特許第5907948号(P5907948)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コムスコア,インコーポレーテッドの特許一覧

特許5907948標本及びセンサスデータに基づく測定方法
<>
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000009
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000010
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000011
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000012
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000013
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000014
  • 特許5907948-標本及びセンサスデータに基づく測定方法 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5907948
(24)【登録日】2016年4月1日
(45)【発行日】2016年4月26日
(54)【発明の名称】標本及びセンサスデータに基づく測定方法
(51)【国際特許分類】
   G06F 13/00 20060101AFI20160412BHJP
【FI】
   G06F13/00 540R
【請求項の数】28
【全頁数】29
(21)【出願番号】特願2013-503832(P2013-503832)
(86)(22)【出願日】2011年4月5日
(65)【公表番号】特表2013-527954(P2013-527954A)
(43)【公表日】2013年7月4日
(86)【国際出願番号】US2011031206
(87)【国際公開番号】WO2011127027
(87)【国際公開日】20111013
【審査請求日】2014年4月4日
(31)【優先権主張番号】12/871,385
(32)【優先日】2010年8月30日
(33)【優先権主張国】US
(31)【優先権主張番号】61/328,909
(32)【優先日】2010年4月28日
(33)【優先権主張国】US
(31)【優先権主張番号】61/320,953
(32)【優先日】2010年4月5日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】512257130
【氏名又は名称】コムスコア,インコーポレーテッド
(74)【代理人】
【識別番号】100097456
【弁理士】
【氏名又は名称】石川 徹
(72)【発明者】
【氏名】ブリアン プグフ
(72)【発明者】
【氏名】フランク イー.ペクジャク
【審査官】 小林 義晴
(56)【参考文献】
【文献】 特開2007−004564(JP,A)
【文献】 米国特許出願公開第2004/0243704(US,A1)
【文献】 米国特許出願公開第2008/0086741(US,A1)
【文献】 欧州特許出願公開第02071461(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 13/00
(57)【特許請求の範囲】
【請求項1】
一以上の処理装置と、
前記一以上の処理装置によって実行された時、前記一以上の処理装置に対して、下記動作を実行させる命令を記憶する一以上の記憶装置とを備えるシステムであって、
ネットワーク上の第1セットの情報源に関する第1セットの利用状況データにアクセスする動作であって、前記第1セットの情報源は、第1グループのクライアントシステムによってアクセスされ、前記第1セットの利用状況データは、前記第1セットの情報源を含むビーコン命令によって送信され前記第1グループのクライアントシステムから受信した情報に基づいて決定される動作と、
ネットワーク上の第2セットの情報源に関する第2セットの利用状況データにアクセスする動作であって、前記第2セットの利用状況データは、前記第2セットの情報源にアクセスした第2グループのクライアントシステムにインストールされた監視アプリケーションから受信された情報に基づいて決定され、前記第2グループのクライアントシステムの利用者は、ネットワーク上の情報源を利用する、より大きなグループの利用者のサンプルである動作と、
前記第1セットの利用状況データに基づいて、ネットワーク上の第3セットの情報源に関する未調整の利用状況測定データを決定する動作であって、前記第3セットの情報源には、前記第1セットの情報源と前記第2セットの情報源に含まれる一以上の共通情報源を含む動作と、
前記第2セットの利用状況データに基づいて、前記第1セットの利用状況データには存在せず前記第2セットの利用状況データに存在する特徴に関連した一以上の調整因子を決定する動作と、
前記一以上の調整因子を前記未調整の利用状況測定データに適用して、調整利用状況測定データを生成する動作と、
前記調整利用状況測定データに基づいて、一以上の報告を生成する動作と、を含む前記システム。
【請求項2】
前記第1グループのクライアントシステムから受信した情報には、前記共通情報源にアクセスした前記第1グループに属する各々のクライアントシステムのために、前記共通情報源を特定すると共に、前記クライアントシステムに関する固有の識別子を含むビーコンクッキーを含む、一以上のビーコンメッセージを含む、請求項1に記載のシステム。
【請求項3】
前記未調整の利用状況測定データを決定するために、前記命令には、実行された時に、前記一以上の処理装置に、前記共通情報源を特定すると共に、異なる固有の識別子を保有するビーコンクッキーを含むビーコンメッセージを受信した数を決定することによって、ある期間内に前記第3セットの情報源にアクセスした固有訪問者の当初数を決定させる命令を含む、請求項2に記載のシステム。
【請求項4】
前記一以上の調整因子には、前記期間内に前記共通情報源にアクセスした個人当たりのビーコンクッキーの数を反映する、個人当たりクッキー調整因子を含む、請求項3に記載のシステム。
【請求項5】
前記個人当たりクッキー調整因子を決定するために、前記命令には、前記一以上の処理装置に、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数と、前記期間内に前記共通情報源にアクセスした個人の投影された総数との比を決定させる命令を含む、請求項4に記載のシステム。
【請求項6】
前記一以上の調整因子には、ビーコンクッキー当たりに、前記期間内に前記共通情報源にアクセスした個人の数を反映する、クッキー当たり個人調整因子を含む、請求項3に記載のシステム。
【請求項7】
前記クッキー当たり個人調整因子を決定するために、前記命令には、前記一以上の処理装置に、前記期間内に前記共通情報源にアクセスした個人の投影された総数と、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数との比を決定させる命令を含む、請求項に記載のシステム。
【請求項8】
前記一以上の調整因子には、前記期間内に前記共通情報源にアクセスした個人当たりの、前記期間内に前記共通情報源にアクセスするために使用されたクライアントシステムの数を反映させる、機械装置重複調整因子を含む、請求項3に記載のシステム。
【請求項9】
前記機械装置重複調整因子を決定するために、前記命令には、前記一以上の処理装置に、前記期間内に前記共通情報源にアクセスした個人によって使用された個人当たりのクライアントシステムの増加数、前記期間内に前記共通情報源にアクセスした個人当たりのアクセス頻度、及び、前記期間内の1日当たりに前記共通情報源にアクセスした平均回数の少なくとも一部に基づいて、前記機械装置重複調整因子を決定させる命令を含む、請求項8に記載のシステム。
【請求項10】
前記個人当たりのクライアントシステムの増加数は、前記期間内に前記共通情報源にアクセスしたクライアントシステムの総数と、前記期間内に前記共通情報源にアクセスした個人の総数との比に基づいて決定される、請求項9に記載のシステム。
【請求項11】
前記一以上の調整因子には、前記第2セットの情報源に含まれるが、前記第1セットの情報源には含まれない、前記第3セットの情報源に属する一以上の情報源にアクセスした固有訪問者の数を反映する、ビーコン不在調整因子を含む、請求項3に記載のシステム。
【請求項12】
前記ビーコン不在調整因子を決定するために、前記命令には、前記一以上の処理装置に、前記第3セットの情報源にアクセスした投影された固有訪問者の数を決定させ、前記共通情報源にアクセスした固有訪問者の投影された数を決定させ、前記第3セットの情報源にアクセスした固有訪問者の投影された数から、前記共通情報源にアクセスした固有訪問者の投影された数を減算させる命令を含む、請求項11に記載のシステム。
【請求項13】
前記未調整の利用状況測定データを決定するために、前記命令には、実行時に、前記一以上の処理装置に、前記共通情報源を特定するビーコンメッセージの総数を決定することによって、ある期間内における前記第3セットの情報源に関するページ閲覧の当初数を決定させる、命令を含む、請求項2に記載のシステム。
【請求項14】
前記一以上の調整因子には、前記第2セットの情報源に含まれるが、前記第1セットの情報源には含まれない、前記第3セットの情報源に属する一以上の情報源に関するページ閲覧の数を反映する、ビーコン不在調整因子を含む、請求項13に記載のシステム。
【請求項15】
一以上の処理装置が、ネットワーク上の第1セットの情報源に関する第1セットの利用状況データにアクセスする工程であって、前記第1セットの情報源は、第1グループのクライアントシステムによってアクセスされ、前記第1セットの利用状況データは、前記第1セットの情報源を含むビーコン命令によって送信され前記第1グループのクライアントシステムから受信した情報に基づいて決定される工程と、
前記一以上の処理装置が、ネットワーク上の第2セットの情報源に関する第2セットの利用状況データにアクセスする工程であって、前記第2セットの利用状況データは、前記第2セットの情報源にアクセスする前記第2グループのクライアントシステムにインストールされた監視アプリケーションから受信した情報に基づいて決定され、前記第2グループのクライアントシステムの利用者は、前記ネットワーク上の情報源を利用する、より大きなグループの利用者のサンプルである、工程と、
前記一以上の処理装置が、前記第1セットの利用状況データに基づいて、前記ネットワーク上の第3セットの情報源に関する未調整の利用状況測定データを決定する工程であって、前記第3セットの情報源は、前記第1セットの情報源及び前記第2セットの情報源に含まれる一以上の共通情報源を含む、工程と、
前記一以上の処理装置が、前記第2セットの利用状況データに基づいて、前記第1セットの利用状況データには存在せず前記第2セットの利用状況データに存在する特徴に関連した一以上の調整因子を決定する工程と、
前記一以上の処理装置が、前記一以上の調整因子を前記未調整の利用状況測定データに適用して、調整利用状況測定データを生成する工程と、
前記一以上の処理装置が、前記調整利用状況測定データに基づいて、一以上の報告を生成する工程とを含む、方法。
【請求項16】
