反射光SRSとなる。一方図6(B)に示すように、搬送ベルト8において表面が凸形状に形成された複層部34Mに照射光SIが照射された場合、コート層34の厚み(ムラ)による干渉により、照射光SIが複層部34Mにおいて拡散反射すると共に、吸収されてしまう。このため、照射光SIが複層部34Mに照射されてしまうと、単層部34Sに照射された場合よりも、鏡面反射測定センサ68において検出する光量が減少し、鏡面反射光量値が低下してしまう。このため、そのような鏡面反射光量値に基づいて制御部50がキャリブレーションを行うと、正常なキャリブレーションを行えなくなる可能性がある。
【0029】
これに対し制御部50は、以下に示すキャリブレーション処理を行うことにより、搬送ベルト8における複層部34Mの影響を回避しつつ、キャリブレーションを行う。制御部50は、搬送ベルト8を駆動させながら図7に示す鏡面反射光量値測定位置P11、P12及びP13の3箇所において、順に鏡面反射光量値の取得を行う。このとき制御部50は、図8に示すようにそれぞれの鏡面反射光量値測定位置P11、P12及びP13において、搬送ベルト8の表面に照射光SIを照射し照射スポットSPを形成して鏡面反射光SRSを受光することにより、鏡面反射光量値を取得する。制御部50は、鏡面反射測定センサ68から取得した鏡面反射光量値に応じて発光駆動部62を制御することにより、LED66の駆動電流を調整し、鏡面反射光量値を所定値に保つようにする。すなわち制御部50は、鏡面反射光量値が所定値よりも低い場合、LED66の駆動電流を増加させることにより照射光SIの光量を増加させる一方、鏡面反射光量値が所定値よりも高い場合、LED66の駆動電流を低下させることにより照射光SIの光量を低下させる。
【0030】
ここで、(i−1)回目の鏡面反射光量値測定位置からi回目の鏡面反射光量値測定位置までの搬送ベルト8の送り量をベルト送り量Li、鏡面反射光量値の合計測定回数をn回としたとき、下記(1)式を満たすことが望ましい。
【0031】
【数1】
【0032】
これは、鏡面反射光量値を1回測定した後に、複層部長さW1よりも長い距離であるベルト送り量Li(L2及びL3)だけ搬送ベルト8を搬送させ、その後再び鏡面反射光量値を測定することを示している。このため制御部50は、例えば1回目の鏡面反射光量値測定の際に、複層部34Mにおけるベルト進行方向Dbの先端側の端部近傍からの鏡面反射光量値を検出してしまったとしても、2回目の鏡面反射光量値測定の際には、複層部34Mにおけるベルト進行方向Dbの後端側よりもさらに後方の位置からの鏡面反射光量値を検出することができる。これにより制御部50は、複数回行う鏡面反射光量値測定のうち、複層部34Mからの鏡面反射光量値を2回以上検出してしまうことを防ぐことができる。
【0033】
また、搬送ベルト8の一周の周長をベルト周長W2としたとき、下記(2)式を満たすことが望ましい。
【0034】
【数2】
【0035】
これは、n回の鏡面反射光量値測定を行う際の搬送ベルト8の合計搬送量が、ベルト周長W2から複層部長さW1を減算した距離より短いことを示している。このため制御部50は、n回目の鏡面反射光量値測定を、1回目の鏡面反射光量値測定位置P11に到達する前に完了できる。これにより制御部50は、搬送ベルト8が一周搬送される間に全ての鏡面反射光量値測定を完了でき、複層部34Mからの鏡面反射光量値を2回以上検出してしまうことを防ぐことができる。
【0036】
さらに、照射光SIが搬送ベルト8に照射される際の照射スポットSPの直径をスポット径d(図8)としたとき、下記(3)式を満たすことが望ましい。
【0037】
【数3】
【0038】
これは、鏡面反射光量値を1回測定した後に、複層部長さW1にスポット径dを加算した距離よりも長い距離であるベルト送り量Li(L2及びL3)だけ搬送ベルト8を搬送させ、その後再び鏡面反射光量値を測定することを示している。このため制御部50は、例えば1回目の鏡面反射光量値測定の際に、複層部34Mにおけるベルト進行方向Dbの先端側の端部に照射光SIの照射スポットSPがかかる状態で鏡面反射光量値を検出してしまったとしても、2回目の鏡面反射光量値測定の際には、複層部34Mにおけるベルト進行方向Dbの後端側よりもさらに後方の位置に照射スポットSPを位置させ鏡面反射光量値を検出することができる。これにより制御部50は、複数回行う鏡面反射光量値測定のうち、複層部34Mに2回以上照射スポットSPを位置させてしまうことを防ぎ、複層部34Mからの鏡面反射光量を2回以上検出してしまうことを防ぐことができる。
【0039】
さらに、(2)式と(3)式とを組み合わせ、下記(4)式を満たすことが望ましい。
【0040】
【数4】
【0041】
