特許第5913266号(P5913266)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友ゴム工業株式会社の特許一覧

<>
  • 特許5913266-タイヤの製造方法 図000002
  • 特許5913266-タイヤの製造方法 図000003
  • 特許5913266-タイヤの製造方法 図000004
  • 特許5913266-タイヤの製造方法 図000005
  • 特許5913266-タイヤの製造方法 図000006
  • 特許5913266-タイヤの製造方法 図000007
  • 特許5913266-タイヤの製造方法 図000008
  • 特許5913266-タイヤの製造方法 図000009
  • 特許5913266-タイヤの製造方法 図000010
  • 特許5913266-タイヤの製造方法 図000011
  • 特許5913266-タイヤの製造方法 図000012
  • 特許5913266-タイヤの製造方法 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5913266
(24)【登録日】2016年4月8日
(45)【発行日】2016年4月27日
(54)【発明の名称】タイヤの製造方法
(51)【国際特許分類】
   B29C 33/02 20060101AFI20160414BHJP
   B29D 30/10 20060101ALI20160414BHJP
   B29C 35/02 20060101ALI20160414BHJP
   B29K 21/00 20060101ALN20160414BHJP
   B29K 105/24 20060101ALN20160414BHJP
   B29L 30/00 20060101ALN20160414BHJP
【FI】
   B29C33/02
   B29D30/10
   B29C35/02
   B29K21:00
   B29K105:24
   B29L30:00
【請求項の数】5
【全頁数】18
(21)【出願番号】特願2013-245257(P2013-245257)
(22)【出願日】2013年11月27日
(65)【公開番号】特開2015-101061(P2015-101061A)
(43)【公開日】2015年6月4日
【審査請求日】2014年12月18日
(73)【特許権者】
【識別番号】000183233
【氏名又は名称】住友ゴム工業株式会社
(74)【代理人】
【識別番号】100104134
【弁理士】
【氏名又は名称】住友 慎太郎
(72)【発明者】
【氏名】角田 昌也
(72)【発明者】
【氏名】小原 圭
(72)【発明者】
【氏名】田中 尚
【審査官】 長谷部 智寿
(56)【参考文献】
【文献】 特開2013−006390(JP,A)
【文献】 特開2013−006366(JP,A)
【文献】 特開2003−311741(JP,A)
【文献】 特開2006−341438(JP,A)
【文献】 特開2008−114475(JP,A)
【文献】 特開2001−088143(JP,A)
【文献】 米国特許第04895692(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 33/02
B29C 33/76
B29C 35/02
B29D 30/12
(57)【特許請求の範囲】
【請求項1】
空気入りタイヤの内腔面を形成する外表面を具えた剛性中子を用いて、生タイヤを加硫するタイヤの製造方法であって、
前記剛性中子の前記外表面上で、前記生タイヤを形成する工程と、
前記剛性中子上の生タイヤを加硫する加硫工程とを含み、
前記剛性中子は、組立てられることにより中心孔を有する円環状をなしかつ複数個のセグメントからなる中子本体と、
前記中心孔に配されかつ前記各セグメントを拘束して前記中子本体を前記円環状に保持するコアと、
前記コアの温度を変化させることにより前記コアの外径を変化させる外径調節手段とを含み、
しかも、前記コアの外径の拡大により、前記各セグメントはタイヤ半径方向の外側に移動してセグメント間の隙間が増大する一方、前記コアの外径の縮小により、前記各セグメントはタイヤ半径方向の内側に移動して前記セグメント間の隙間が減少し、さらに、隣接するセグメントの接触により、前記セグメント間の前記外表面の段差が大きくなる変化をなすものであり、
前記加硫工程は、前記隙間、及び、前記段差が予め定められた範囲内となるように、前記外径調節手段により前記コアの外径を調節する調整工程を含むことを特徴とするタイヤの製造方法。
【請求項2】
前記調整工程に先立ち、前記コアの温度と、前記隙間又は前記段差との関係を予め取得する準備工程をさらに含み、
前記調整工程は、前記関係に基づいて、前記コアの温度を調節する請求項1に記載のタイヤの製造方法。
【請求項3】
前記準備工程は、前記コアの温度を変化させて、温度毎に、前記隙間又は前記段差を測定する工程と、
前記温度毎に測定された前記隙間又は前記段差に基づいて、前記関係を示す近似式を求める工程を含む請求項2に記載のタイヤの製造方法。
【請求項4】
前記準備工程は、コンピュータに、前記各セグメントを有限個の要素で離散化した複数のセグメントモデルを定義する工程と、
前記コンピュータに、前記コアを有限個の要素で離散化したコアモデルを定義する工程と、
前記コンピュータが、前記コアモデルの温度を変化させて、前記隙間又は前記段差を前記セグメントモデル間の隙間又は段差として計算する工程と、
前記コンピュータが、前記セグメントモデル間の隙間又は段差の計算結果に基づいて、前記関係を示す近似式を求める工程とを含む請求項3に記載のタイヤの製造方法。
【請求項5】
前記調整工程は、前記隙間を0mmよりも大かつ0.04mm以下の範囲に調節する請求項1乃至4のいずれかに記載のタイヤの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タイヤの形成精度を高めうるタイヤの製造方法に関する。