前記第1グループのクライアントシステムから受信した情報には、前記共通情報源にアクセスした前記第1グループに属する各クライアントシステムのために、前記共通情報源を特定すると共に、前記クライアントシステムに固有の識別子を保有したビーコンクッキーを含む、一以上のビーコンメッセージを含む、請求項15に記載の方法。
【請求項17】
前記未調整の利用状況測定データを決定する工程は、前記一以上の処理装置が、前記共通情報源を特定すると共に、異なる固有の識別子を保有したビーコンクッキーを含むビーコンメッセージを受信した数を決定することによって、ある期間内に前記第3セットの情報源にアクセスした固有訪問者の当初数を決定する工程を含む、請求項16に記載の方法。
【請求項18】
前記一以上の調整因子は、前記期間内に前記共通情報源にアクセスした個人当たりのビーコンクッキーの数を反映する個人当たりクッキー調整因子を含む、請求項17に記載の方法。
【請求項19】
前記個人当たりクッキー調整因子を決定する工程は、前記一以上の処理装置が、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数と、前記期間内に前記共通情報源にアクセスした個人の投影された総数との比を決定する工程を含む、請求項18に記載の方法。
【請求項20】
前記一以上の調整因子は、ビーコンクッキー当たりに、前記期間内に前記共通情報源にアクセスした個人の数を反映する、クッキー当たり個人調整因子を含む、請求項17に記載の方法
【請求項21】
前記クッキー当たり個人調整因子を決定する工程は、前記一以上の処理装置が、前記期間内に前記共通情報源にアクセスした個人の投影された総数と、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数との比を決定する工程を含む、請求項20に記載の方法
【請求項22】
前記一以上の調整因子は、前記期間内に前記共通情報源にアクセスした個人当たりの、前記期間内に前記共通情報源にアクセスするために使用されたクライアントシステムの数を反映する機械装置重複調整因子を含む、請求項17に記載の方法。
【請求項23】
前記装置重複調整因子を決定する工程は、前記一以上の処理装置が、前記期間内に前記共通情報源にアクセスした個人によって使用された個人当たりのクライアントシステムの増加数、前記期間内に前記共通情報源にアクセスした個人当たりのアクセス頻度、及び、前記期間内の1日当たりの前記共通情報源への平均アクセス数の少なくとも一部に基づいて、前記機械装置重複調整因子を決定する工程を含む、請求項22に記載の方法。
【請求項24】
前記個人当たりのクライアントシステムの増加数は、前記期間内に前記共通情報源にアクセスしたクライアントシステムの総数と、前記期間内に前記共通情報源にアクセスした個人の総数との比に基づいて決定される、請求項23に記載の方法。
【請求項25】
前記一以上の調整因子は、前記第2セットの情報源には含まれるが、前記第1セットの情報源には含まれない、前記第3セットの情報源に属する一以上の情報源にアクセスした固有訪問者の数を反映する、ビーコン不在調整因子を含む、請求項15に記載の方法。
【請求項26】
前記ビーコン不在調整因子を決定する工程は、前記一以上の処理装置が、前記第3セットの情報源にアクセスした固有訪問者の投影された数を決定する工程と、前記一以上の処理装置が、前記共通情報源にアクセスした固有訪問者の投影された数を決定する工程と、前記一以上の処理装置が、前記第3セットの情報源にアクセスした固有訪問者の投影された数から、前記共通情報源にアクセスした固有訪問者の投影された数を減算する工程とを含む、請求項25に記載の方法。
【請求項27】
前記未調整の利用状況測定データを決定する工程は、前記一以上の処理装置が、前記共通情報源を特定するビーコンメッセージの総数を決定することによって、ある期間内に前記第3セットの情報源に関するページ閲覧の当初数を決定する工程を含む、請求項15に記載の方法。
【請求項28】
前記一以上の調整因子は、前記第2セットの情報源には含まれるが、前記第1セットの情報源には含まれない、前記第3セットの情報源に属する一以上の情報源に関するページ閲覧の数を反映するビーコン不在調整因子を含む、請求項27に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本件出願は、2010年4月28日に出願され、「標本及びセンサスデータに基づく測定方法」と標題された米国特許仮出願61/328,909号、及び2010年4月5日に出願され、「標本及びセンサスデータに基づく測定方法」と標題された米国特許仮出願61/320,953号に基づく優先権を主張する、2010年8月30日に出願された米国特許出願12/871,385号に基づく優先権を主張するものであって、完全に参照することによって、それら出願内容の全てを取り込んである。
【背景技術】
【0002】
(背景)
インターネット閲覧者測定は、種々理由から有用なことであり得る。例えば、ある組織は、そのサイトの閲覧者又は技術の規模及び増大について主張できるようにしたいと思っている。同様に、消費者とある特定のウェブサイト又は一グループのウェブサイトとはどのように相互に影響を及ぼすのかというような、消費者の行動を理解することは、ある組織が、そのウェブサイトの通信フロー又は目標を向上する意思決定をする際の手助けとなる。さらに、インターネット閲覧者の訪問特性及び習性を理解することは、宣伝広告企画、購買及び販売を支援する上で有用であり得る。
【発明の概要】
【0003】
(要旨)
一の態様によれば、あるシステムは、一以上の処理装置と、種々命令を記憶する一以上の記憶装置と、を有している。それら命令は、前記一以上の処理装置によって実行された時、前記一以上の処理装置を、ネットワーク上の第1セットの情報源に関する第1セットの利用状況データにアクセスさせる。前記第1セットの情報源は、第1グループのクライアントシステムによってアクセスされ、前記第1セットの利用状況データは、前記第1セットの情報源を含むビーコン命令によって送信された、前記第1グループのクライアントシステムから受信された情報に基づいて決定される。前記命令は、又、一以上の処理装置を、ネットワーク上の第2セットの情報源に関する第2セットの利用状況データにアクセスさせる。そして、前記第2セットの利用状況データは、第2セットの情報源にアクセスした第2グループのクライアントシステムにインストールされた監視アプリケーションから受信された情報に基づいて決定される。第2グループのクライアントシステムの利用者は、前記ネットワーク上の情報源を利用する、より大きなグループの利用者を代表するサンプルである。さらに、前記命令は、一以上の処理装置に、前記第1セットの利用状況データに基づいて、ネットワーク上の第3セットの情報源に関する当初利用状況測定データを決定させる。ここで、第3セットの情報源は、前記第1セットの情報源と前記第2セットの情報源とに含まれる一以上の共通情報源を含む。次いで、前記第2セットの利用状況データに基づいて一以上の調整因子を決定する。次いで、前記当初利用状況測定データに前記一以上の調整因子を適用して、調整利用状況測定データを生成する。そして、この調整利用状況測定データに基づいて一以上の報告を生成する。
【0004】
実施態様においては、一以上の下記特徴を含めてもよい。例えば、前記第1グループのクライアントシステムから受信した情報には、前記共通情報源にアクセスした第1グループに属する各クライアントシステムのために、前記共通情報源を特定すると共に、前記クライアントシステムの固有識別子を保有させたビーコンクッキーを含む、一以上のビーコンメッセージを含んでもよい。当初利用状況測定データを決定するために、前記命令には、実行された時に、前記一以上の処理装置に、前記共通情報源を特定すると共に、異なる固有識別子を保有させたビーコンクッキーを含む、ビーコンメッセージを受信した数を決定することによって、ある期間内に前記第3セットの情報源にアクセスした固有訪問者の当初総数を決定させる命令を含んでもよい。
【0005】
前記一以上の調整因子には、前記期間内に前記共通情報源にアクセスした個人当たりのビーコンクッキーの数を反映する個人当たりクッキー調整因子を含んでもよい。個人当たりクッキー調整因子を決定するために、前記命令には、一以上の処理装置に、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数と前記期間内に前記共通情報源にアクセスした個人の投影された総数との比を決定させる命令を含んでもよい。
【0006】
前記一以上の調整因子には、ビーコンクッキー当たりに、前記期間内に前記共通情報源にアクセスした個人の数を反映させる、クッキー当たり個人調整因子を含んでもよい。このクッキー当たり個人調整因子を決定するために、前記命令には、一以上の処理装置に、前記期間内に前記共通情報源にアクセスした個人の投影された総数と前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数との比を決定させる命令を含んでもよい。
【0007】
前記一以上の調整因子には、前記期間内に前記共通情報源にアクセスした個人当たりに、前記期間内に前記共通情報源にアクセスするために使用されたクライアントシステムの数を反映させる、機械装置的重複調整因子を含んでもよい。この機械装置的重複調整因子を決定するために、前記命令には、一以上の処理装置に、少なくともその一部、前記期間内に前記共通情報源にアクセスした個人によって使用された個人当たりのクライアントシステムの増加数、前記期間内に前記共通情報源にアクセスした個人当たりのアクセス頻度、及び、前記期間内の1日当たりの前記共通情報源への平均アクセス数に基づいて、機械装置的重複調整因子を決定させる命令を含んでもよい。この個人当たりのクライアントシステムの増加数は、前記期間内に前記共通情報源にアクセスしたクライアントシステムの総数と、前記期間内に前記共通情報源にアクセスした個人の総数との比に基づいて決定することができる。
【0008】
前記一以上の調整因子には、前記第2セットの情報源には含まれるが、前記第1セットの情報源には含まれない、前記第3セットの情報源に属する一以上の情報源にアクセスした固有訪問者の数を反映する、ビーコン不在調整因子を含んでもよい。このビーコン不在調整因子を決定するため、前記命令には、一以上の処理装置に、前記第3セットの情報源にアクセスした固有訪問者の投影された数を決定させ、前記共通情報源にアクセスした固有訪問者の投影された数を決定させ、そして、前記第3セットの情報源にアクセスした固有訪問者の投影された数から前記共通情報源にアクセスした固有訪問者の投影された数を減算させる命令を含んでもよい。
【0009】
当初利用状況測定データを決定するために、前記命令には、実行された時に、一以上の処理装置に、前記共通情報源を特定するビーコンメッセージの総数を決定することによって、ある期間内に前記第3セットの情報源に関する当初ページ閲覧数を決定させる命令を含んでもよい。前記一以上の調整因子には、前記第2セットの情報源には含まれるが、第1セットの情報源には含まれない、第3セットの情報源に所属する一以上の情報源に関するページ閲覧数を反映させる、ビーコン不在調整因子を含んでもよい。
【0010】