これは、n回の鏡面反射光量値を行う際の搬送ベルト8の合計搬送量が、ベルト周長W2から複層部長さW1及びスポット径dを減算した距離より短いことを示している。このため制御部50は、n回目の鏡面反射光量値測定を、1回目の鏡面反射光量値測定位置P11における照射スポットSPの位置に到達する前に完了できる。これにより制御部50は、搬送ベルト8が一周搬送される間に全ての鏡面反射光量値測定を完了できると共に、複層部34Mに2回以上照射スポットSPを位置させてしまうことを防ぎ、複層部34Mからの鏡面反射光量値を2回以上検出してしまうことを防ぐことができる。
【0042】
本実施の形態においては、それぞれ複層部長さW1が5mm、ベルト周長W2が625mm、ベルト送り量Li(L2及びL3)が74mm、合計測定回数nが3回、スポット径dが1mmとなっている。ここで、合計測定回数nは3回〜6回とすることが好ましい。
【0043】
[1−5.キャリブレーション処理手順]
次に、カラープリンタ1によるキャリブレーション処理の具体的な処理手順について、図9のフローチャートを用いて詳細に説明する。制御部50は、ROM54からキャリブレーション処理プログラムを読み出して実行することによりキャリブレーション処理手順RT1を開始し、ステップSP1へ移る。ステップSP1において制御部50は、ブラック濃度検出部72により鏡面反射測定センサ68から鏡面反射光量値を取得し、ステップSP2へ移る。
【0044】
ステップSP2において制御部50は、鏡面反射光量値の取得を3回行ったか否かを判定する。ここで否定結果が得られると、このことは、鏡面反射光量値の取得を3回行っていないことを表し、このとき制御部50はステップSP3へ移り、ベルト駆動部58を制御することにより、搬送ベルト8の搬送を開始させ、ステップSP4へ移る。
【0045】
ステップSP4において制御部50は、搬送ベルト8を所定の測定間隔距離LFだけ搬送させたか否かを判定する。ここで否定結果が得られると、このことは、ステップSP3において搬送ベルト8の搬送を開始させてから、未だ測定間隔距離LFだけ搬送させていないことを表し、このとき制御部50はステップSP4へ戻り、搬送ベルト8を測定間隔距離LFだけ搬送させる。一方ステップSP4において肯定結果が得られると、このことは、ステップSP3において搬送ベルト8の搬送を開始させてから測定間隔距離LFだけ搬送させたことを表し、このとき制御部50はステップSP5へ移る。
【0046】
ステップSP5において制御部50は、ベルト駆動部58を制御することにより、搬送ベルト8の搬送を停止させ、ステップSP1へ戻る。制御部50は、ステップSP1〜ステップSP5の処理を繰り返すことにより、鏡面反射光量値の取得を3回行う。鏡面反射光量値の取得を3回行うと、制御部50はステップSP2において肯定結果を得て、ステップSP6へ移る。このとき制御部50は、図10に示す例えばパターン1のような鏡面反射光量値測定結果を取得する。このパターン1は、3個の鏡面反射光量値のうちの、最大値(MAX)を1回目に、最小値(MIN)を2回目に、最大値と最小値との間の中間値(MID)を3回目にそれぞれ取得したことを示している。
【0047】
ステップSP6において制御部50は、取得した3個の鏡面反射光量値のうち、キャリブレーションを行う際に用いるキャリブレーション値として中間値を選択し、ステップSP7へ移る。ステップSP7において制御部50は、キャリブレーション値に基づき発光駆動部62を制御しLED66から出力される照射光SIの強度を調整することにより、鏡面反射光値を所定値に保ち、ステップSP8へ移りキャリブレーション処理手順RT1を終了する。
【0048】
[1−6.濃度補正処理]
カラープリンタ1は、濃度が変位する可能性がある事象が発生した場合に、濃度検知用のパッチパターンを搬送ベルト8上に形成し、そのパッチパターンの濃度を濃度センサ64で検出した後、その検出結果に基づいて画像形成条件を補正し濃度の補正を行うことにより、安定した印刷を行うことができるようにしている。具体的にカラープリンタ1は、検出したパッチパターンの濃度と、予め定められた目標濃度との差が略0となるように現像バイアス電圧、LEDヘッド42の露光明るさ及びガンマ補正値を補正する。濃度補正処理が行われる際、図11に示すようなパッチパターンが搬送ベルト8に印刷される。搬送ベルト8の幅方向の中央部分には、黒色に印刷されたブラックパッチパターンPPb、黄色に印刷されたイエローパッチパターンPPy、マゼンダ色に印刷されたマゼンダパッチパターンPPm及びシアン色に印刷されたシアンパッチパターンPPcが、ベルト進行方向Dbの先端側から後端側に向かって順に並んで形成される。以下では、イエローパッチパターンPPy、マゼンダパッチパターンPPm及びシアンパッチパターンPPcをまとめてカラーパッチパターンPPclとも呼ぶ。これらのブラックパッチパターンPPb、イエローパッチパターンPPy、マゼンダパッチパターンPPm及びシアンパッチパターンPPcは、それぞれ左右方向の幅が幅D10に、前後方向の長さが長さD3に形成されている。このパッチパターンPPは、各色のパッチパターンが4つ並んだ4色分を1組の一濃度分パッチパターン群PPGとして、カラープリンタ1において印刷可能な最も濃度が高い濃さを100%としたとき、6種類の濃度(10%、25%、50%、75%、80%及び100%)の6組の一濃度分パッチパターン群PPGが、ベルト進行方向Dbの先端側から後端側に向かって順に並んで形成される。図11においては、濃度が10%の一濃度分パッチパターン群PPGのみ図示し、他の濃度の一濃度分パッチパターン群PPGは図示せず省略している。