【背景技術】
【0002】
近年、空気入りタイヤの形成精度を高めるために、剛性中子を用いたタイヤの製造方法が提案されている。この種の製造方法では、例えば、剛性中子の外表面上で、生タイヤを形成する工程と、剛性中子上の生タイヤを加硫する加硫工程とを含んでいる。
【0003】
剛性中子は、中子本体と、コアとを含んで構成されている。中子本体は、組立てられることによって中心孔を有する円環状をなし、複数個のセグメントから構成されている。また、コアは、中子本体の中心孔に配され、かつ、各セグメントを実質的に拘束するものである。これにより、コアは、中子本体を円環状に保持することができる。
【0004】
複数個のセグメントは、第1セグメントと、第2セグメントとからなり、タイヤ周方向に交互に配置されている。第1セグメントは、タイヤ周方向の両端の分割面を、タイヤ半径方向の内側に向かって、タイヤ周方向の長さが減じる向きに傾斜させている。第2セグメントは、タイヤ周方向の両端の分割面を、タイヤ半径方向の内側に向かって、タイヤ周方向の長さが増す向きに傾斜させている。このような複数個のセグメントは、第2セグメントから半径方向内側に順次移動させることにより、タイヤの内腔から取り出すことができる。
【0005】
各セグメントは、第1セグメント及び第2セグメントから構成されるため、タイヤ半径方向外側への移動により、セグメント間の隙間が増大する。また、各セグメントは、タイヤ半径方向内側への移動により、隣接するセグメントと接触する。このようなセグメント間の接触は、第2セグメントの分割面の傾斜に沿って、第1セグメントをタイヤ半径方向外側に押し出し、セグメント間の外表面の段差を大きくする。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2013−6367号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
タイヤの形成精度を高めるには、加硫工程において、剛性中子の外表面がタイヤ周方向で滑らかに連続している状態(即ち、セグメント間の外表面の段差が小さい状態)に保持されていることが重要である。しかしながら、コア及びセグメントの加工誤差等が原因で、加硫工程中に、隣接するセグメントが接触すると、剛性中子の外表面を上述の良好な状態に維持することができず、タイヤの形成精度が低下しやすいという問題があった。
【0008】
また、隣接するセグメントが接触するのを防ぐために、セグメント間に予め大きな隙間を形成しておくことも考えられる。しかしながら、加硫中のコアの熱膨張により、各セグメントが、タイヤ半径方向外側に押し出されると、セグメント間の隙間がさらに大きくなる。このような大きな隙間は、生タイヤの内面のゴムを浸入させ、タイヤの内面にスピューが形成されやすいという問題もあった。
【0009】
本発明は、以上のような実状に鑑み案出されたもので、セグメント間の隙間、及び、セグメント間の外表面の段差を、予め定められた範囲内となるように、コアの外径を調節することを基本として、タイヤの形成精度を高めうるタイヤの製造方法を提供することを主たる目的としている。
【課題を解決するための手段】
【0010】
本発明は、空気入りタイヤの内腔面を形成する外表面を具えた剛性中子を用いて、生タイヤを加硫するタイヤの製造方法であって、前記剛性中子の前記外表面上で、前記生タイヤを形成する工程と、前記剛性中子上の生タイヤを加硫する加硫工程とを含み、前記剛性中子は、組立てられることにより中心孔を有する円環状をなしかつ複数個のセグメントからなる中子本体と、前記中心孔に配されかつ前記各セグメントを拘束して前記中子本体を前記円環状に保持するコアと、前記コアの温度を変化させることにより前記コアの外径を変化させる外径調節手段とを含み、しかも、前記コアの外径の拡大により、前記各セグメントはタイヤ半径方向の外側に移動してセグメント間の隙間が増大する一方、前記コアの外径の縮小により、前記各セグメントはタイヤ半径方向の内側に移動して前記セグメント間の隙間が減少し、さらに、隣接するセグメントの接触により、前記セグメント間の前記外表面の段差が大きくなる変化をなすものであり、前記加硫工程は、前記隙間、及び、前記段差が予め定められた範囲内となるように、前記外径調節手段により前記コアの外径を調節する調整工程を含むことを特徴とする。
【0011】
本発明に係る前記タイヤの製造方法において、前記調整工程に先立ち、前記コアの温度と、前記隙間又は前記段差との関係を予め取得する準備工程をさらに含み、前記調整工程は、前記関係に基づいて、前記コアの温度を調節するのが望ましい。
【0012】
本発明に係る前記タイヤの製造方法において、前記準備工程は、前記コアの温度を変化させて、温度毎に、前記隙間又は前記段差を測定する工程と、前記温度毎に測定された前記隙間又は前記段差に基づいて、前記関係を示す近似式を求める工程を含むのが望ましい。
【0013】
本発明に係る前記タイヤの製造方法において、前記準備工程は、コンピュータに、前記各セグメントを有限個の要素で離散化した複数のセグメントモデルを定義する工程と、前記コンピュータに、前記コアを有限個の要素で離散化したコアモデルを定義する工程と、前記コンピュータが、前記コアモデルの温度を変化させて、前記隙間又は前記段差を前記セグメントモデル間の隙間又は段差として計算する工程と、前記コンピュータが、前記セグメントモデル間の隙間又は段差の計算結果に基づいて、前記関係を示す近似式を求める工程とを含むのが望ましい。
【0014】
本発明に係る前記タイヤの製造方法において、前記調整工程は、前記隙間を0mmよりも大かつ0.04mm以下の範囲に調節するのが望ましい。
【発明の効果】
【0015】