他の態様によれば、この方法は、あるネットワーク上の第1セットの情報源に関する第1セットの利用状況データにアクセスする工程を含む。第1セットの情報源は、第1グループのクライアントシステムによってアクセスされ、第1セットの利用状況データは、第1セットの情報源を含むビーコン命令によって送信され、第1グループのクライアントシステムから受信した情報に基づいて決定される。前記方法は、あるネットワーク上の第2セットの情報源に関する第2セットの利用状況データにアクセスする工程をも含む。第2セットの利用状況データは、第2セットの情報源にアクセスする第2グループのクライアントシステムにインストールされた監視アプリケーションから受信した情報に基づいて決定される。第2グループのクライアントシステムの利用者は、当該ネットワーク上の情報源を利用する、より大きなグループの利用者のサンプルである。さらに、前記方法は、第1セットの利用状況データに基づいて、ネットワーク上の第3セットの情報源に関する当初利用状況測定データを決定する工程と、ここで、第3セットの情報源は、第1セットの情報源及び第2セットの情報源に含まれる一以上の共通情報源を含むが、第2セットの利用状況データに基づいて一以上の調整因子を決定する工程と、その一以上の調整因子を前記当初利用状況測定データに適用して調整利用状況測定データを生成する工程と、その調整利用状況測定データに基づいて一以上の報告を生成する工程と、を含む。
【0011】
実施態様においては、一以上の下記特徴を含んでもよい。例えば、前記第1グループのクライアントシステムから受信した情報には、前記共通情報源にアクセスする第1グループに所属する各クライアントシステムのために、前記共通情報源を特定すると共に、クライアントシステムに固有の識別子を保有したビーコンクッキーを含む、1以上のビーコンメッセージを含んでもよい。当初利用状況測定データを決定する工程には、前記共通情報源を特定すると共に、異なる固有の識別子を保有させたビーコンクッキーを含むビーコンメッセージを受信した数を算出することによって、ある期間内に前記第3セットの情報源にアクセスした固有訪問者の当初数を決定する工程を含んでもよい。
【0012】
前記一以上の調整因子は、前記期間内に前記共通情報源にアクセスした個人当たりのビーコンクッキーの数を反映する、個人当たりのクッキー調整因子を含んでもよい。個人当たりのクッキー調整因子を決定する工程には、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数と、前記期間内に前記共通情報源にアクセスした個人の投影された総数との比を算出する工程を含んでもよい。
【0013】
前記一以上の調整因子には、ビーコンクッキー当たりに、前記期間内に前記共通情報源にアクセスした個人の数を反映させる、クッキー当たりの個人調整因子を含んでもよい。クッキー当たりの個人調整因子を決定する工程には、前記期間内に前記共通情報源にアクセスした個人の投影された総数と、前記期間内に前記共通情報源にアクセスしたクライアントシステムに設定されたクッキーの投影された総数との比を算出する工程を含んでもよい。
【0014】
前記一以上の調整因子には、記期間内に前記共通情報源にアクセスした個人当たりの、前記期間内に前記共通情報源にアクセスするために使用されたクライアントシステムの数を反映させる、機械装置的重複調整因子を含んでもよい。機械装置的重複調整因子を決定する工程には、少なくともその一部に、前記期間内に前記共通情報源にアクセスした個人によって使用された個人当たりのクライアントシステムの増加数、前記期間内に前記共通情報源にアクセスした個人当たりのアクセス頻度、及び、前記期間内の1日毎の前記共通情報源への平均アクセス数に基づいて、機械装置的重複調整因子を決定する工程を含んでもよい。この個人当たりのクライアントシステムの増加数は、前記期間内に前記共通情報源にアクセスしたクライアントシステムの総数と、前記期間内に前記共通情報源にアクセスした個人の総数との比に基づいて決定することができる。
【0015】
前記一以上の調整因子には、前記第2セットの情報源には含まれるが、前記第1セットの情報源には含まれない、前記第3セットの情報源に属する一以上の情報源にアクセスした固有訪問者の数を反映する、ビーコン不在調整因子を含んでもよい。このビーコン不在調整因子を決定する工程には、前記第3セットの情報源にアクセスした固有訪問者の投影された数を決定する工程、前記共通情報源にアクセスした固有訪問者の投影された数を決定する工程、及び、前記第3セットの情報源にアクセスした固有訪問者の投影された数から前記共通情報源にアクセスした固有訪問者の投影された数を減算する工程、を含んでもよい。
【0016】
当初利用状況測定データを決定する工程には、前記共通情報源を特定するビーコンメッセージの総数を決定することによって、ある期間内に前記第3セットの情報源に関する当初ページ閲覧数を決定する工程を含んでもよい。前記一以上の調整因子には、前記第2セットの情報源には含まれるが、第1セットの情報源には含まれない、第3セットの情報源に属する1以上の情報源に関するページ閲覧数を反映させる、ビーコン不在調整因子を含んでもよい。
【0017】
上述した手法の何れかの実施態様には、方法又は工程、装置、機器、機械、システム、又は、コンピュータが読み取り可能な記憶装置に記憶された命令を含めてもよい。特定の実施態様の詳細は、添付する図面及び下記の説明において明らかにする。その他の特徴については、図面を含めた下記説明及び請求の範囲から明らかであろう。
【図面の簡単な説明】
【0018】
図1図1は、インターネット閲覧者測定を実施するために、利用者の標本を使用するシステムの一実施例を示すものである。
図2図2は、一以上のウェブページにビーコンコードを含ませることによって、サイト中枢データを取得することができるシステムの一実施例を示すものである。
図3図3は、標本中枢データ及びサイト中枢データを使用して、測定データを生成することができるシステムの一実施例を示すものである。
図4図4は、所定のウェブページ又はウェブページの集合体に関する閲覧者測定報告を決定する工程の一実施例を示すフローチャートである。
図5図5は、個人当たりクッキー調整因子を決定する工程の一実施例を示すフローチャートである。
図6図6は、機械装置重複調整因子を決定する工程の一実施例を示すフローチャートである。
図7図7は、ビーコン不在調整因子を決定する工程の一実施例を示すフローチャートである。
【発明を実施するための形態】
【0019】
(発明の詳細な説明)
一般的に、クライアントシステムによってウェブページ又は他の情報源にアクセスした事実は記録でき、それらアクセスした事実は、閲覧者測定報告を改善するために分析できる。情報源へのアクセスに関するデータは、標本基礎型手法を用いて収集できる。標本基盤型手法は、一般的に、利用者の標本のクライアントシステムに監視アプリケーションをインストールすることが必要である。そして、前記監視アプリケーションは、ウェブページ又は他の情報源へのアクセスに関する情報を収集し、その情報を収集サーバへと送信する。
【0020】
情報源へのアクセスに関するデータは、ビーコン基礎型手法を用いて収集することもできる。ビーコン基礎型手法は、一般的に、スクリプト又は他のコードをアクセスされる情報源に関連付けることから成り、クライアントシステムが情報源を表示するか、さもなければ、情報源を利用する時に、前記コードが実行されるようになっている。実行時には、ビーコンコードは、メッセージを収集サーバに送信する。このメッセージには、アクセスされた情報源の識別子のような、ある種の情報を含む。
【0021】
標本基礎型データ及びビーコン基礎型データを個別的に使用して、閲覧者測定報告を生成することができる一方において、標本基礎型データ及びビーコン基礎型データを付加的に又は選択的に連携して使用して、閲覧者測定報告を生成することもできる。これらのデータセットを連携して使用すれば、前記報告の正確性を向上させることができる。以下に、標本基礎型及びビーコン基礎型手法を適用して、情報源へのアクセスに関するデータを収集するシステムの実施例について説明し、その後に、両方の手法を連携して適用することによって収集したデータを使用して、閲覧者測定報告を生成する方法の実施例について説明する。
【0022】
図1は、利用者の標本を使用して、インターネット閲覧者測定のためのデータを収集することができるシステム100の一実施例を示すものである。このシステム100は、クライアントシステム112,114,116及び118、一以上のウェブサーバ110、収集サーバ130、及びデータベース132を有する。一般的に、標本に属する利用者は、クライアントシステム112,114,116及び118を利用して、インターネット上の情報源、例えば、ウェブサーバ110に配置されたウェブページにアクセスする。この情報源へのアクセスに関する情報は、各々のクライアントシステム112、114、116及び118によって収集サーバ130へと送信される。この情報はインターネット利用者の利用習性を理解するために用いられ得る。
【0023】
各クライアントシステム112、114、116及び118、収集サーバ130及びウェブサーバ110は、例えば、所定の様式で命令に応答し、命令を実行することができる汎用コンピュータ、パーソナルコンピュータ、専用コンピュータ、ワークステーション、サーバ、又は携帯装置を使用することによって、実施することができる。クライアントシステム112、114、116及び118、収集サーバ130及びウェブサーバ110は、例えば、ソフトウェアアプリケーション、プログラム、一連のコード、装置、コンピュータ、コンピュータシステム、又はそれらの組み合わせから、それらは独立して又は協働して種々動作を行うのであるが、種々の命令を受信することができる。この命令は、如何なる種類の機械、構成要素、装置、又は、クライアントシステム112、114、116及び118、収集サーバ130及びウェブサーバ110によっても使用することができる他の物理的な記憶媒体内に、永続的に又は一時的に格納される。
【0024】
図1に示される例では、システム100は、クライアントシステム112、114、116及び118を有する。しかしながら、他の実施例では、より多い又はより少ないクライアントシステムを設けてもよい。同様に、図1に示す実施例では、単一の収集サーバ130を有する。しかしながら、他の実施例では、二以上の収集サーバ130を設けてもよい。例えば、各クライアントシステム112、114、116及び118は、予備のため、二以上の収集サーバにデータを送信してもよい。他の実施形態では、クライアントシステム112、114、116及び118は、異なる収集サーバにデータを送信してもよい。本実施例では、前記データは、標本全体からのデータを示すのであるが、後の処理のために、中央位置に送信され、集中させることができる。この中心位置は収集サーバの一つであってもよい。
【0025】
クライアントシステム112、114、116及び118の利用者は、あるグループの利用者であるが、例えば、全てのインターネット利用者が属する領域、又はある地理的範囲内の全てのインターネット利用者が属する領域のような、測定される、より大きな領域に属する代表的なサンプルである。測定される領域の全体の行動を理解するために、このサンプルからの行動が測定される領域に投影される。測定される領域の規模及び/又はその人口構成は、例えば、別個独立した測定又は調査によって知ることができる。例えば、無作為抽出で電話を掛けることによって、月毎に(又は、他の間隔で)計数するような調査を実施することができる。
【0026】
同様に、クライアントシステム112、114、116及び118は、あるグループのクライアントシステムであるが、インターネット上の情報源にアクセスするために使用される、より大きな領域のクライアントシステムの代表的サンプルである。その結果として、個人を基礎とするだけではなく、機械装置を基礎とする行動も、付加的に又選択的に、インターネット上の情報源へアクセスする全てのクライアントシステムの領域に投影できる。そのようなクライアントシステムの全領域も、例えば、別個独立した測定又は調査によって決定できる。