【0049】
ところでブラックトナーは赤外光である照射光SIを吸収し、搬送ベルト8で鏡面反射する鏡面反射光SRSの光量を減少させる。このためブラックパッチパターンPPbが濃くなると、鏡面反射測定センサ68の出力は小さくなっていく。そこで制御部50は、鏡面反射測定センサ68からの鏡面反射光量値に基づいてブラックパッチパターンPPbの濃淡(印刷濃度)を検出する。すなわち、ブラックパッチパターンPPbが形成されていない箇所に照射光SIが照射された場合、当該照射光SIは、ブラックトナーに吸収されることなく搬送ベルト8の表面で鏡面反射するため、鏡面反射光量値が大きな値となる。一方、濃度100%のブラックパッチパターンPPbに照射光SIが照射された場合、当該照射光SIは、多くがブラックトナーに吸収されるため、鏡面反射光量値が小さな値となる。しかしながら、複層部34MにブラックパッチパターンPPbが位置していた場合、当該ブラックパッチパターンPPbに照射光SIが照射されると、当該照射光SIは、コート層34の厚み(ムラ)による干渉により、複層部34Mにおいて拡散反射すると共に、吸収されてしまう。このため、照射光SIが複層部34Mに照射されてしまうと、単層部34Sに照射された場合よりも、鏡面反射測定センサ68において検出する光量が減少し、鏡面反射光量値が減少してしまう。このため、そのような鏡面反射光量値に基づいて制御部50が濃度補正を行うと、正常な濃度補正を行えなくなる可能性がある。これに対し制御部50は、以下に示す濃度補正処理を行うことにより、搬送ベルト8における複層部34Mの影響を回避しつつ、濃度補正を行う。一方、ブラック以外のトナー(シアン、マゼンダ及びイエローのトナー)は、赤外光である照射光SIを拡散反射させる。このためカラーパッチパターンPPclの濃度に比例して、拡散反射測定センサ70の出力は大きくなっていく。そこで制御部50は、拡散反射測定センサ70からの拡散反射光量値に基づいてカラーパッチパターンPPclの濃淡(印刷濃度)を検出する。
【0050】
ところで、照射光SIが複層部34Mに照射されてしまうと鏡面反射光SRSは大きく減少するものの、拡散反射光SRDは鏡面反射光SRSほどには大きくは変化しない。このため、複層部34Mに照射光SIが照射された場合であっても、拡散反射光量値に基づくカラーパッチパターンPPclの濃度検出は、鏡面反射光量値に基づくブラックパッチパターンPPbの濃度検出に比べて複層部34Mの凸形状の影響を受け難いものとなっている。
【0051】
[1−7.パッチパターン印刷処理]
制御部50は、濃度補正処理を行う際、図11に示したパッチパターンPPを搬送ベルト8に印刷する。
【0052】
[1−8.パッチパターン印刷処理手順]
次に、カラープリンタ1によるパッチパターン印刷処理の具体的な処理手順について、図12のフローチャートを用いて詳細に説明する。制御部50は、ROM54からパッチパターン印刷処理プログラムを読み出して実行することによりパッチパターン印刷処理手順RT2を開始し、ステップSP11へ移る。ステップSP11において制御部50は、ベルト駆動部58を制御することにより、搬送ベルト8の搬送を開始させ、ステップSP12へ移る。
【0053】
ステップSP12において制御部50は、画像形成部7にパッチパターンの印刷データを供給することにより、搬送ベルト8にパッチパターンの印刷を行わせ、ステップSP13へ移る。
【0054】
ステップSP13において制御部50は、シアン(C)、マゼンタ(M)、イエロー(Y)及びブラック(K)の4色について、6種類の濃度(10%、25%、50%、75%、80%、100%)全てのパッチパターンの印刷を完了したか否かを判定する。ここで否定結果が得られると、このことは、全てのパッチパターンの印刷が未だ完了していないことを表し、このとき制御部50はステップSP12へ移り、次のパッチパターンを印刷する。一方ステップSP13において肯定結果が得られると、このことは、全色について全濃度のパッチパターンの印刷を完了したことを表しており、このとき制御部50はステップSP14へ移る。
【0055】
ステップSP14において制御部50は、ベルト駆動部58を制御することにより、搬送ベルト8の搬送を停止させ、ステップSP15へ移り、パッチパターン印刷処理手順RT2を終了する。