本発明のタイヤの製造方法は、剛性中子の前記外表面上で、生タイヤを形成する工程と、剛性中子上の生タイヤを加硫する加硫工程とを含んでいる。
【0016】
剛性中子は、組立てられることにより中心孔を有する円環状をなしかつ複数個のセグメントからなる中子本体と、中心孔に配されかつ各セグメントを実質的に拘束して中子本体を円環状に保持するコアと、コアの温度を変化させることによりコアの外径を変化させる外径調節手段とを含んでいる。
【0017】
しかも、剛性中子は、コアの外径の拡大により、各セグメントはタイヤ半径方向の外側に移動してセグメント間の隙間が増大する一方、コアの外径の縮小により、各セグメントはタイヤ半径方向の内側に移動して、隣接するセグメント間の外表面の段差が大きくなる変化をなすものである。
【0018】
そして、本発明の加硫工程は、隙間、及び、段差が予め定められた範囲内となるように、外径調節手段によりコアの外径を調節する調整工程を含んでいる。従って、本発明の製造方法では、セグメント間の隙間に、生タイヤのゴムが浸入するのを抑制でき、タイヤにスピューが形成されるのを防ぐことができる。さらに、本発明の製造方法では、剛性中子の外表面を、タイヤ周方向で滑らかに連続している状態に保持することができるため、タイヤの形成精度を効果的に高めることができる。
【図面の簡単な説明】
【0019】
図1】本実施形態の製造方法で使用する剛性中子の断面図である。
図2】剛性中子の分解斜視図である
図3】中子本体をコアとともに示す軸心方向から見た下面図である。
図4】第1の蟻継ぎ部及び第2の蟻継ぎ部の係合状態を示す拡大図である。
図5】加硫中の剛性中子及び加硫金型を示す断面図である。
図6】(a)は、セグメント間の外表面の段差を拡大して示す側面図、(b)は、セグメント間の隙間を拡大して示す側面図である。
図7】本実施形態の準備工程の処理手順の一例を示すフローチャートである。
図8】コアの温度と、隙間との関係を示すグラフである。
図9】本発明の他の実施形態の準備工程を実行するためのコンピュータの斜視図である。
図10】本発明の他の実施形態の準備工程の処理手順の一例を示すフローチャートである。
図11】セグメントモデル及びコアモデルの一部を示す概念図である。
図12】本発明の他の実施形態の外径調節手段を示す断面図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施の一形態が図面に基づき説明される。
図1は、本実施形態の製造方法で使用する剛性中子の断面図である。図2は、剛性中子の分解斜視図である。図3は、中子本体をコアとともに示す軸心方向から見た下面図である。図4は、第1の蟻継ぎ部、及び、第2の蟻継ぎ部の係合状態を示す拡大図である。
【0021】
図1に示されるように、本実施形態のタイヤの製造方法(以下、単に「製造方法」ということがある。)は、空気入りタイヤ(以下、単に「タイヤ」ということがある。)Tの内腔面を形成する外表面Sを具えた剛性中子1、及び、タイヤTの外面を形成する加硫金型2を用いて、生タイヤTnを加硫するための方法である。
【0022】
図1及び図2に示されるように、剛性中子1の外表面Sは、タイヤTの内腔面のうち、トレッド部の内面を形成するトレッド成形面部Sa、及び、サイドウォール部の内面とビード部の内面とを形成するサイド成形面部Sbを含んでいる。この外表面Sは、仕上がりタイヤ(加硫済タイヤ)Tの内面形状にほぼ一致している。
【0023】
本実施形態の剛性中子1は、中子本体3と、コア5とを含んで構成されている。
【0024】
中子本体3は、タイヤ周方向に分割された複数個のセグメント4を含んでいる。このような中子本体3は、分解可能であり、かつ、組立てられることによって中心孔7を有する円環状に形成される。また、中子本体3は、外表面Sのタイヤ半径方向内側からタイヤ軸心方向外側に膨出する膨出部8が形成されている。この膨出部8には、外表面Sに連なり、かつ、タイヤ半径方向内方に向かって、タイヤ軸心方向外側に傾斜するテーパ面8sを有している。
【0025】
図2に示されるように、複数個のセグメント4は、第1セグメント4Aと、第2セグメント4Bとからなり、タイヤ周方向に交互に配置されている。また、図4に示されるように、加熱前の常温状態の中子本体3において、タイヤ周方向で隣り合うセグメント4A、4Bのタイヤ周方向両端の分割面6a、6b間には、熱膨張用の隙間G(図4に示す)が形成されている。
【0026】
図2に示されるように、第1セグメント4Aは、タイヤ周方向の両端の分割面6a、6aを、タイヤ半径方向の内側に向かって、タイヤ周方向の長さが減じる向きに傾斜させている。一方、第2セグメント4Bは、図4に示されるように、タイヤ周方向の両端の分割面6b、6bを、タイヤ半径方向の内側に向かって、タイヤ周方向の長さが増す向きに傾斜させている。これにより、中子本体3は、第2セグメント4Bから半径方向内側に順次移動されることにより、加硫後のタイヤT(図1に示す)の内腔から取り出される。
【0027】
図2に示されるように、第1セグメント4Aは、タイヤ半径方向外側に配置される外セグメント部11aと、外セグメント部11aの半径方向内側に配置される内セグメント部12aとを含んで構成されている。外セグメント部11a及び内セグメント部12aは、内セグメント部12aの半径方向内面側から挿入されるボルト13(図1に示す)によって一体に連結される。また、外セグメント部11aと内セグメント部12aとの間には、シーリング(図示省略)が設けられている。
【0028】
第2セグメント4Bも、第1セグメント4Aと同様に、外セグメント部11bと、内セグメント部12bとを含んで構成されている。外セグメント部11b及び内セグメント部12bは、ボルト13(図1に示す)によって一体に連結される。
【0029】
各セグメント4A、4Bの内周面には、軸心方向に連続してのびる蟻溝、又は、蟻ほぞとして形成された第1の蟻継ぎ部16が設けられている。本実施形態の第1の蟻継ぎ部16は、蟻ほぞ16aとして形成されている。この第1の蟻継ぎ部16は、コア5の外周面に形成される第2の蟻継ぎ部17に係合するものである。