【0027】
標本に属する利用者は、収集サーバ130を管理する、ある実体によって召集され、その実体は、標本に属する利用者に関する種々の人口統計的な情報を収集することができる。例えば、年齢、性別、世帯規模、家族構成、地理的範囲、クライアントシステムの数、世帯年収等である。利用者を召集するのに用いられる手法は、選択され、又は、開発されて、測定される領域の中でサンブルが好適に無作為抽出され、サンプル内における偏向が最小化され、極めて取扱い易い高い協調性が得られるよう保証できる。利用者が召集されると、監視アプリケーションがその利用者のクライアントシステムにインストールされる。そして、その監視アプリケーションは、インターネット上の情報源にアクセスするクライアントシステムの利用者の利用に関する情報を収集し、収集サーバ130にその情報を送信する。
【0028】
例えば、監視アプリケーションは、監視アプリケーションがインストールされたクライアントシステムのネットワークスタックへアクセスすることができる。監視アプリケーションは、ネットワーク上の送受信情報を監視して、クライアントシステムから送信された情報源への要求及びそれに続く応答に関する情報を分析し、収集できる。例えば、監視アプリケーションは、HTTP上の要求とそれに続くHTTP上の応答に関する情報を分析し、収集できる。
【0029】
そして、システム100では、監視アプリケーション112b,114b,116b,118bは、標本アプリケーションとも言うが、各クライアントシステム112,114,116,118にインストールされる。従って、クライアントシステム112、114、116及び118の一つの利用者が、例えば、ブラウザアプリケーション112a、114a、116a及び118aを利用して、種々のウェブページを訪問して閲覧すると、これらの訪問に関する情報は、監視アプリケーション112b、114b、116b及び118bによって収集でき、収集サーバ130へと送信できる。例えば、監視アプリケーションは、アクセスしたウェブページ又は他の情報源のURL、それらのページ又は情報源がアクセスされた時間、監視アプリケーションがインストールされた特定のクライアントシステムに関連付けられた識別子(それは、そのクライアントシステムの利用者に関して収集された人口統計的な情報とも関連付けられているかもしれない)を収集でき、収集サーバ130へと送信できる。例えば、固有の識別子が生成され、クライアントシステムにインストールされた監視アプリケーションの特定のコピーに関連付けられるかもしれない。監視アプリケーションは、又、情報源への要求とそれに続く応答に関する情報を収集でき、送信できる。例えば、監視アプリケーションは、要求によって送信された及び/又は応答によって受信したクッキーを収集する。収集サーバ130は、この情報を受信でき、記録できる。収集サーバ130は、クライアントシステムから記録された情報を収集し、この収集された情報を標本の中心データ132aとしてデータベース132に記憶する。
【0030】
標本中枢データ132aは分析されて、標本に属する利用者の訪問特性及び他の習性を決定できる。それは、より大きな人口の全インターネット利用者についても推定できる。ある特定の利用時間(セッション)の間に収集された情報は、その時間内にクライアントシステムを利用していると信じられ又は知られているクライアントシステム(及び/又は、彼又は彼女の人口統計的情報)のある特定の利用者に関連付けることができる。例えば、監視アプリケーションは、利用者に彼又は彼女自身を特定することを要求し、又、米国特許出願番号2004-0019518号又は米国特許7,260,837号、両方ともに参照によって本件出願に取り込まれたが、に記載されたような手法が使用されるかもしれない。クライアントシステムを利用する個人を特定することによって、利用状況情報が機械装置当たりを基礎とするのでなく、個人当たりを基礎として決定され、推定されることができる。換言すれば、クライアントシステムを利用する個人を特定することで、機械装置自体ではなく、家庭内の機械装置を介した個人に帰属した測定をすることができる。
【0031】
標本の構成員の利用状況から、測定されるより大きな領域を推定するために、標本の構成員の一部又は全てが重み付けられ、より大きな領域に投影される。ある実施例では、標本の全構成員の部分集合が重み付けられ、投影できる。例えば、受信したデータを分析することによって、標本のある構成員から収集されたデータは信頼できないことがわかるかもしれない。それらの構成員は報告から除外され、ゆえに、重み付けられ、投影されることからも除外されるかもしれない。
【0032】
報告する利用者のサンプル(重み付け及び投影の対象に含まれる者)は、重み付けされて、報告するサンプルが測定されるべき利用者の領域の人口統計的な構成を反映することを保証し、この重み付けされたサンプルは、全ての利用者の領域に投影される。このことは、報告するサンプルの各構成員に関する投影重みを決定し、その投影重みをその構成員の利用状況に適用することによって達成できる。同様に、報告するクライアントシステムのサンプルは、クライアントシステムの投影重みをクライアントシステムの利用状況に適用することによって、全てのクライアントシステムの領域に投影することができる。クライアントシステムの投影重みは、一般的に、利用者の投影重みとは異なる。
【0033】
重み付けされ、投影されたサンプル(利用者又はクライアントシステムの何れか)の利用状況行動は、所定領域(利用者又はクライアントシステムの何れか、各別に)の行動の代表的な描写と考えられ得る。重み付けされ、投影されたサンプルにおいて観察される行動パターンは、前記領域における行動パターンを反映するとみなされる。
【0034】
訪問又は他の行動に関する推定は、この情報から生成され得る。例えば、このデータは、あるウェブページ又はあるグループのウェブページを訪問する固有訪問者(又はクライアントシステム)の数、又は、あるウェブページ又はあるグループのウェブページを訪問する、ある特定の人口統計内の固有訪問者の数を推定するのに使用され得る。このデータは又、他の推定、例えば、利用者(又はクライアントシステム)当たりの利用頻度、利用者(又はクライアントシステム)当たりの平均ページ閲覧数、及び、利用者(又はクライアントシステム)当たりの平均利用時間を決定するためにも使用され得る。
【0035】
さらに、以下に説明するように、標本中枢データから決定されるこのような推定及び/又は他の情報は、ビーコン基礎型手法からのデータと共に使用して、閲覧者の訪問又は他の行動に関する報告を生成してもよい。標本中枢データをビーコン基礎型手法からのデータと共に使用することによって、このような報告の全体に亘って正確性を向上させることができる。
【0036】
図2を参照すれば、ビーコン基礎型手法は、システム200を使用して実行することができる。一般的に、ビーコン基礎型手法は、一以上のウェブページ内にビーコンコードを含むことが必要となり得る。
【0037】
システム200は、一以上のクライアントシステム202、ウェブサーバ110、収集サーバ130、及びデータベース132を有する。クライアントシステム202は、標本アプリケーションをインストールしたクライアントシステム112、114、116又は118を含むことができ、標本アプリケーションをインストールしないクライアントシステムを含むことができる。
【0038】
クライアントシステムは、ウェブサーバ110からウェブページ206を検索し、検索したウェブページを表示するブラウザアプリケーション204を含む。幾つかのウェブページ206は、ビーコンコード208を保有する。一般に、ウェブページの公表者は、収集サーバ130を運用する存在が、彼らのウェブページの一部又は全部に、このビーコンコードを含むことを認めてもよい。このコード208は、コード208が含まれるウェブページと共に表示される。表示時に、コード208は、ブラウザアプリケーション204に収集サーバ130へメッセージを送信させる。このメッセージは、ビーコンコード208が含まれたウェブページのURLのような、ある特定の情報を含む。例えば、ビーコンコードは、そのコードが含まれたウェブページのURLにアクセスするジャバスクリプトコードであって、クエリストリング内にURLを含むHTTPポストメッセージを収集サーバ130に送信するジャバスクリプトコードであってもよい。同様に、ビーコンコードは、そのコードが含まれたウェブページのURLにアクセスするジャバスクリプトコードであって、タグの“src”属性内にURLを含むジャバスクリプトコードであってもよく、それによって、タグの“src”属性内のURLに位置する情報源に関する要求を収集サーバ130へ送信する。ウェブページのURLは“src”属性内に含まれるから、収集サーバ130はウェブページのURLを受信する。そして、収集サーバ130は、透明なイメージを返信する。下記のものは、そのようなジャバスクリプトの一例である。
【数1】
【0039】
収集サーバ130は、例えば、メッセージを受信した時のタイムスタンプ、及び、メッセージを受信したクライアントシステムのIPアドレスと共に、メッセージ内の受信したウェブページのURLを記録する。収集サーバ130は、この記録した情報を収集し、サイト中枢データ132bとしてデータベース132内に記憶する。
【0040】
メッセージには、クライアントシステムに固有の識別子を含んでいてもよい。例えば、クライアントシステムが、先ず、ビーコンメッセージを収集サーバ130に送信すると、ある固有の識別子がクライアントシステムのために生成され得る(そして、受信したビーコンメッセージと関連付けられる)。その固有の識別子は、クライアントシステム102に設定されたクッキーに含まれ得る。その結果、そのクライアントシステムからその後に送信されるビーコンメッセージは、それに付加されたクッキーを保有でき、そのメッセージにはクライアントシステムに固有の識別子を含むことができる。クッキーを保有しないクライアントシステムから(例えば、利用者がクライアントシステム上のクッキーを削除したために)ビーコンメッセージを受信した場合には、収集サーバ130は、再度、固有の識別子を生成し、クライアントシステムの新規なクッキーのセット内にその識別子を含ませることができる。
【0041】
ゆえに、クライアントシステム102の利用者がウェブページ(例えば、インターネット上の)にアクセスすると、クライアントシステム102はビーコンコードを保有するウェブページにアクセスし、その結果、収集サーバ130にメッセージが送信される。これらのメッセージは、アクセスされたウェブページを表示し(例えば、ウェブページのURLを保有することによって)、メッセージが送信されたクライアントシステムの固有の識別子を潜在的に表示する。メッセージが収集サーバ130に受信されると、メッセージを受信した旨の記録が生成される。その記録は、クライアントシステムによってアクセスされたウェブページの識別子(例えば、URL)、クライアントシステムに固有の識別子、クライアントシステムがウェブページにアクセスした時刻(例えば、収集サーバ130によってメッセージが受信された時刻のタイムスタンプを保有することによって)、IPアドレスのような、ウェブページにアクセスしたクライアントシステムのネットワークアドレスを表示できる。そして、収集サーバ130は、これらの記録を収集し、収集された記録をサイト中枢データ132bとして、データベース132内に記憶できる。