【0056】
[1−9.パッチパターン読取処理]
以下では、ブラックパッチパターンPPbの濃度を読み取る処理について説明する。制御部50は、図13及び図14に示す鏡面反射光量値測定位置P1、P2、P3、P4、P5、P6及びP7の7箇所において、順に鏡面反射光量値の取得を行う。図13及び図14においては、例えば濃度10%のブラックパッチパターンPPb等の、1色分のパッチパターンPPについてのみ図示し、他のパッチパターンPPは図示せず省略している。このとき制御部50は、それぞれの鏡面反射光量値測定位置P1、P2、P3、P4、P5、P6及びP7において、搬送ベルト8の1つのパッチパターンPPに照射光SIを照射し照射スポットSPを形成して鏡面反射光SRSを受光することにより鏡面反射光量値を取得し、パッチパターンPPの濃度を検出する。制御部50は、鏡面反射測定センサ68から取得した鏡面反射光量値に応じて画像形成条件を制御することにより、濃度補正を行う。すなわち制御部50は、検出したパッチパターンPPの濃度が、本来印刷するべき濃度よりも低い場合、濃度が濃くなるように画像形成条件を変更する一方、検出したパッチパターンPPの濃度が、本来印刷するべき濃度よりも高い場合、濃度が薄くなるように画像形成条件を変更する。
【0057】
ここで、パッチパターンPPのベルト進行方向Dbの先端部であるパッチパターン先端部PSから1回目の鏡面反射光量値測定位置P1までの長さは距離D4となっており、また、鏡面反射光量値測定位置P同士の間隔は距離D5となっている。また、1回目の鏡面反射光量値測定位置P1から7回目の鏡面反射光量値測定位置P7までの長さは距離D6となっている。さらに、7回目の鏡面反射光量値測定位置P7からパッチパターンPPのベルト進行方向Dbの後端部であるパッチパターン後端部PEまでの長さは距離D7となっている。また、距離D3、距離D4、距離D5、距離D6及び距離D7に対応し、それぞれの距離だけ搬送ベルト8を搬送させる際に要する時間を、時間T3、時間T4、時間T5、時間T6及び時間T7とする。本実施の形態においては、それぞれ長さD3が25.4mm、距離D4が8.47mm、距離D5が1.78mm、距離D6が10.7mm、距離D7が6.19mmとなっている。
【0058】
[1−10.パッチパターン読取処理手順]
次に、カラープリンタ1によるパッチパターン読取処理の具体的な処理手順について、図15のタイミングチャート及び図16のフローチャートを用いて詳細に説明する。以下では、1個のパッチパターンPP、例えば濃度10%のブラックパッチパターンPPbに対する処理について説明する。また、フローチャートを開始する際、パッチパターン先端部PSに照射光SIが照射され得る位置に搬送ベルト8が位置しているとする。制御部50は、ROM54からパッチパターン読取処理プログラムを読み出して実行することによりパッチパターン読取処理手順RT3を開始し、ステップSP21へ移る。ステップSP21において制御部50は、ベルト駆動部58を制御することにより、搬送ベルト8の搬送を開始させ、ステップSP22へ移る。
【0059】
ステップSP22において制御部50は、搬送ベルト8を距離D4だけ搬送させたか否かを判定する。ここで否定結果が得られると、このことは、ステップSP22において搬送ベルト8の搬送を開始させてから、未だ距離D4だけ搬送させていないことを表し、このとき制御部50はステップSP22へ戻り、搬送ベルト8を距離D4だけ搬送させる。一方ステップSP22において肯定結果が得られると、このことは、ステップSP21において搬送ベルト8の搬送を開始させてから距離D4だけ搬送させたため、濃度センサ64が1回目の測定位置である鏡面反射光量値測定位置P1に到達したことを表し、このとき制御部50はステップSP23へ移る。
【0060】
ステップSP23において制御部50は、発光駆動部62を駆動することにより、図15のタイミングT1においてLED66を点灯させ、ステップSP24へ移る。ステップSP24において制御部50は、タイミングT1から時間T12の経過を待ち、ステップSP25へ移る。ステップSP25において制御部50は、ブラック濃度検出部72により鏡面反射測定センサ68から鏡面反射光量値を取得し、ステップSP26へ移る。このように制御部50は、LED66を点灯させてから時間T12の経過を待つことにより、LED66の照射開始時における出力の立ち上がりを待ち、照射光SIが安定的に出力される状態になってから鏡面反射光量値を取得する。
【0061】
ステップSP26において制御部50は、鏡面反射光量値の取得を5回行ったか否かを判定する。ここで否定結果が得られると、このことは、鏡面反射光量値の取得を5回行っていないことを表し、このとき制御部50はステップSP27へ移り、時間T13の経過を待ち、ステップSP25へ戻る。制御部50は、ステップSP25〜ステップSP27の処理を繰り返すことにより、鏡面反射光量値の取得を5回行う。鏡面反射光量値の取得を5回行うと、制御部50はステップSP26において肯定結果を得て、ステップSP28へ移る。