【0030】
図1及び図3に示されるように、本実施形態の各セグメント4A、4Bの内部には、熱流体が充填される気密なチャンバー室21が形成されている。チャンバー室21には、隔壁板22が設けられている。これにより、チャンバー室21は、第1のチャンバー室部21aと、第2のチャンバー室部21bとに区画されている。
【0031】
また、各セグメント4A、4Bの軸心方向一方側の側面4Lsには、吸気側流路18を介して第1のチャンバー室部21aに通じる中子側コネクタ23の接続口23aと、排気側流路19を介して第2のチャンバー室部21bに通じる中子側コネクタ24の接続口24aとが設けられている。これらの接続口23a、24aは、図1に示した加硫金型2に設けられる熱流体供給用の金型側コネクタ26a、又は、熱流体排出用の金型側コネクタ26bにそれぞれ接続しうる。なお、剛性中子1が加硫金型2に投入されるとき、一方側の側面4Lsは下面となる。
【0032】
このような中子本体3は、加硫金型2内において、金型側コネクタ26aから熱流体が供給され、かつ、金型側コネクタ26bから熱流体が排出されることにより、チャンバー室21に熱流体を循環させることができる。これにより、中子本体3は、生タイヤTnを、効果的に加熱することができる。
【0033】
コア5は、円筒状に形成され、中子本体3の中心孔7に配される。図2に示されるように、コア5の外周面には、中子本体3の第1の蟻継ぎ部16に係合する第2の蟻継ぎ部17が設けられる。第2の蟻継ぎ部17は、軸心方向にのびる蟻溝又は蟻ほぞとして形成される。本実施形態の第2の蟻継ぎ部17は、第1の蟻継ぎ部16の蟻ほぞ16aに係合する蟻溝17aとして形成されている。このような蟻ほぞ16a及び蟻溝17aは、互いに填り合うことにより、軸心方向にのみ相対移動可能に連結される。
【0034】
コア5の軸心方向の一方側の端部には、一方の側壁体27aが固定されている。一方の側壁体27aには、円盤状の側板部28aが設けられている。この側板部28aは、中子本体3のテーパ面8sと当接するフランジ部29aを具えている。このようなフランジ部29aは、中子本体3のテーパ面8sに当接することにより、一方の側壁体27aと、中子本体3とを同心に位置合わせしうる。本実施形態の一方の側壁体27aは、ボルト32(図1に示す)を用いて、コア5に固定されているが、例えば、溶接などによって固定することもできる。このような一方の側壁体27aは、各セグメント4A、4Bの軸心方向の一方側への移動を阻止することができる。
【0035】
コア5の軸心方向の他方側の端部には、他方の側壁体27bが固定されている。他方の側壁体27bにも、円盤状の側板部28bが設けられている。円盤状の側板部28bには、中子本体3のテーパ面8sと当接するフランジ部29bを具えている。このようなフランジ部29bも、中子本体3のテーパ面8sに当接することにより、他方の側壁体27bと、中子本体3とを同心に位置合わせしうる。本実施形態の他方の側壁体27bは、コア5に設けられる内ネジ部31に、着脱自在に螺合される。このような他方の側壁体27bは、各セグメント4A、4Bの軸心方向の他方側への移動を阻止することができる。
【0036】
このように、コア5は、第2の蟻継ぎ部17が、中子本体3の第1の蟻継ぎ部16に係合し、かつ、コア5の軸芯方向の両端部に、一方の側壁体27a及び他方の側壁体27bが配置されることにより、各セグメント4A、4Bを実質的に拘束して、中子本体3を円環状に保持することができる。
【0037】
また、一方の側壁体27aの側板部28a、及び、他方の側壁体27bの側板部28bには、軸芯方向外側に突出する支持軸部30がそれぞれ設けられている。この支持軸部30は、例えば、剛性中子1を搬送する搬送装置によって把持される把持部、又は、搬送した剛性中子1を、加硫金型2等の装置に装着するための装着部として機能している。本実施形態の支持軸部は、例えば、ボールロック機構を有する連結手段30aを介して、搬送装置等に着脱自在に連結される。
【0038】
図1及び図3に示されるように、本実施形態の剛性中子1は、コア5の温度を変化させることにより、コア5の外径D1(図3に示す)を変化させる外径調節手段33が設けられる。本実施形態の外径調節手段33は、コア5を加熱する加熱手段34から構成される。
【0039】
加熱手段34としては、コア5の温度を変化させることができるものであれば、適宜採用することができる。本実施形態の加熱手段34は、例えば、コア5のタイヤ半径方向の内周面に設けられるシート状の電気ヒータである場合が例示される。図3に示されるように、本実施形態の加熱手段34は、第1セグメント4A及び第2セグメント4Bの内方領域に、それぞれ配置されている。また、加熱手段34は、一方の側壁体27aに設けられる電源用コネクタ(図示省略)を介して、加硫金型2に設けられる電源(図示省略)から電気が供給される。これにより、加熱手段34は、コア5を加熱することができる。また、本実施形態では、加熱手段34への電気の供給、及び、電気の供給の停止を操作することができるスイッチ(図示省略)が設けられている。これにより、作業者は、コア5の加熱、及び、コア5の加熱の停止を適宜実施することができる。
【0040】
このような加熱手段34は、コア5の温度を高めて熱膨張させることにより、コア5の外径D1を拡大することができる。一方、加熱手段34は、コア5の加熱を停止して、コア5の温度を低下させて熱収縮させることにより、コア5の外径D1を縮小することができる。このように、外径調節手段33は、コア5の外径D1を適宜変化させることができるため、コア5の外径D1や、セグメント4の加工誤差を吸収することができる。
【0041】