【0042】
ビーコンメッセージは、一般的に、所定のクライアントシステムに標本アプリケーションがインストールされているか否かに関係なく、送信される。しかし、標本アプリケーションがインストールされているクライアントシステムに関しては、標本アプリケーションもまた、ビーコンメッセージを記録し、ビーコンメッセージを収集サーバ130に報告する。例えば、標本アプリケーションがHTTPトラフィックを記録し、ビーコンメッセージがHTTPポストメッセージを用いて(又は、タグによって)送信される場合は、ビーコンメッセージは、例えば、ビーコンメッセージの一部として含まれる何等かのクッキーを保有して、標本アプリケーションによって記録されたHTTPトラフィックの一部として記録される。ゆえに、この実施例では、収集サーバ130は、ビーコンコードによってビーコンメッセージを、及びネットワークトラフィックを記録して報告する標本アプリケーションの一部としてビーコンメッセージから成る報告を受信する。
【0043】
標本アプリケーションがインストールされているか否かに係わらず、ビーコンメッセージは送信されるから、サイト中枢データ132bは、標本の構成員だけでなく、測定される、より大きな領域の構成員によるアクセスをも直接的に表示する。その結果、ビーコンコードを含むそれらのウェブページ又それらグループのウェブページにとって、サイト中枢データ132bは、閲覧者測定データを生成するための基準線としての役割を果たすことができる。しかしながら、様々な理由によって、この当初データはある種の不正確さを有する。さらに、以下に説明するように、標本中枢データ132aは、サイト中枢データ132bの正確さを向上させる種々の調整因子を決定するために使用することができる。
【0044】
図3は、標本中枢データ132aとサイト中枢データ132bを使用して、測定データ306を生成することができるシステム300の実施例を示すものである。このシステム300は報告サーバ302を有する。報告サーバ302は、例えば、所定の様式で命令に応答し、実行できる汎用コンピュータ、パーソナルコンピュータ、専用コンピュータ、ワークステーション、サーバ、又は携帯装置を使用して実現化され得る。報告サーバ302は、例えば、ソフトウェアアプリケーション、プログラム、一連のコード、装置、コンピュータ、コンピュータシステム、又はそれらの連結体から命令を受信できるが、それらは個別に又は協働して動作する。命令は、永続的又は一時的に、どのような形式の機械、構成要素、装置、又は報告サーバ302によって使用される他の物理的記憶媒体にでも格納され得る。
【0045】
報告サーバ302は、測定データプロセッサ304及び報告生成モジュール308を動作させる命令を実行する。測定データプロセッサ304は、前処理モジュール304a、当初測定モジュール304b、測定調整モジュール304cを含む。測定データプロセッサ304は、図4に示すような工程を実行して、標本中枢データ132a及びサイト中枢データ132bに基づいて、統合又は調整された測定データ306を生成できる。報告生成モジュール308は、統合又は調整された測定データ306を使用して、一以上の情報源へのクライアントシステムのアクセスに関する情報を含む一以上の報告310を生成できる。
図4は、所定のウェブページ又は所定の集合のウェブページに関する閲覧者測定報告に関する工程400の一実施例を示すフローチャートである。以下に、前処理モジュール304a、当初測定モジュール304b、測定調整モジュール304c、及び報告生成モジュール308によって実行される工程400について説明する。しかしながら、この工程400は、他のシステム又はシステム構成によって実行することもできる。
【0046】
前処理モジュール304aは、標本中枢データ132aとサイト中枢データ132b(402)にアクセスする。上記のように、標本中枢データ132aは、第1セットのクライアントシステム(標本に属する)によりアクセスされた第1セットの情報源を示し、サイト中枢データ132bは、第2のセットのクライアントシステムによりアクセスされた第2セットの情報源を示す。第2セットのクライアントシステムのいくつかは標本に属する可能性があり、第2セットのクライアントシステムのいくつかは標本に属しない可能性がある。さらに、第2セットの情報源には、第1セットの情報源に含まれる一以上の情報源を含むかもしれない。
【0047】
標本中枢データ132aは、アクセスされたウェブページ又は他の情報源のURL又は他の識別子、それらのページ又は情報源がアクセスされた時間、情報源にアクセスしたクライアントシステムの識別子、及び、情報源にアクセスするために使用された命令及び応答に関する情報(例えば、命令の際に送信された、及び/又は応答の際に受信したクッキー)を反映する記録を含んでよい。サイト中枢データ132bは、クライアントシステムによってアクセスされた情報源のURL又は識別子、情報源にアクセスしたクライアントシステムのネットワークアドレス、クライアントシステムが情報源にアクセスした時間(例えば、収集サーバ130によってビーコンメッセージが受信された時間のタイムスタンプによって表示されるように)、及び、情報源にアクセスしたクライアントシステムに固有の識別子(例えば、ビーコンメッセージに添付されるクッキーに含まれる)を反映する記録を含んでよい。
【0048】
前処理モジュール304aによってアクセスされる標本中枢データ132aとサイト中枢データ132bは、ある特定の以前の時間に収集されたデータであってもよい。例えば、アクセスされるデータは、それ以前の30日に亘って収集された、標本中枢データ132aとサイト中枢データ132bであってもよい。
【0049】
前処理モジュール304aは、アクセスされた標本中枢データ132a及びアクセスされたサイト中枢データ132bに関して、一以上の前処理動作を実行する(404)。例えば、前処理モジュール304aは、未処理の標本中枢データ132aを処理して、一つの記録で利用状況の実際を完全に表示する状態データを形成できる。例えば、ウェブページの訪問に関して、状態データにおける記録は、ある特定の利用者が、ある特定の月日、ある特定の時刻に、ウェブページB(そのウェブページのURLによって表示される)を、ある特定のクライアントシステムを使用してアクセスしたことを表示できる。前処理モジュール304aは、又、状態データ内の記録における一部又は全部のURLをインターネット上のデータディクショナリの形式に整合させることができる。その形式は、種々の異なるURLを種々のデジタルメディア上の特性に体系化して、インターネット上の会社がどのように事業を展開しているかを反映するものであり得る。各様式は、ウェブ実体に関連するものであってよく、ウェブ実体は、ウェブページ、又は、インターネット上の会社が事業を展開する仕方を反映する方法で論理的にグループ分けされたウェブページの集合体であり得る。例えば、finance.yahoo.comのドメインに含まれる種々のウェブページは、論理的にグループ分けされて、一つのウェブ実体となっていることがある(例えば、Yahoo Finance)。ディクショナリは、多数の階層組織となったウェブ実体を含んでおり、それは、種々のインターネットメディア上の会社、及び、それら会社がどのようにウェブプロパティを配列しているか、ということを反映することができる。例えば、Yahoo Financeというウェブ実体は、Yahooというウェブ実体の部分集合体と考えられ、そのYahooは、yahoo.comドメインに包含される種々のウェブページの全てを包括できる。Yahooというウェブ実体は、他のウェブ実体、例えば、Yahoo Healthというウェブ実体(health.yahoo.comドメインに属する種々のウェブページと関連している)をも包括できる。前処理モジュール304aは、所定の状態データの記録を、その状態データ記録内のURLと整合した様式と関連付けられる最下層のウェブ実体と関連付けるかもしれない。
【0050】
前処理モジュール304aは、又、標本中枢データ132aから、報告サンプルに含まれるべきではない利用者に関する記録を取り除くことができる。例えば、報告期間において、ある利用者の利用状況及び非利用状況に関する完全な記録が受信されることを保証することに価値があるという規則が存在するかもしれない。そのような規則に応じない場合には、その利用者は報告サンプルから取り除かれ得る。又、利用者が、例えば、ある特定の地理的範囲内にいるというような、ある基準に合致しないならば、その利用者は取り除かれ得る。
【0051】
さらに、前処理モジュール304aは、ある特定の種類の記録を取り除くかもしれない。例えば、リダイレクトを反映する、又は、人間によらない開始要求(例えば、ウェブページを表示させる一部として為される要求)を反映する記録は取り除くかもしれない。
【0052】
前処理モジュール304aは、サイト中枢データ132bを処理し、サイト中枢データ132bの記録内の一部又は全部のURLをディクショナリにおける様式と整合させて、その記録を、例えば、ある階層内の最下層のウェブ実体のような、あるウェブ実体に関連付けてもよい。406から410の動作を、ウェブ実体毎という基準で実行し、又は測定データ306を決定してもよい。例えば、406から410の動作を、より上層のウェブ実体に含まれる全ての最下層のウェブ実体と関連付けられたデータを収集するために使用されるディクショナリを使用して、最下層のウェブ実体の各々に関して、又は、一以上のより上層のウェブ実体に関して実行してもよい。
【0053】
さらに、前処理モジュール304aは、サイト中枢データ132bから、ある特定の記録を取り除いてもよい。例えば、前処理モジュール304aは、サイト中枢データ132bから、人間によらない初期的なアクセスを反映する記録を取り除いてもよい。例えば、既知のインデックス検索クローラー又は他のロボットのリストは、そうしたロボットからのアクセスを反映する記録を取り除くために使用することができる。付加的に、又、選択的にではあるが、ある特定のクライアントシステムによって、あるウェブ実体に属する同一の又は異なるウェブページに連続してアクセスする、という事態が、ある所定の頻度で(例えば、そのアクセスが3秒間隔未満であった場合)発生したことを記録が指摘する場合には、最初のアクセスに続くアクセスを取り除いてもよい。これによって、人間によらない初期的なアクセスによる記録を、アクセス毎に二以上のビーコンメッセージを受信するというビーコンコードに関連するエラーと同様にして、取り除くことができる。
【0054】
ある実施例においては、ある種のクライアントシステムに関する記録は取り除いてもよい。例えば、携帯装置に関する記録は、取り除いてもよい。ある実施例では、そのような記録は、ビーコンメッセージと共に送信され、その記録内に記録された、利用者の代行者のデータに基づいて、探索することができる。さらに、記録を、クライアントシステムがある特定の地理的範囲内に存在しないために、取り除いてもよい(例えば、報告が、北アメリカのような、ある特定の地理的領域に関して生成される場合には)。その記録に対応するクライアントシステムが存在する国及び地域は、ネットワークアドレスの逆検索(例えば、IPアドレスの逆検索)に基づいて、決定することができる。同様に、共用クライアントシステム(例えば、ある図書館内で一般大衆が利用できるクライアントシステム)は、クライアントシステムのIPアドレス(ビーコンメッセージで捕捉される)の逆検索に基づいて、ネットワークアクセスプロバイダを分析することによって、探索することができる。