【0062】
ステップSP28において制御部50は、発光駆動部62を制御することにより、図15のタイミングT2においてLED66を消灯させ、ステップSP29へ移る。図15に示すように、LED66の点灯時間は時間T11となる。ところで、LED66を長時間点灯させ続けると当該LED66の特性が劣化してしまう。このため制御部50は、LED66を周期的に消灯させることにより、LED66の特性の劣化を防いでいる。本実施の形態の場合、時間T11は、10ms周期毎に2.6msだけLED66が点灯するデューティ比となっている。
【0063】
ステップSP29において制御部50は、5回取得した鏡面反射光量値のうち、最大値と最小値とを除外した3個を平均した値を、有効鏡面反射光量値として算出し、ステップSP30へ移る。このように制御部50は、1箇所の鏡面反射光量値測定位置において鏡面反射光量値を5回取得し、値が大きく外れる可能性がある最大値及び最小値を除外した中間の3個を平均した値を、有効鏡面反射光量値として算出することにより、ノイズ等で鏡面反射光量値がばらつく影響を排除する。
【0064】
ステップSP30において制御部50は、7箇所の全ての鏡面反射光量値測定位置P1乃至P7において測定を完了したか否かを判定する。ここで否定結果が得られると、このことは、全ての鏡面反射光量値測定位置における測定は未だ完了していないことを表し、このとき制御部50はステップSP31へ移り、前回LED66が点灯したタイミングT1から時間T5の経過を待ち、ステップSP23へ戻る。制御部50は、ステップSP23〜ステップSP31の処理を繰り返すことにより、7箇所の鏡面反射光量値測定位置においてそれぞれ鏡面反射光量値を5回取得することにより、7個の有効鏡面反射光量値を算出する。7箇所の全ての鏡面反射光量値測定位置P1乃至P7において測定を完了すると、制御部50はステップSP30において肯定結果を得て、ステップSP32へ移る。
【0065】
ステップSP32において制御部50は、算出した7個の有効鏡面反射光量値のうち、1つの最大値と、最小値を含む下から3個の値とを除外した中間の3個を平均した値を、濃度補正値として算出し、ステップSP33へ移る。
【0066】
図14に示したように、照射スポットSPは、距離D5の間隔を保って照射され、測定を行っているパッチパターンに複層部34Mが存在する場合、本実施の形態においては当該複層部34Mに最大で3個の照射スポットSPが位置する可能性がある。この複層部34Mに照射スポットSPが位置した場合、単層部34Sに照射スポットSPが位置した場合よりも、鏡面反射光量値が小さいものとなるため、制御部50は、最小値を含む下から3個の値を除外するようにした。このように制御部50は、7個の有効鏡面反射光量値のうち、値が大きく外れる可能性がある1つの最大値と、最小値を含む下から3個の値とを除外した中間の3個を平均した値を、濃度補正値として算出することにより、濃度補正値から複層部34Mの影響を排除できる。
【0067】
ここで、濃度補正値として、最小値を含む下からs個の値を除外する場合、下記(5)式を満たすことが望ましい。
【0068】
【数5】
【0069】
ステップSP33において制御部50は、ベルト駆動部58を制御することにより、搬送ベルト8の搬送を停止させ、ステップSP34へ移る。ステップSP34において制御部50は、濃度補正値に基づき濃度補正を行い、ステップSP35へ移り、パッチパターン読取処理手順RT3を終了する。
【0070】
制御部50は、以上の処理を濃度10%のブラックパッチパターンPPbに対し行った後、濃度10%のイエローパッチパターンPPy、濃度10%のマゼンダパッチパターンPPm及び濃度10%のシアンパッチパターンPPcに対して拡散反射光量値を取得することにより同様に行う。さらに制御部50は、残り5組(濃度25%、50%、75%、80%及び100%)の一濃度分パッチパターン群PPGに対しても同様の処理を行い、取得した濃度補正値に基づき濃度補正を行う。
【0071】
[1−11.効果]
以上の構成において、カラープリンタ1は、キャリブレーション時において、今回の鏡面反射光量値測定位置において鏡面反射光量値を取得し、複層部長さW1よりも長い距離である測定間隔距離LFだけ搬送ベルト8を搬送させることにより、今回の鏡面反射光量値測定位置よりも測定間隔距離LFだけ離れた次回の鏡面反射光量値測定位置において鏡面反射光量値を取得するようにした。またカラープリンタ1は、3箇所の鏡面反射光量値測定位置において取得した合計3個の鏡面反射光量値のうち、中間値をキャリブレーション値として採用するようにした。このためカラープリンタ1は、3回の鏡面反射光量値測定のうち、たとえ複層部34Mで鏡面反射光量値測定を1回行ったとしても、複層部34Mによる異常な鏡面反射光量値を除外することができる。これによりカラープリンタ1は、単層部34Sとは光の反射特性が異なる複層部34Mの影響を回避でき、精度良くキャリブレーションを行うことができる。