また、本実施形態の剛性中子1には、コア5の温度を測定する温度センサー(図示省略)が設けられている。このような温度センサーは、コア5の温度を任意に設定するのに役立つ。
【0042】
次に、このような剛性中子1を用いた本実施形態の製造方法について説明する。この製造方法では、先ず、図1に示されるように、剛性中子1の外表面S上で、生タイヤTnを形成する工程S1が実施される。この工程S1では、剛性中子1の外表面S上に、インナーライナ、カーカスプライ、ベルトプライ、サイドウォールゴム、及び/又はトレッドゴム等のタイヤ構成部材が順次貼り付けられる。これにより、剛性中子1の外表面S上に、未加硫の生タイヤTnが形成される。
【0043】
次に、剛性中子1上の生タイヤTnを加硫する加硫工程S2が実施される。図5は、加硫中の剛性中子及び加硫金型2を示す断面図である。加硫工程S2では、生タイヤTnを剛性中子1ごと、加硫金型2内に投入することにより、加硫金型2と協働して生タイヤTnが加硫成形される。加硫成形後には、タイヤT及び剛性中子1が、加硫金型2から取り出される。そして、タイヤTの内腔から剛性中子1が取り出されることにより、タイヤTを製造することができる。
【0044】
図6は、第1セグメント4A及び第2セグメント4Bを拡大して示す側面図である。各セグメント4は、上記のような形状を有する第1セグメント4A及び第2セグメント4Bから構成されるため、図6(a)に示されるように、タイヤ半径方向内側への移動により、隣接するセグメント4A、4Bが接触する。一方、図6(b)に示されるように、第1セグメント4A及び第2セグメント4Bは、タイヤ半径方向外側への移動により、セグメント4A、4B間の隙間Gが増大する。
【0045】
図6(a)に示されるように、隣接するセグメント4A、4Bが接触すると、第1セグメント4Aが、第2セグメント4Bの分割面6bの傾斜に沿って、タイヤ半径方向外側に押し出され、セグメント4A、4B間の外表面Sの段差Rが大きくなる。このため、例えば、セグメント4及びコア5の加工誤差や、冬季におけるコア5の熱膨張(加熱)不足等が原因で、加硫工程S2中に、隣接するセグメント4A、4Bが接触すると、剛性中子1の外表面Sがタイヤ周方向で滑らかに連続している状態(即ち、セグメント4A、4B間の外表面Sの段差Rが小さい状態(例えば、0.04mm以下))を維持することができない。従って、タイヤの形成精度が低下しやすいという問題がある。
【0046】
また、隣接するセグメント4A、4Bが接触するのを防ぐために、セグメント4A、4B間に予め大きな隙間Gを形成しておくことも考えられる。しかしながら、図6(b)に示されるように、加硫中のコア5の熱膨張により、各セグメント4A、4Bが、タイヤ半径方向外側に押し出されると、セグメント4A、4B間の隙間Gがさらに大きくなる。このような大きな隙間Gは、生タイヤTn(図1に示す)の内面のゴムを浸入させ、タイヤT(図1に示す)の内面にスピューが形成されやすいという問題がある。
【0047】
本実施形態の加硫工程S2では、外径調節手段33(加熱手段34)により、コア5の外径D1(図3に示す)を調節する調整工程S21が逐次実施される。図3に示されるように、本実施形態の加熱手段34は、上述のとおり、コア5の温度を高めて熱膨張させることにより、コア5の外径D1を拡大することができる。コア5は、外径D1の拡大により、各セグメント4A、4Bをタイヤ半径方向外側に移動させることができる。
【0048】
一方、加熱手段34は、コア5の加熱を停止して、コア5の温度を低下させて熱収縮させることにより、コア5の外径D1を縮小することができる。コア5及び各セグメント4A、4Bは、図4に示した第1の蟻継ぎ部16及び第2の蟻継ぎ部17を介して連結されているため、コア5の外径D1の縮小により、各セグメント4A、4Bをタイヤ半径方向内側に移動させることができる。
【0049】
本実施形態の調整工程S21では、コア5の外径D1を変化(調節)させて、各セグメント4A、4Bをタイヤ半径方向内外に移動させることにより、図6(a)、(b)に示したセグメント4A、4B間の隙間G、及び、セグメント4A、4B間の外表面Sの段差Rが、予め定められた範囲内になるように調節している。これにより、本発明の製造方法では、セグメント4A、4B間の隙間Gに、生タイヤTnのゴムが浸入するのを抑制でき、タイヤTにスピューが形成されるのを防ぐことができる。さらに、本発明の製造方法では、剛性中子1の外表面Sを、タイヤ周方向で滑らかに連続している状態に保持することができるため、タイヤTの形成精度を効果的に高めることができる。
【0050】
調整工程S21では、セグメント4A、4B間の隙間G(図6(b)に示す)が、0mmよりも大かつ0.04mm以下の範囲に調節されるのが望ましい。なお、隙間Gが0.04mmを超えると、生タイヤTnのゴムの浸入を、十分に防ぐことができないおそれがある。逆に、隙間Gが、0mm以下であると、隣接するセグメント4A、4Bが接触し、剛性中子1の外表面Sがタイヤ周方向で滑らかに連続している状態を維持することができないおそれがある。
【0051】
同様に、調整工程S21では、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)が、0.08mm以下、さらに好ましくは、0.04mm以下に調整されるのが望ましい。なお、本明細書において、セグメント4A、4B間の隙間G、及び、セグメント4A、4B間の外表面Sの段差Rは、中子本体3の赤道3C(図2に示す)上で測定されるものとする。
【0052】
コア5は、セグメント4からの熱等の影響を受けるため、コア5の温度及び外径D1は、時々刻々と変化する。このため、調整工程S21は、加硫工程S2が実施されている間、逐次実施されるのが望ましい。これにより、加硫工程S2では、セグメント4A、4B間の隙間G(図6(b)に示す)、及び、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を、好ましい範囲に維持することができるため、タイヤT(図1に示す)の形成精度を効果的に高めることができる。なお、調整工程S21が実施される間隔は、コア5の熱伝導の速さを考慮して、例えば、1秒〜5秒が望ましい。