【0055】
標本中枢データ132a及びサイト中枢データ132bの両方を前処理することによって、クライアントシステムを分類することになるかもしれない。時には、クライアントシステムの種類に従って報告を分割することは、望ましいことかもしれない。例えば、ある実施例では、報告及びその基礎となるデータは、少なくとも最初は、家庭用クライアントシステムは家庭で使用されるものであり、一方、仕事用クライアントシステムは職場で使用されるものとして、仕事用と家庭用のクライアントシステムに分割されることができる。利用者は、その登録の際に、その機械装置を家庭用又は仕事用(又は、他の分類)と自ら特定するから、これら2つの下位集団は、標本中枢データ132aにおいて特定され、分類されることができる。サイト中枢データ132bにおいて、これら2つの下位集団を特定及び分類するために、月曜日から金曜日の現地時間で午前8時から午後6時までの間に受信したビーコンメッセージを、仕事で生成したトラフィックによるものであると推定することができる。そして、他の全てのトラフィックは、家庭用サンプルの対象と見做すことができる。
【0056】
サイト中枢データ132bにおいて、これらの2つの下位集団を特定し、分類する他の実施例では、標本中枢データ132aにおいて、仕事における行動を観察することによって、あるモデルを作成することができる。このモデルは、一日のうちのある時間、及び一週のうちのある日の利用状況の特性に基づくものであり得る。IPアドレスが仕事用コンピュータに関する所定の特性に一致した場合、そのIPアドレスに関する全てのトラフィックは、仕事によるトラフィックと考えることができる。例えば、標本データは、第1の時間の間(仕事をする時間)におけるアクセス数が、第2の時間の間(家庭にいる時間)におけるアクセス数よりも、ある程度多いならば、そのコンピュータは恐らく仕事用のものである、ということを指摘する。このような情報は、サイト中枢データをも使用し、ネットワークアクセスプロバイダの利用者によるアクセスが、家庭にいる時間よりも仕事をする時間における方が平均的にある程度多いか否かによって、それらネットワークアクセスプロバイダを、仕事用と家庭用に分類するためにも適用され得る。所定のコンピュータのネットワークアクセスプロバイダは、そのコンピュータのIPアドレスに基づいて決定でき、そのコンピュータは、そのネットワークアクセスプロバイダと同一の分類に区分できる。そのような手法は、例えば、2009年9月11日に出願された米国特許出願61/241,576号であって、「クライアントシステムの属性の決定方法」と標題されたものに記載されている。
【0057】
406から410の動作は、各下位集団のデータに関して各別に実行され、それによって、家庭用の集団を対象とする測定データ、及び、仕事用の集団を対象とする測定データを生成することができる。そして、報告は、これら下位集団の各々に関して各別に生成され、又、さらに動作412に関して記述するように、結合された報告も生成され得る。他の実施例においては、同様にして、いくつかの下位集団に区分できる。
【0058】
当初測定モジュール304bは、前処理されたサイト中枢データに基づいて、当初利用状況測定データを決定する(406)。例えば、当初測定モジュール304bは、所定のウェブ実体に関する固有の訪問者の当初測定を決定できる。固有の訪問者は、ウェブ実体のウェブページのうちの一つを要求し、及び/又は閲覧した固有の個人の数を表示するものであり得る。固有の訪問者の当初測定を決定するために、例えば、当初測定モジュール304bは、ウェブ実体に関して受信したビーコンメッセージの一部として受信した固有のクッキーの数(つまり、異なる固有の識別子を有するクッキーの数)を計数できる。
【0059】
別の実施例としては、当初測定モジュール304bは、所定のウェブ実体に関するページ閲覧数の当初測定を決定してもよい。ページ閲覧数は、ウェブ実体に関するウェブページが要求され、及び/又は閲覧された回数を表示できる(ウェブページが固有の個人によって要求又は閲覧されたかどうかには係わらず)。この場合には、当初測定モジュール304bは、ウェブ実体に関して受信されたビーコンメッセージの合計数を計数してもよい。
【0060】
測定調整モジュール304cは、前処理された標本中枢データに基づいて、一以上の調整因子を決定する(408)。当初閲覧者測定データは、前処理されたサイト中枢データのみに基づいて決定されるが、種々の理由から正確ではない場合がある。前処理された標本中枢データは、その不正確さを訂正するための調整因子を決定するために使用できる。
【0061】
例えば、固有の訪問者の当初測定がビーコン測定と共に受信されたクッキーに基づく場合には、クッキーはコンピュータ及びブラウザを基礎として設置され、個人を基礎としないため、固有の訪問者の計数を超えるか、又は、下回るかもしれない。換言すれば、たとえ複数の個人がある特定のクライアントシステムを使用するとしても、所定のコンピュータ及びブラウザに関しては、たった一つのクッキーが設置され、計数されるだけであり得る。このことは、固有の訪問者を少なく計数するということになり得る。
【0062】
さらに、クライアントシステム内に以前に設置されたクッキーを削除し、新しいクッキー及び新しい識別子が報告期間の間、さらにアクセスするために設置できる。その結果、同一の利用者によるアクセスが誤って2人の異なる利用者からのアクセスとして特定されて、固有の訪問者を重複して計数することになり得る。同様に、ある利用者が複数のブラウザを使用すれば、各ブラウザに関して、異なるクッキーが設定され得る。その結果、その利用者は同一のコンピュータ上で異なるブラウザを使用するから、一人の利用者に関して複数の異なるクッキーが存在することになり得る。これによって、固有の訪問者を過剰に計数するということになり得る。
【0063】
サイト中枢データ132bにおけるこの不正確さを考慮して、個人当たりクッキー調整因子が、前処理された標本中枢データに基づいて決定できる。この調整因子は、ウェブ実体を基礎として決定され得る。この個人当たりクッキー調整因子は、ウェブ実体のビーコン存在ウェブページ(つまり、ビーコンコードを含むウェブページ)を訪問する個人当たりに設置されるクッキーの数を反映し得る。その結果、この調整因子は、固有の訪問者の合計数を調整するために使用されて、一個人に複数のクッキー、又、逆に、一クッキーに複数の個人となる事態を補償できる。この調整因子は、例えば、図5に関して説明される工程500を適用することによって、決定できる。
【0064】
又、所定の利用者は、所定の場所で(例えば、家庭内で)複数のクライアントシステムを所有し、使用するかもしれない。その結果、たとえ、一人の利用者だけがウェブ実体に訪問していても、別々のクッキーが複数のクライアントシステムに設置され、そして、計数され得る。このことは、固有の訪問者を重複して計数することに繋がり得る。この不正確さを考慮して、機械装置重複調整因子が前処理された標本中枢データに基づいて決定される。この調整因子は、ウェブ本体を基礎として決定できる。この機械装置重複調整因子は、ウェブ実体に訪問する個人当たりに使用されるクライアントシステムの数を反映しており、それゆえに、固有の訪問者の合計数を調整することができて、ウェブ実体を訪問するのに二以上のクライアントシステムを個人が使用した結果としての、一個人当たりに複数のクッキーが存在することを調整することができる。この調整因子は、例えば、図6に関して説明される工程600を適用することによって、決定される。
【0065】
さらに、固有訪問者又はページ閲覧の当初測定が、ウェブ実体に関するウェブページに含まれたビーコンコードからのビーコンメッセージを受信したことに基づいている場合には、ビーコンコードが所定のウェブ実体に関するウェブページの全てには含まれていないことから、これらの測定の何れもが過小に計数されるかもしれない。これは、ビーコンコードを不的確に適用した結果であり(例えば、ウェブ実体の一部であるウェブページの全てには、ビーコンコードは適切に設置されていない)、又は、ある政策的理由のために不可能だからである。例えば、ある下層のウェブ実体は、その実体に関するウェブページの全てにビーコンコードを含ませることを選択するが、一方で、別の下層のウェブ実体は、ビーコンコードを全く含ませないことを選択するかもしれない。それら下層のウェブ実体が、同一のより上層のウェブ実体の下にある場合には、その下層のウェブ実体の一つがビーコンコードを含まないことを選択したために、そのより上層のウェブ実体に関するウェブページの全てにおいて、ビーコンコードを適用することはできない。ある特殊な例として、MSN(R)のウェブサイト(msn.com)及びHotmail(R)のウェブサイト(hotmail.com)はともに、Microsoft(R)として指定された、より上層のウェブ実体の下にある別々のウェブ実体であり得る。しかしながら、これら2つのウェブサイトは、別々に運営され、管理されており、それゆえに、例えば、MSN(R)はビーコンを選択する一方で、Hotmail(R)は選択しないということができる。その結果として、Microsoft(R)というウェブ実体に関する当初閲覧者測定データ(ページ閲覧又は固有訪問者の何れか)には、Hotmail(R)がビーコンコードをHotmail(R)に関するウェブページに含めていないために、Hotmail(R)ウェブページに関する何等の計数も含まれない。
【0066】
所定のウェブ実体に関するウェブページの全てにはビーコンコードを含ませないことから来るページ閲覧又は固有訪問者における不正確さを考慮して、ビーコン不在調整因子が、前処理された標本中枢データに基づいて決定できる。この調整因子は、ウェブ実体を基礎として決定できる。理想的には、標本アプリケーションはウェブトラフィックの全てを捕捉するから、所定のウェブ実体に関するビーコン不在ウェブページへの訪問も、標本アプリケーションによって捕捉され、報告される。ゆえに、前処理された標本中枢データは、ビーコンメッセージに基づいて計数されない、ウェブ実体に関するウェブページへのページ閲覧又は固有訪問者の数を反映するビーコン不在調整因子を決定するために使用され得る。この調整因子は、例えば、図7に関して説明される工程700を適用することによって、決定できる。
【0067】
測定調整モジュール304cは、この調整因子を当初利用状況測定データに適用して、調整利用状況測定データ306を生成させる(410)。例えば、所定のウェブ実体に関する固有訪問者を反映する、閲覧者測定データの一実施例では、測定調整モジュール304cは、調整された固有訪問者データを下記の式によって生成できる。

Adj UVs = ((Init UVs / Cookie-Per-Person)*Machine Overlap)+Non-Beacconed

ここで、Adj UVsは、調整された固有訪問者の計数であり、Init UVsは、前処理されたサイト中枢データに基づく固有訪問者の当初計数であり、Cookie-Per-Personは、個人当たりクッキー調整因子であり、Machine Overlapは、機械装置重複調整因子であり、Non-Beaconedは、ビーコン不在調整因子である。個人当たりクッキー調整因子の逆数(クッキー当たり個人調整因子)は、この因子とInit UVsを、割るのではなく掛けることで用いられ得る。
【0068】