【0072】
さらにカラープリンタ1は、7箇所の鏡面反射光量値測定位置において取得した合計7個の有効鏡面反射光量値のうち、1つの最大値と、最小値を含む下から3個の値とを除外した中間の3個を平均した値を濃度補正値として採用するようにした。このためカラープリンタ1は、7回の鏡面反射光量値測定のうち、たとえ複層部34Mで鏡面反射光量値測定を3回行ったとしても、複層部34Mによる異常な鏡面反射光量値を除外することができる。拡散反射光量値測定についても同様である。これによりカラープリンタ1は、単層部34Sとは光の反射特性が異なる複層部34Mの影響を回避でき、精度良く濃度補正を行うことができる。
【0073】
ところで、特開2007−206520号公報に記載されているように、搬送ベルトのうち傷又は凹み等が形成されていない箇所にパッチパターンを形成することにより、傷等による乱反射を防止するカラープリンタがある。このカラープリンタは、鏡面反射測定センサの出力の大きさに基づいて、搬送ベルトの表面に傷等が存在するか否かを検出している。しかしながらその場合、搬送ベルト上の傷等を検出するために当該搬送ベルトを一周搬送させているため、パッチパターンの形成に時間が掛かりすぎてしまう。また、傷等を避けるようにパッチパターンの位置を変更するだけでは、搬送ベルト上の複層部34Mの影響を完全には回避できない場合があった。これに対し本実施の形態のカラープリンタ1は、搬送ベルト8を一周搬送させることなく、短距離だけ搬送ベルト8を搬送させるため、キャリブレーション及び濃度補正を短時間で行うことができる。
【0074】
またカラープリンタ1は、複層部34Mの複層部長さW1よりも長い距離である測定間隔距離LFの間隔を空けて複数回測定した鏡面反射光量値に基づきキャリブレーション値を採用するようにした。またカラープリンタ1は、複層部34Mの複層部長さW1よりも十分に長い距離D6を持って、7箇所で測定した反射光量値(鏡面反射光量値及び拡散反射光量値)に基づき濃度補正を行うようにした。これによりカラープリンタ1は、複層部34Mがキャリブレーション及び濃度補正に与える影響を確実に排除できる。
【0075】
またカラープリンタ1は、キャリブレーション時及び濃度補正時において、測定位置の個数を従来よりも増加させるというシンプルな処理を行うだけで、複層部34Mの影響を回避できる。
【0076】
また、搬送ベルトへのコート層の形成方法としては、本実施の形態によるロールコート法に限らず、例えばコート剤をベルト部33に蒸着させる方法等がある。しかしながらそのような方法では、ロールコート法に対し、コストがかかってしまう。これに対し本実施の形態においては、コストの安いロールコート法により形成されたコート層34を有する搬送ベルト8を用いるカラープリンタ1において、ロールコート法を用いる際に形成される複層部34Mの影響を回避できる。
【0077】
以上の構成によれば、画像形成装置としてのカラープリンタ1は、光の反射特性が周囲の表面と異なる反射特性不均一箇所としての複層部34Mが形成された搬送ベルト8と、搬送ベルト8に照射光SIを照射し反射光SRを検出する検出動作を行う発光駆動部62、濃度センサ64及び濃度検出部71と、今回の検出動作を行い、搬送ベルト8の搬送方向に沿った複層部34Mの長さよりも長い距離だけ搬送ベルト8を搬送させた後、次回の検出動作を行う制御部50と、今回の検出動作及び次回の検出動作における濃度センサ64及び濃度検出部71の検出結果に基づいて、画像形成に関する補正としてのキャリブレーション及び濃度補正を行う補正部77とを設けるようにした。これによりカラープリンタ1は、単層部34Sとは異なる複層部34Mにおける光の反射特性の影響を回避しつつ、補正を行うことができる。
【0078】
[2.他の実施の形態]
なお上述した実施の形態においては、ベルト送り量Liを一定の測定間隔距離LFとする場合について述べた。本発明はこれに限らず、ベルト送り量L2とベルト送り量L3とを異なる距離にしても良い。要は、ベルト送り量L2及びL3が複層部長さW1よりも長ければ良い。
【0079】
また上述した実施の形態においては、それぞれ複層部長さW1が5mm、ベルト周長W2が625mm、測定間隔距離LF(ベルト送り量Li)が74mm、合計測定回数nが3回、スポット径dが1mmである場合について述べた。本発明はこれに限らず、複層部長さW1、ベルト周長W2、測定間隔距離LF(ベルト送り量Li)、合計測定回数n及びスポット径dは、(1)式乃至(4)式を満たす値であれば、種々の値で良い。
【0080】