【0053】
また、調整工程S21では、例えば、セグメント4A、4B間の隙間G(図6(b)に示す)、及び、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を、剛性中子1に設けられるレーザー変位計(図示省略)等で逐次測定して、コア5の外径D1(温度)が調節されてもよい。なお、本実施形態では、調整工程S21に先立って予め取得されたコア5の温度と、隙間G(図6(b)に示す)との関係に基づいて(準備工程S3)、コア5の外径D1が調節される。図7は、本実施形態の準備工程S3の処理手順の一例を示すフローチャートである。
【0054】
本実施形態の準備工程S3では、先ず、コア5の温度を変化させて、温度毎に、セグメント4A、4B間の隙間Gが測定される(工程S31)。工程S31では、先ず、加熱手段34によってコア5が加熱される。そして、所定の温度間隔で、セグメント4A、4B間の隙間Gが測定される。隙間Gの測定は、例えば、剛性中子1に取り付けられるレーザー変位計(図示省略)等を用いることにより、容易に測定することができる。
【0055】
工程S31では、チャンバー室21(図3に示す)に熱流体を充填して、各セグメント4A、4Bも加熱しておくのが望ましい。これにより、加硫時の各セグメント4A、4Bの熱膨張の影響を含めて、各セグメント4A、4B間の隙間G(図6(b)に示す)を測定することができる。
【0056】
次に、コア5の温度毎に測定されたセグメント4A、4B間の隙間Gに基づいて、コア5の温度と隙間Gとの関係を示す近似式が求められる(工程S32)。図8は、コア5の温度と、隙間Gとの関係を示すグラフである。工程S32では、温度毎に測定された隙間Gから、例えば、最小二乗法に基づいて近似直線Lsが求められる。このような近似直線Lsにより、好ましい隙間Gに対応するコア5の温度を容易に求めることができる。
【0057】
そして、本実施形態の調整工程S21では、先ず、近似直線Lsに基づいて、隙間Gを、上記した好ましい範囲内に設定しうるコア5の温度の範囲を求める。そして、コア5の加熱や、コア5の加熱の停止が適宜実施されることにより、コア5の温度が、求められた前記温度の範囲内に維持される。これにより、調整工程S21では、コア5の外径D1を調節して、セグメント4A、4B間の隙間Gを、上記好ましい範囲に維持することができる。従って、加硫工程S2では、タイヤTにスピューが形成されるのを防ぐことができる。
【0058】
また、セグメント4A、4B間の隙間Gが上記好ましい範囲に維持されると、隣接するセグメント4A、4Bの接触が抑制されるため、セグメント4A、4Bの接触に起因するセグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を抑制することができる。このため、本実施形態では、上記のように、コア5の温度と隙間Gとの関係のみに基づいて、コア5の温度(即ち、コア5の外径D1)が調節されることにより、セグメント4A、4B間の隙間G、及び、セグメント4A、4B間の外表面Sの段差Rの双方を、上記好ましい範囲に維持することができる。したがって、本実施形態の製造方法では、タイヤTにスピューが形成されるのを防ぎつつ、タイヤの形成精度を効果的に高めることができる。
【0059】
また、本実施形態の調整工程S21では、近似直線Lsに基づいて、コア5の温度(コア5の外径D1)が調節されるため、例えば、加硫工程S2中に、レーザー変位計(図示省略)等を用いて、セグメント4A、4B間の隙間G(図6(b)に示す)や、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を逐次測定する必要がない。このため、本実施形態の製造方法では、調整工程S21での作業効率の向上や、剛性中子1の構造の簡素化を図ることができる。
【0060】
準備工程S3において、セグメント4A、4B間の隙間Gを取得するコア5の温度の範囲については、適宜設定することができる。本実施形態では、例えば、85℃〜180℃に設定されるのが望ましい。また、隙間Gが測定される温度間隔は、コア5の温度と、隙間Gとの関係を正確に取得するために、1℃〜2℃に設定されるのが望ましい。
【0061】
本実施形態の準備工程S3では、コア5の温度を実際に変化させて、セグメント4A、4B間の隙間Gが実測されるものが例示されたが、これに限定されるわけではない。例えば、隙間Gが、コンピュータを用いて計算されてもよい。
【0062】
図9は、本発明の他の実施形態の準備工程S3を実行するためのコンピュータの斜視図である。コンピュータ38は、本体38a、キーボード38b、マウス38c及びディスプレイ装置38dを含んでいる。この本体38aには、演算処理装置(CPU)、ROM、作業用メモリー、磁気ディスクなどの記憶装置及びディスクドライブ装置38a1、38a2などが設けられている。なお、記憶装置には、本実施形態の準備工程S3を実行するための処理手順(プログラム)が予め記憶されている。
【0063】
図10は、本発明の他の実施形態の準備工程S3の処理手順の一例を示すフローチャートである。この実施形態の準備工程S3では、先ず、コンピュータ38に、各セグメント4を有限個の要素で離散化した複数のセグメントモデルが定義される(工程S41)。図11は、セグメントモデル41及びコアモデル42の一部を示す概念図である。
【0064】
各セグメントモデル41は、図2に示した各セグメント4を、数値解析法により取り扱い可能な有限個の要素Fi(i=1、2、…)でモデル化(離散化)することによって設定される。このようなモデルの設定は、剛性中子1(図1に示す)の設計データ(例えば、CADデータ)と、メッシュ化ソフトウエアとを用いることにより、容易に行うことができる。