別の実施例として、所定のウェブ実体に関するウェブページの合計ページ閲覧数を反映する閲覧者測定データに関する一実施例では、測定調整モジュール304cは、調整されたページ閲覧データを下記の式によって生成できる。

ADj Page Views = Init Page Views + Non-Beaconed

ここで、Adj Pade Viewsは、調整されたページ閲覧計数であり、Init Page Viewsは、前処理されたサイト中枢データに基づく、当初ページ閲覧計数であり、Non-Beaconは、ビーコン不在調整因子である。
【0069】
報告生成モジュール308は、調整閲覧者測定データに基づいて、閲覧者測定報告を生成する(412)。例えば、当初データが家庭用と仕事用のクライアントシステムに区分された実施例では、報告生成モジュール308は、家庭用又は仕事用の集団のうちの一つ又は両方について、所定のウェブ実体に関する固有訪問者又はページ閲覧に関する報告を生成する。付加的に、又は選択的に、そのような実施例では、報告生成モジュール308は、家庭用及び仕事用の集団を組み合わせた、所定のウェブ実体に関する固有訪問者又は及びページ閲覧に関する報告を生成できる。換言すれば、報告生成モジュールは、家庭用及び仕事用集団に関するページ閲覧を組合わせて、統合されたページ閲覧計数を生成し、及び/又、家庭用及び仕事用集団に関する固有訪問者を組合わせて、統合された固有訪問者計数を生成できる。
【0070】
ある実施例では、報告生成モジュール308が統合された固有訪問者の計数を生成する際に、報告生成モジュールは、家庭用及び仕事用集団の両方に存在する利用者の数を考慮に入れる。ある場合には、ある個人は、家庭用のクライアントシステム及び仕事用のクライアントシステムの両方からウェブ実体に関するウェブページを訪問するかもしれない。その結果、家庭用集団に属する利用者の計数を単純に仕事用集団に属する利用者の計数に加えた場合には、その利用者は二回計数されることになる。報告生成モジュール308は、標本中枢データ132aを使用して、二つの集団間で重複する利用者の数を決定し、二重に計数されたものを取り除くことができる。例えば、多くの利用者が、仕事用のクライアントシステム及び家庭用のクライアントシステムの両方に監視アプリケーションをインストールしていて、そのように何れかを選択できる。それゆえ、これらの利用者から得られるデータは、家庭用と仕事用のクライアントシステムの両方を使用して、ウェブ実体に関するウェブページを訪問する個人の数を推定するのに使用することができ、この情報は、統合された固有訪問者の計数において、それらの利用者の重複を排除するために使用できる。
【0071】
図5は、個人当たりクッキー調整因子を決定するための工程500の一実施例を示すフローチャートである。以下に、測定調整モジュール304cによって実行される工程500について説明する。しかしながら、工程500は、他のシステム又は他のシステム構成によっても実行できる。上記のように、この調整因子は、所定のウェブ実体に関して当初閲覧者測定データを調整するために使用され得る。それゆえ、以下に、502から506の動作がウェブ実体を基礎して実行される、工程500の実施例を説明する。
【0072】
測定調整モジュール304は、前処理された標本中枢データに基づいて、所定のウェブ実体に関するビーコンが存在するウェブページの一つを訪問した、固有訪問者の総数を決定する(502)。例えば、固有訪問者の総数は、前処理された標本の構成員の何れが、ウェブ実体のウェブページを訪問した結果として発生したビーコンメッセージを保有しているのかを決定して、これら構成員の各々に対して、投影重みを付加することによって決定できる。所定の構成員に関する投影重みは、構成員が全領域において表示する個体の数であって、それゆえに、選定された構成員の各々に対して投影重みを付加することによって、ウェブ実体のビーコン保有ウェブページの一つを訪問した、全領域における個体の総数を生成することができる。
【0073】
測定調整モジュール304cは、前処理された標本中枢データに基づいて、所定のウェブ実体に関するビーコンクッキーの総数を決定する(504)。例えば、測定調整モジュール304cは、ウェブ実体に関するビーコン保有ウェブページにアクセスした、前処理した標本中枢データに属するクライアントシステムを決定できる。それらのクライアントシステムの各々に関して、測定調整モジュール304cは、報告期間の間にクライアントシステムから、ビーコンメッセージ(「ビーコンクッキー」とも言う)と共に送信された、異なるクッキーの数を決定できる。上記のように、標本アプリケーションがインストールされたクライアントシステムに関して、標本アプリケーションは、ビーコンメッセージ及び何等かの関連するクッキー(ビーコンクッキー)を記録して、報告することができる。それらのクライアントシステムの各々について、測定調整モジュール304cは、クライアントシステムの利用者に対する投影重みを、報告期間内にクライアントシステムによって送信された異なるビーコンクッキーの数に適用することによって、クライアントシステムに関する投影されたクッキーの数を生成することができる。そして、測定調整モジュール304cは、投影されたクッキーの数を合計して、ウェブ実体に関するビーコンクッキーの総数を決定する。所定のクライアントシステムに二以上の利用者がある場合には、それらの利用者に関する投影重みは平均化でき、平均化された重みがそのクライアントシステムに関する異なるビーコンクッキーの数に適用されて、投影されたクッキーの数を決定できる。
【0074】
一旦、所定のウェブ実体に関する固有訪問者の総数とクッキーの総数が決定すると、測定調整モジュール304cは、クッキーの総数と固有訪問者の総数との比を算出することによって、個人当たりクッキー調整因子を決定する。換言すれば、測定調整モジュール304cは、次式のように個人当たりのクッキーを決定する。

Cookie-Per-Person = Total Cookies/ Total Unique Visitors

ここで、Total Cookiesは、ウェブ実体に関するビーコンクッキーの総数の計数であり、Total Unique Visitorsは、ウェブ実体に関する固有訪問者の総数の計数である。上記のように、個人当たりクッキー調整因子の逆数(クッキー当たりの個人)も使用され得る。クッキー当たり個人調整因子は、Total Unique Visitors / Total Cookiesと定義することによって決定することができる。
【0075】
図6は、機械装置重複調整因子を決定するための工程600の一実施例を示すフローチャートである。以下に、測定調整モジュール304cによって実行される工程600について説明する。しかしながら、工程600は、他のシステム又は他のシステム構成によっても実行することができる。上記のように、この調整因子は、所定のウェブ実体に関する当初閲覧者測定データを調整するために使用できる。ゆえに、以下に、602から606の動作がウェブ実体を基礎として実行される工程600の一実施例について説明する。
【0076】
測定調整モジュール304cは、前処理された標本中枢データに基づいて、所定のウェブ実体に関して、個人に対するクライアントシステムの比を決定する(602)。上記のように、所定の利用者は、所定の場所で(例えば、家庭で)、複数のクライアントシステムを保有し、使用することができる。その結果、一人の利用者のみがウェブ実体を訪問しているにもかかわらず、別々のクッキーが複数のクライアントシステムに設定され、計数されることができる。前処理された標本中枢データに基づいて、所定のウェブ実体に関して、個人に対するクライアントシステムの比は、測定される利用者及びクライアントシステムの全領域に関して決定できる(例えば、インターネットの利用者及びクライアントシステムの全領域、又は、ある特定の地理的範囲に属するそれら)。所定のウェブ実体に関して、個人に対するクライアントシステムの比を決定するために、測定調整モジュール304cは、ウェブ実体に関するウェブページにアクセスした、規定された全領域内に属するクライアントシステムの総数と、ウェブ実体に関するウェブページにアクセスした、規定された全領域内に属する利用者の総数とを決定し、そして、これら2つの数の比を決定できる。
【0077】
上記のように、利用者を、インターネット利用者の総数に(又は、ある特定の地理的範囲内に在住するインターネット利用者)又は、他に規定される利用者の全領域に、投影するための投影重みを設け、同様に、クライアントシステムを、インターネットにアクセスするクライアントシステムの全領域に(又は、少なくとも、ある特定の地理的範囲内に属する総数)又は、他に規定されるクライアントシステムの全領域に、投影するための投影重みを設けることができる。ゆえに、ウェブ実体に関するウェブページにアクセスした、規定された全領域内に属するクライアントシステムの総数を決定するために、測定調整モジュール304cは、報告期間内にウェブ実体に関するウェブページにアクセスした、前処理がなされた標本中枢データに属するクライアントシステムを決定し、それらクライアントシステムに関する投影重みを合計して、ウェブ実体に関するウェブページにアクセスした、規定の全領域に属するクライアントシステムの総数を決定することができる。同様に、利用者の総数を決定するために、測定調整モジュール304cは、報告期間内にウェブ実体に関するウェブページにアクセスした、前処理がなされた標本中枢データに属する利用者を決定し、それら利用者に関する投影重みを合計して、ウェブ実体に関するウェブページにアクセスした、規定の全領域に属する利用者の総数を決定することができる。
【0078】
個人に対するクライアントシステムの比に基づいて、測定調整モジュール304cは、それら標本者が操作できるクライアントシステムの全てに亘って、前処理がなされた標本中枢データに属する標本者の全てに基づいて、予想されるリーチ(累積到達閲覧範囲)を決定する(604)。一般的に、リーチは、報告期間のような、ある特定期間内に、所定のウェブ実体に関するウェブページを訪問した、利用者の全領域からの、利用者の百分率である。換言すれば、リーチは、そのウェブ実体に関するウェブページを訪問した可能性がある全ての訪問者の百分率である。
【0079】
標本者が操作できるクライアントシステムの全てに亘る、標本者の全てに基づく、予想されるリーチは、下記の式を使用して算出することができる:
【数2】
又は
【数3】
ここで、
pは、個人に対するクライアントシステムの比、又は
【数4】

qは、個人に使用されるクライアントシステムの増加数、p-1であって、装置を共用しておらず、個人は少なくとも一つの装置を使用すると仮定。
Tは、日数で測定された報告期間(例えば、30日);
Rは、報告期間Tに亘る投影されたリーチ;
Eは、期間T内のウェブ実体のウェブページへの訪問者当たりの訪問頻度;
Sは、期間T内の一日当たりのウェブ実体のウェブページへの平均訪問数。
【0080】
報告期間Tに亘る投影されたリーチRは、前処理された標本中枢データを使用することによって、報告期間内にウェブ実体のウェブページを訪問した、投影された利用者の数を決定し、その数値を推定される利用者の全領域で割ることによって決定できる。ウェブ実体のウェブページへの訪問者当たりの訪問頻度Eは、前処理された標本中枢データを使用することによって、報告期間内のウェブ実体のウェブページへの総訪問回数、及び報告期間内のウェブ実体のウェブページへの総訪問者数を決定し、それら2つの数値を割ることによって決定できる。一日当たりのウェブ実体のウェブページへの平均ページ訪問数Sは、前処理された標本中枢データを使用することによって、報告期間内の各々の日における固有訪問者の総数を決定し、これら数値を合計し、そして、報告期間内の総日数で割ることによって決定できる。