さらに上述した実施の形態においては、それぞれ長さD3が25.4mm、距離D4が8.47mm、距離D5が1.78mm、距離D6が10.7mm、距離D7が6.19mm、複層部長さW1が5mm、スポット径dが1mmである場合について述べた。本発明はこれに限らず、長さD3、距離D4、距離D5、距離D6、距離D7、複層部長さW1及びスポット径dは、(5)式を満たす値であれば、種々の値で良い。
【0081】
さらに上述した実施の形態においては、キャリブレーション時において(1)式乃至(4)式を満たす場合について述べたが、本発明はこれに限らず、少なくとも(1)式を満たせば良い。
【0082】
さらに上述した実施の形態においては、4色分のパッチパターンPPを1組の一濃度分パッチパターン群PPGとして、濃度(10%、25%、50%、75%、80%及び100%)の6組の一濃度分パッチパターン群PPGを順に並ぶように形成する場合について述べた。本発明はこれに限らず、例えば一濃度分パッチパターン群PPGを濃度(100%、80%、75%、50%、25%及び10%)の順に並べても良い。また、濃度の順に並べたブラックパッチパターンPPbと、濃度の順に並べたイエローパッチパターンPPyと、濃度の順に並べたマゼンダパッチパターンPPmと、濃度の順に並べたシアンパッチパターンPPcとを順に並べる等、種々の配置で良い。
【0083】
さらに上述した実施の形態においては、ブラック、イエロー、マゼンダ及びシアンの4色について濃度補正処理を行う場合について述べた。本発明はこれに限らず、複層部34Mに照射光SIが照射された場合であっても、拡散反射光量値に基づくカラーパッチパターンPPclの濃度検出は、鏡面反射光量値に基づくブラックパッチパターンPPbの濃度検出に比べて複層部34Mの影響を受け難いため、ブラック以外については濃度補正処理を省略しても良い。
【0084】
さらに濃度補正処理は、上述した方法に限らず、より簡略化した方法等、種々の方法により行って良い。
【0085】
さらに上述した実施の形態においては、キャリブレーション時に3箇所で鏡面反射光量値を測定する場合について述べた。本発明はこれに限らず、2箇所以下や4箇所以上等、種々の箇所で鏡面反射光量値を測定して良い。また4箇所以上で鏡面反射光を測定する際において、最大値と最小値とを除外した中間値が2つ以上あった場合、その2つ以上の中間値を平均しても良い。
【0086】
さらに上述した実施の形態においては、キャリブレーション時において、鏡面反射光量値測定結果(図10)のパターン1を取得した場合、キャリブレーション値として、2回目の中間値を選択する場合について述べた。これに対し、鏡面反射光量値測定結果として例えばパターン2、パターン3又はパターン4を取得する場合がある。パターン2は、3個の鏡面反射光量値のうちの、最大値を1回目及び2回目に、最小値を3回目にそれぞれ取得したことを示している。すなわち、1回目と2回目とは同一の鏡面反射光量値となっている。パターン3は、3個の鏡面反射光量値のうちの、最大値を1回目に、最小値を2回目及び3回目にそれぞれ取得したことを示している。すなわち、2回目と3回目とは同一の鏡面反射光量値となっている。パターン4は、3個の鏡面反射光量値のうちの、最大値を1回目、2回目及び3回目にそれぞれ取得したことを示している。すなわち、3個の鏡面反射光量値が全て同一の鏡面反射光量値となっている。このような場合、制御部50は、パターン2においては最大値を、パターン3においては最小値を、パターン4においては最大値を、それぞれキャリブレーション値として採用する。これは、本実施の形態によるキャリブレーション処理における搬送ベルト8の制御においては、複層部34Mからの鏡面反射光SRSを2回以上検出することはないため、同一の鏡面反射光量値を2回以上取得した場合、当該鏡面反射光量値は、複層部34Mからの鏡面反射光SRSではなく単層部34Sからの鏡面反射光SRSである可能性が極めて高いとの考えに基づくものである。制御部50は、そのような鏡面反射光量値をキャリブレーション値として採用することにより、キャリブレーション値の確度を向上させ、高精度なキャリブレーションを行うことができる。
【0087】
さらに上述した実施の形態においては、濃度補正時においてLED66を点灯させている間に鏡面反射光量値の取得を5回行う場合について述べたが、本発明はこれに限らず、4回以下や6回以上等、種々の回数だけ取得して良い。
【0088】
さらに上述した実施の形態においては、濃度補正時に7箇所の鏡面反射光量値測定位置P1乃至P7で測定を行う場合について述べたが、本発明はこれに限らず、鏡面反射光量測定位置を種々の個数だけ設けても良い。この場合、鏡面反射光量値測定位置の個数を増加させた方が、濃度補正値の精度は高くなる。
【0089】