【0065】
工程S41では、図2に示した第1セグメント4A、及び、第2セグメント4Bが、要素Fiでモデル化される。これにより、工程S41では、第1セグメントモデル41A及び第2セグメントモデル41Bが設定される。また、第1セグメントモデル41Aのタイヤ周方向の両端には、分割面44a、44aがそれぞれ形成されている。また、第2セグメントモデル41Bのタイヤ周方向の両端には、分割面44b、44bが形成されている。そして、工程S41では、第1セグメントモデル41A及び第2セグメントモデル41Bを、タイヤ周方向に交互に連ねて円環状に配置される。これにより、中心孔46を有する中子本体モデル47が設定される。
【0066】
数値解析法としては、例えば、有限要素法、有限体積法、差分法又は境界要素法が適宜採用できるが、本実施形態では有限要素法が採用される。また、各要素Fiとしては、例えば、六面体要素又は四面体要素が好適に用いられるが、これに限定されない。また、各要素Fiには、複数個の節点50が設けられる。このような各要素Fiには、要素番号、節点番号、節点座標値及び材料特性(弾性率、ポアソン比、又は、線膨張係数等)などの数値データが定義される。これらの数値データは、コンピュータ38に記憶される。
【0067】
次に、コンピュータ38に、コア5を有限個の要素で離散化したコアモデル42が定義される(工程S42)。コアモデル42は、セグメントモデル41と同様に、有限個の要素Fi(i=1、2、…)でモデル化(離散化)することによって設定される。
【0068】
また、工程S42では、図2に示した一方の側壁体27a及び他方の側壁体27bも、有限個の要素Fi(i=1、2、…)で離散化される。これにより、一方の側壁体モデル51a、及び、他方の側壁体モデル51bが設定される。
【0069】
さらに、工程S42では、中子本体モデル47の中心孔46に、コアモデル42が配置される。また、工程S42では、コア5の軸心方向の両端部に、一方の側壁体モデル51a及び他方の側壁体モデル51bが配置される。これにより、セグメントモデル41、コアモデル42、一方の側壁体モデル51a、及び、他方の側壁体モデル51bを含む剛性中子モデル52が設定される。
【0070】
次に、コンピュータ38が、コアモデル42の温度を変化させて、セグメント4A、4B間の隙間G(図6(b)に示す)を、セグメントモデル41A、41B間の隙間(図示省略)として計算する(工程S43)。この工程S43では、先ず、チャンバー室21(図3に示す)に充填される熱流体の温度に基づいて、セグメントモデル41の温度が設定される。
【0071】
次に、コアモデル42に、複数の温度が設定される。そして、コンピュータ38は、セグメントモデル41及びコアモデル42に設定された温度、及び、要素Fiに設定された線膨張係数に基づいて、熱膨張したセグメントモデル41及びコアモデル42が計算される。このような熱膨張に伴う変形計算は、例えば、JSOL社製のLS-DYNAなどの市販の有限要素解析アプリケーションソフトを用いて計算することができる。そして、コアモデル42に設定された温度毎に、セグメントモデル41及びコアモデル42を熱膨張させ、セグメントモデル41A、41B間の隙間(図示省略)が計算される。計算されたセグメントモデル41A、41B間の隙間は、温度毎にコンピュータ38に記憶される。
【0072】
各モデル間に設定される摩擦係数が大きいと、熱膨張に伴う変形計算を安定して実施することが難しくなるおそれがある。このため、各モデル間に設定される摩擦係数は、小さいほど望ましく、好ましくは、0.1以下、さらに好ましくは、0(摩擦なし)である。なお、この実施形態の準備工程S3では、コア5の温度と、セグメント4A、4B間の隙間Gとの関係を求めることが重要であるため、たとえ、各モデル間の摩擦係数を小さくして、隙間Gに誤差が生じたとしても、特に問題とはならない。
【0073】
次に、コンピュータ38が、工程S43での計算結果に基づいて、コア5の温度と、セグメント4A、4B間の隙間(図示省略)との関係を示す近似式を求める(工程S44)。この工程S44では、前実施形態の準備工程S3と同様に、図8に示されるように、コアモデル42の温度毎に計算されたセグメントモデル41A、41B間の隙間G(図6(b)に示す)から、例えば、最小二乗法に基づいて近似直線Lsが求められる。このような近似直線Lsにより、好ましい範囲の隙間Gに対応するコア5の温度を容易に求めることができる。
【0074】
このように、この実施形態の準備工程S3でも、前実施形態の準備工程S3と同様に、コア5の温度とセグメント4A、4B間の隙間G(図6(b)に示す)との関係を示す近似直線Lsを求めることができる。このため、加硫工程S2では、セグメント4A、4B間の隙間G、及び、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を、上記好ましい範囲に維持したまま、生タイヤTnを加硫することができる。従って、この実施形態の製造方法でも、タイヤTにスピューが形成されるのを防ぎつつ、タイヤTの形成精度を効果的に高めることができる。
【0075】
また、この実施形態の準備工程S3では、コア5の温度を実際に変化させて、セグメント4A、4B間の隙間Gを実測することなく、コア5の温度と隙間Gとの関係を示す近似式を求めることができる。このため、剛性中子1の設計段階から、コア5の温度と隙間Gとの関係を計算することができるため、タイヤTの形成精度を高めうる剛性中子1(図1に示す)を設計することができる。
【0076】