【0081】
個人に対するクライアントシステムの比に基づいて、測定調整モジュール304cは、標本の構成員によって使用されたが、標本に含まれなかったクライアントシステムのために、測定されなかった増加リーチを、標本によって測定されたリーチRに付加する決定をする(506)。標本によって測定されなかった、機械装置の使用の増加分から得られる、予想されるリーチの増加分は、下記の式を使用して決定される。
【数5】
そして、このリーチの増加分は、測定されたリーチRに加えられる。
【0082】
測定調整モジュール304cは、全てのクライアントシステムに亘る予想されるリーチと、測定されたリーチに付加されるリーチの増加分との比を決定することによって、機械装置重複調整因子を決定する(508)。換言すれば、測定調整モジュール304cは、以下の式に基づいて機械装置重複調整因子を決定する。
【数6】
【0083】
この式は、下記の式に簡略化される。
【数7】
【0084】
最初に予想されるリーチを算出し、測定されたリーチに付加されるリーチの増加分を算出し、そして、その二つを除算する代わりに、測定調整モジュール304cは、簡略化された上記方程式に基づいて、直接的に、機械装置重複調整因子を決定してもよい。例えば、測定調整モジュール304cは、上記に説明した、個人に対するクライアントシステムの比を決定し、その個人に対する機械装置の比に基づいて、個人によって使用されるクライアントシステムの増加数を決定し(例えば、p−1を決定することによって)、上記に説明した、ウェブ実体のウェブページへの訪問者当たりの訪問頻度を決定し、上記に説明した、一日当たりのウェブ実体のウェブページへの平均訪問回数を決定し、そして、上記の簡略化された方程式を適用して、q, E, S 及び Tに基づいて、機械装置重複調整因子を決定することができる。
【0085】
さらに、規定された領域における利用者及びクライアントシステムの構成が正確に推定され、標本に属する利用者及びクライアントシステムに対する投影重みを決定する際に、的確に考慮されれば、個人に対するクラアイアントシステムの比は、直接的に、機械装置重複調整因子として使用することができる。しかしながら、そのように完全に推定し、重み付けすることは、極めて困難であり得る。例えば、標本には一次的に使用するシステム(インターネットにアクセスするために、利用者によって最も頻繁に使用されるもの)と二次的に使用するシステム(殆ど使用されないもの)とが混在しているが、どのように混在しているか正確に知ることはできない。そこで、サンプルの構成及びサイトによって、個人に対するクライアントシステムの比は、二次的な利用状況又は一次的な利用状況のどちらかに偏向し得る。そのような誤差を補償するために、個人に対するクライアントシステムの比は、上記に説明したように、予想されるリーチ及びリーチの増加分と共に使用されて、全領域及び重み付けを推定する際に起こる可能性のある誤差を補償する機械装置重複調整因子を決定できる。上記の簡略化した方程式が適用され、予想された結合されたリーチが、測定されたリーチにリーチの増加分を付加したものよりも大きい場合には、そのサンプルは、ウェブ実体に関して、より二次的利用状況に偏向していて、機械装置重複調整因子は、固有訪問者を増加させる。一方、予想された結合されたリーチが、測定されたリーチにリーチの増加分を付加したものよりも小さい場合には、そのサンプルは、より一次的利用状況に偏向していて、機械装置重複調整因子は、二次的利用状況の増加を考慮して、固有訪問者を減少させる。
【0086】
図7は、ビーコン不在調整因子を決定する工程700の一実施例を示すフローチャートである。以下に、測定調整モジュール304cによって実行される場合の工程700について説明する。しかしながら、工程700は、他のシステム又はシステム構成によって実行されてもよい。上記に明示したように、この調整因子は、所定のウェブ実体に関する当初閲覧者測定データを調整するために使用できる。それゆえ、以下には、あるウェブ実体を基礎として、動作702から706が実行される工程700の一実施例について説明する。
【0087】
測定調整モジュール304cは、ある特定の閲覧者測定に依存するが、前処理された標本中枢データ702に基づいて、所定のウェブ実体に関する固有訪問者又はページ閲覧の総数を決定する。上記に説明したように、理想的には、標本アプリケーションは、ウェブトラフィックを全て捕捉するから、所定のウェブ実体に関するビーコン不在ウェブページへ訪問したことは、標本アプリケーションによって捕捉され、報告される。その結果、測定調整モジュール304cは、例え、ウェブ実体に関するウェブページの全てがビーコンコードを含まなくても、前処理された標本データを使用して、所定のウェブ実体に関する固有訪問者又はページ閲覧の総数を決定することができる。
【0088】
例えば、固有訪問者の総数は、ウェブ実体のウェブページを訪問した、前処理された標本中枢データにおける標本の各構成員に関する投影重みを合計することによって決定することができる。ページ閲覧の総数は、例えば、各構成員の投影重みをその構成員についてのページ閲覧の計数に適用して、その構成員についての投影されたページ閲覧を生成させ、その投影されたページ閲覧の全てを合計することによって決定することができる。
【0089】
測定調整モジュール304cは、ある特定の閲覧者測定に依存するが、前処理した標本中枢データ704に基づいて、所定のウェブ実体に関する固有訪問者又はページ閲覧の重複数を決定する。固有訪問者又はページ閲覧の重複数は、ビーコンコードを含むウェブページを訪問することに起因する固有訪問者又はページ閲覧の数である。固有訪問者の重複数を決定するために、測定調整モジュール304cは、例えば、ウェブ実体のウェブページを訪問し、ビーコンクッキーを保有するビーコンメッセージを送信した、前処理した標本中枢データにおける構成員に関する投影重みを合計できる。ページ閲覧の重複数を決定するために、測定調整モジュール304cは、例えば、ウェブ実体のウェブページを訪問し、ビーコンクッキーを保有するビーコンメッセージを送信した、前処理した標本中枢データにおける構成員を決定し、それら構成員の各自のページ閲覧数を決定し、各構成員に関する投影重みをその構成員に関する各自のページ閲覧数に適用して、投影されたページ閲覧を生成し、そして、その投影されたページ閲覧を合計して、ページ閲覧の総重複数を算出できる。
【0090】
測定調整モジュール304cは、ある特定の閲覧者測定に依存するが、ウェブ実体706に関する固有訪問者又はページ閲覧の重複数から、所定のウェブ実体に関する固有訪問者又はページ閲覧の総数を減算することによって、ビーコン不在調整因子を決定する。上記に説明したように、ビーコン不在調整因子は、ビーコン不在ウェブページを調整するために使用される。ゆえに、重複数は、固有訪問者又はページ閲覧の総数(それは、ビーコンコードを含むウェブページ及びビーコンコードを含まないウェブページの両方に関する固有訪問者又はページ閲覧を含む)から取り除かれて、ビーコンコードを含まないウェブ実体のそれらウェブページのみに起因する固有訪問者又はページ閲覧を反映する調整因子を生成する。換言すれば、Non-Beaconed(ビーコン不在数)は、次の式に基づいて決定される。

Non-Beaconed = Total Count − Over Count

ここで、Total Count(合計数)は、前処理された標本中枢データに基づく、ウェブ実体に関する(ビーコン存在及びビーコン不在ページの両方に関する)投影された固有訪問者又はページ閲覧の合計数であり、Over Count(重複数)は、ビーコンコードを含むウェブ実体のウェブページに起因する、投影された固有訪問者又はページ閲覧の数である。
【0091】
ここで説明した手法は、ディジタル電子回路、コンピータハードウェア、ファームウェア、ソフトウェア、又、それらの結合体に適用することができる。この手法は、コンピュータプログラム製品、すなわち、ある情報担体において明白に具体化されるコンピュータプログラム、として実施することができる。情報担持体としては、例えば、機械的に読み取り可能な記憶装置、機械的に読み取り可能な記憶媒体、コンピュータで読み取り可能な記憶装置、又は、データ処理装置によって実行される、又は、データ処理装置の動作を制御する、コンピュータで読み取り可能な記憶媒体が挙げられ、データ処理装置としては、例えば、プログラム制御可能プロセッサ、コンピュータ、又は複数のコンピュータが挙げられる。コンピュータプログラムは、編集又は翻訳言語を含め、何等かの形式のプログラミング言語で記述され、独立したプログラムとして、又、モジュール、コンポーネント、サブルーチン、その他、あるコンピュータ環境において好適に使用できるユニットとして使用されることを含め、何等かの形式で使用され得る。コンピュータプログラムは、使用されて、1つのサイトにおいて、又は、分散型データ処理方式で横断的に設置された複数のサイトにおいて、1つのコンピュータ上で、又は、複数のコンピュータ上で実行され、通信ネットワークによって連携され得る。
【0092】
この手法から成る方法の工程は、入力データを操作し、出力を生成することによって、本願手法の各機能を実施するコンピュータプログラムを実行する、1以上のプログラム制御可能なプロセッサによって実行することができる。この方法の工程は、専用の論理回路、例えば、FPGA(フィールドプログラム制御可能なゲートアレイ)又は、ASIC(アプリケーションに特化した集積回路)によって実行することができ、この手法を実施する装置は、前記専用の論理回路として実施することができる。
【0093】
あるコンピュータプログラムを実行するのに適したプロセッサは、実例としては、汎用及び専用両方のマイクロプロセッサ、及び、如何なる種類のディジタルコンピュータの一以上の何等かのプロセッサを含むのである。一般的に、プロセッサは、リードオンリーメモリ、ランダムアクセスメモリ又はその両方から命令及びデータを受け取る。コンピュータの必須構成要素は、命令を実行するプロセッサと、命令及びデータを記憶する一以上のメモリ装置である。一般的に、コンピュータは、データを受信するため、又はデータを転送するために、又は、その両方のために、データを記憶する一以上の大容量記憶装置をも有するか、又は、それを機能的に連結してある。大容量記憶装置としては、例えば、磁気ディスク、磁気光ディスク、又は光ディスクが挙げられる。コンピュータプログラムの命令及びデータを担持するのに適した情報担持体は、あらゆる形態の不揮発性メモリ、実例として、半導体メモリ装置、例えば、EPROM,EEPROM、及びフラッシュメモリ装置、例えば、内蔵ハードディスク、可搬ディスク等の磁気ディスク、磁気光ディスク、及び、CD−ROM及びDVD−ROMディスクを含む。前記プロセッサ及びメモリには、専用の論理回路が追加され、又は、合体され得る。
【0094】
本願手法に関する多数の実施例を説明してきた。それにも係わらず、種々の改変を為すことができるのは、理解されるであろう。例えば、開示した手法の工程が異なる順序で実施された場合、開示したシステムにおける構成要素が異なる態様で結合され、交換され、又、他の構成要素が追加された場合には、さらに有用な結果を得ることができる。
従って、他の実施態様も次に記述する特許請求の範囲の範囲内のものである。
図1
図2
図3
図4
図5
図6
図7