さらに上述した実施の形態においては、複層部34Mに直接定規を当てて目視することにより複層部長さW1を測定する場合について述べた。本発明はこれに限らず、カラープリンタ1に組み込まれた搬送ベルト8を搬送させつつLED66から照射光SIを照射して鏡面反射光量値の受光電圧が所定値を下回った範囲の長さ計測することにより、複層部長さW1を測定しても良い。
【0090】
さらに上述した実施の形態においては、本発明をダイレクトタンデム方式のカラーレーザプリンタに適用する場合について述べたが、本発明はこれに限らず、例えば4サイクル方式のプリンタに適用してもよい。
【0091】
さらに上述した実施の形態においては、本発明をカラープリンタに適用する場合について述べたが、本発明はこれに限らず、モノクロプリンタに適用してもよい。
【0092】
さらに上述した実施の形態においては、濃度補正の前段階に行うキャリブレーションに本発明を適用する場合について述べたが、本発明はこれに限らず、種々の補正の前段階に行うキャリブレーションに対し本発明を適用して良い。
【0093】
さらに上述した実施の形態においては、パッチパターンPPを搬送ベルト8に形成する場合について述べた。本発明はこれに限らず、例えば感光ドラム40の表面に形成しても良い。
【0094】
さらに上述した実施の形態においては、カラープリンタ1は4色のトナーに対応した4つの画像形成ユニット10A乃至10Dを有する場合について述べたが、本発明はこれに限らず、カラープリンタは3色以下のトナーに対応した3つ以下の画像形成ユニット又は5色以上のトナーに対応した5つ以上の画像形成ユニット等、種々の個数の画像形成ユニットを有して良い。
【0095】
また、上述した実施の形態においては、パッチパターンPPに基づいて画像形成部7の作動を補正制御したが、本発明はこれに限らず、例えばパッチパターンに基づいて、画像形成部7に加えて搬送ベルト8の搬送方向や搬送速度等の搬送ベルト8の作動も制御しても良い。
【0096】
さらに上述した実施の形態においては、プリンタに本発明を適用する場合について述べた。本発明はこれに限らず、例えばコピー機、FAX機等、画像に関する種々の処理を行う種々の機器に本発明を適用しても良い。
【0097】
さらに上述した実施の形態においては、ベルトとしての搬送ベルト8と、測定部としての発光駆動部62、濃度センサ64及び濃度検出部71と、制御部としての制御部50と、補正部としての補正部77とによって、画像形成装置としてのカラープリンタ1を構成する場合について述べた。しかしながら本発明はこれに限らず、その他種々の構成でなる測定部と、制御部と、補正部とによって画像形成装置を構成するようにしても良い。
【産業上の利用可能性】
【0098】
本発明は、プリンタに画像を印刷させるコンピュータの他、イメージスキャナやファクシミリ装置、或いは複写機等、画像に関する種々の処理を行う種々の電子機器でも利用できる。
【符号の説明】
【0099】
1……カラープリンタ、2……プリンタ筐体、4……ドライブローラ、6……テンションローラ、7……画像形成部、8……搬送ベルト、10……画像形成ユニット、12……転写部、14……転写ローラ、16……繰出搬送路、18……定着部、20……発熱ローラ、22……加圧ローラ、24……排出用搬送路、26……記録紙受渡部、27……ベルトクリーニングブレード、28……廃棄トナータンク、30……現像装置、32……トナーカートリッジ、33……ベルト部、34……コート層、34M……複層部、34S……単層部、36……供給ローラ、38……現像ローラ、40……感光ドラム、42……LEDヘッド、44……帯電ローラ、46……クリーニング部、50……制御部、52……CPU、54……ROM、56……RAM、58……ベルト駆動部、60……ベルト駆動モータ、62……発光駆動部、64……濃度センサ、66……LED、68……鏡面反射測定センサ、70……拡散反射測定センサ、71……濃度検出部、72……ブラック濃度検出部、74……カラー濃度検出部、77……補正部、80……コート液塗布装置、82……ドライブローラ、84……テンションローラ、86……塗布ローラ、88……コート液膜、PAS……塗布開始位置、PAE……塗布終了位置、SP……照射スポット、SI……照射光、SRS……鏡面反射光、SRD……拡散反射光、SR……反射光、PP……パッチパターン、PPb……ブラックパッチパターン、PPy……イエローパッチパターン、PPm……マゼンダパッチパターン、PPc……シアンパッチパターン、PPcl……カラーパッチパターン、PPG……一濃度分パッチパターン群、Θ1……入射角、Θ2……反射角、Db……ベルト進行方向、W1……複層部長さ、W2……ベルト周長、LF……測定間隔距離、d……スポット径、PS……パッチパターン先端部、PE……パッチパターン後端部、P1、P2、P3、P4、P5、P6、P7、P11、P12、P13……鏡面反射光量値測定位置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16