なお、上記までの実施形態では、準備工程S3において、コア5の温度と、セグメント4A、4B間の隙間Gとの関係のみが取得されるものが例示されたが、これに限定されるわけではない。例えば、コア5の温度と、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)との関係が取得されてもよい。なお、段差Rは、コンピュータ38を用いたシミュレーションによって計算されてもよいし、実測されてもよい。このような関係に基づいて、コア5の温度が調節されることにより、セグメント4A、4B間の外表面Sの段差Rを、確実に防ぐことができる。
【0077】
上記までの実施形態では、外径調節手段33が、コア5を加熱する加熱手段34(図1に示す)から構成されるものが例示されたが、これに限定されるわけではない。他の実施形態の外径調節手段33として、例えば、コア5を冷却する冷却手段から構成されてもよい。図12は、本発明の他の実施形態の外径調節手段を示す断面図である。
【0078】
この実施形態の冷却手段55は、コア5のタイヤ半径方向の内周面に配管され、かつ、低温の流体(例えば、水)を循環させる冷媒パイプ56から構成されている。冷媒パイプ56は、低温の流体を供給する第1冷媒パイプ56aと、熱交換された流体を案内する第2冷媒パイプ56bとを含んでいる。第1冷媒パイプ56aは、例えば、一方の側壁体27aに設けられる供給口58aを介して、低温流体供給機(図示省略)から低温の流体が供給される。第2冷媒パイプ56bは、一方の側壁体27aに設けられる排出口58bを介して、熱交換された流体が回収される。
【0079】
このような冷却手段55は、コア5の内周面に、低温の流体を循環させて、コア5を効果的に冷却することができる。これにより、冷却手段55は、コア5の温度を低下して熱収縮させることができるため、コア5の外径D1(図3に示す)を縮小させることができる。一方、冷却手段55は、低温の流体の供給を停止することにより、セグメント4からコア5に伝達される熱によって、コア5の温度を高めて熱膨張させることができる。従って、冷却手段55は、コア5の外径D1を拡大させることができ、セグメント4A、4B間の隙間G(図6(b)に示す)、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を調節することができる。
【0080】
また、外径調節手段33としては、加熱手段34(図1に示す)又は冷却手段55のいずれか一方のみで構成されるものが例示されたが、加熱手段34及び冷却手段55の双方で構成されるのが望ましい。これにより、外径調節手段33は、コア5を効果的に加熱、及び、冷却することができるため、コア5の外径D1を迅速に調節することができる。従って、セグメント4A、4B間の隙間G(図6(b)に示す)、セグメント4A、4B間の外表面Sの段差R(図6(a)に示す)を、上記好ましい範囲に迅速に設定することができ、タイヤTの形成精度を効果的に高めることができる。なお、図12の冷媒パイプ56には、低温の流体だけでなく、高温の流体も供給されることにより、加熱手段34及び冷却手段55の双方を、容易に構成することができる。
【0081】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【実施例】
【0082】
図1及び図2に示す基本構造を有し、外径調節手段を有する剛性中子が製造された(実施例)。そして、図7に示す処理手順に従って、コアの温度と、セグメント間の隙間との関係を示す近似式(図8に示す)が求められた。
【0083】
次に、実施例の剛性中子の外表面上に生タイヤが形成され、生タイヤを加硫する加硫工程が実施された。加硫工程では、予め求められたコアの温度と隙間との関係を示す近似式(図8に示す)に基づいて、セグメント間の隙間が、0.04mm以下となるように、コアの外径を調節する調整工程が逐次実施された。加硫成形後に、加硫金型からタイヤ及び剛性中子が取り出された。そして、タイヤの内腔から剛性中子が取り出されることにより、タイヤが製造された。
【0084】
そして、実施例のタイヤの内面に、スピューの有無が目視にて確認された。さらに、タイヤユニフォミティ試験器を用い、実施例のタイヤ及び比較例のタイヤを、下記条件(リム、内圧、荷重、及び、速度)に基づいて、RFV(ラジアルフォースバリエイション)のOA、及び、RFVの1次からRFVの5次までが測定された。なお、共通仕様は以下の通りである。
中子本体:
第1セグメント:5個
第2セグメント:5個
タイヤサイズ:195/65R15
リム:6.0J×15
内圧:200kPa
荷重:4630N
速度:120km/h
タイヤユニフォミティ試験機(国際計測器株式会社製):
駆動:ドラム
検出:タイヤ軸
ロードセル:圧電素子(キスラー社製)
ドラム径:2000mm
ドラム幅:400mm
表面材料:セーフティーウォーク
【0085】
テストの結果、実施例のタイヤは、タイヤの内面に、スピューが形成されないことが確認できた。また、実施例のタイヤは、RFVは次の通りであり、RFVのOA及びRFVの5次を小さくすることができた。従って、実施例の製造方法では、スピューの形成を防ぎつつ、形成精度の高いタイヤを製造できることが確認できた。
RFV(OA):127N
RFV(1次):30N
RFV(2次):13N
RFV(3次):9N
RFV(4次):15N
RFV(5次):38N
【0086】
さらに、実施例の製造方法では、外径調節手段により、セグメント間の隙間や段差を柔軟に調整することができる。従って、例えば、中子本体の製造誤差により、タイヤにスピューが形成されたり、ユニフォミティが低下したりしたとしても、外径調節手段によって適宜補正することにより、次回以降に製造されるタイヤの形成精度を確実に高めることができた。
【符号の説明】
【0087】
1 剛性中子
2 加硫金型
3 中子本体
4 セグメント
5 コア
33 外径調節手段
G セグメント間の隙間
R セグメント間の外表面の段差
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12