特許第5913819号(P5913819)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ バイオセンス・ウエブスター・(イスラエル)・リミテッドの特許一覧

<>
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000010
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000011
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000012
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000013
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000014
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000015
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000016
  • 特許5913819-潅注カテーテル使用時の組織温度監視 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5913819
(24)【登録日】2016年4月8日
(45)【発行日】2016年4月27日
(54)【発明の名称】潅注カテーテル使用時の組織温度監視
(51)【国際特許分類】
   A61B 18/12 20060101AFI20160414BHJP
   A61B 90/00 20160101ALI20160414BHJP
【FI】
   A61B17/39 310
   A61B19/00 502
【請求項の数】12
【外国語出願】
【全頁数】20
(21)【出願番号】特願2011-51129(P2011-51129)
(22)【出願日】2011年3月9日
(65)【公開番号】特開2011-183165(P2011-183165A)
(43)【公開日】2011年9月22日
【審査請求日】2014年3月7日
(31)【優先権主張番号】61/312,447
(32)【優先日】2010年3月10日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】511099630
【氏名又は名称】バイオセンス・ウエブスター・(イスラエル)・リミテッド
【氏名又は名称原語表記】Biosense Webster (Israel), Ltd.
(74)【代理人】
【識別番号】100088605
【弁理士】
【氏名又は名称】加藤 公延
(74)【代理人】
【識別番号】100130384
【弁理士】
【氏名又は名称】大島 孝文
(72)【発明者】
【氏名】メイル・バル−タル
(72)【発明者】
【氏名】アブラハム・バーガー
(72)【発明者】
【氏名】アブリ・ハザン
(72)【発明者】
【氏名】ダニエル・オサドチー
【審査官】 佐藤 智弥
(56)【参考文献】
【文献】 特開平6−315541(JP,A)
【文献】 特表2001−514038(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/12
A61B 90/00
(57)【特許請求の範囲】
【請求項1】
カテーテルプローブ切除システムにおいて用いられるコントローラの作動方法であって、
前記コントローラは、
プローブによって実施される切除処置中に、体内組織の近位にある前記プローブを表わす物理的パラメータをモデル化することと、
前記切除処置の非切除段階中の前記物理的パラメータのサブグループを測定することにより、前記サブグループの測定された非切除関連値を生成することと、
前記切除処置の切除段階中の前記物理的パラメータの前記サブグループを測定することにより、前記サブグループの測定された切除関連値を生成することと、
前記モデル化に対応して:
前記非切除段階について前記サブグループの計算された非切除関連値を生成することと、
前記切除段階について前記サブグループの計算された切除関連値を生成することと、
前記測定された非切除関連値を前記計算された非切除関連値と比較することと、前記測定された切除関連値を前記計算された切除関連値と比較することにより、前記物理的パラメータの最適値を生成することと、を行い、
前記サブグループが、前記体内組織に対する前記プローブの、位置、向き、及び接触面積を含む、方法。
【請求項2】
前記物理的パラメータが、前記体内組織の温度の行列を含む、請求項1に記載の方法。
【請求項3】
前記サブグループが温度を含み、前記測定された非切除関連値には前記温度の第一変化の第一時定数が含まれ、前記測定された切除関連値には前記温度の第二変化の第二時定数が含まれる、請求項1に記載の方法。
【請求項4】
前記サブグループには、前記非切除段階中の第一測定潅注流量と、前記切除段階中の第二測定潅注流量との間を行ったり来たりする潅注流量が含まれる、請求項1に記載の方法。
【請求項5】
前記サブグループには前記プローブによって供給される動力が含まれ、前記動力は、前記切除段階中に前記組織を切除することができる第一動力レベルと、前記非切除段階中に前記組織を切除できない第二動力レベルとの間を行ったり来たりする、請求項1に記載の方法。
【請求項6】
前記切除処置が、前記体内組織の高周波切除を含む、請求項1に記載の方法。
【請求項7】
体内組織の近位に配置されるよう構成されたプローブと、
請求項1からにおいて用いられるコントローラと、を含み、前記コントローラは、
前記プローブと前記体内組織との間の電気的インピーダンスに対応する前記体内組織に対する接触面積、及び前記体内組織に対する前記プローブの向き表わす第一見積もり幾何学的ベクトルを計算し、
前記プローブによって前記組織に対し実施される切除処置に関連する一組の熱パラメータに対応して、前記プローブの第二見積もり幾何学的ベクトルを計算し、
前記第一見積もり幾何学的ベクトル及び第二見積もり幾何学的ベクトルを比較して、最適の幾何学的ベクトルを生成し、かつ、
前記最適の幾何学的ベクトルを使用して、前記組織の温度を見積もる、よう構成される、装置。
【請求項8】
前記プローブには互いに絶縁された2つ又は3つ以上の電極が含まれ、前記コントローラが、前記2つ又は3つ以上の電極と前記体内組織との間の前記電気的インピーダンスを測定するよう構成される、請求項に記載の装置。
【請求項9】
前記第一見積もり幾何学的ベクトルには、前記プローブと前記体内組織との間の第一距離、第一角度、及び第一接触面積が含まれ、前記第二見積もり幾何学的ベクトルには、前記プローブと前記体内組織との間の第二距離、第二角度、及び第二接触面積が含まれ、前記最適の幾何学的ベクトルには、前記プローブと前記体内組織との間の第三距離、第三角度、及び第三接触面積が含まれる、請求項に記載の装置。
【請求項10】
前記切除処置には、前記プローブを介して前記組織に対し断続的に切除動力を供給することが含まれ、これにより前記切除動力は、切除段階中に前記組織を切除するのに十分な第一実測切除動力レベルと、非切除段階中に前記組織を切除するのに不十分な第二実測切除動力レベルとの間を行ったり来たりする、請求項に記載の装置。
【請求項11】
前記第二見積もり幾何学的ベクトルを計算することには、前記電気的インピーダンスに対応して前記ベクトルを計算することが更に含まれる、請求項に記載の装置。
【請求項12】
コンピュータプログラム指示が内部に記録された非一過性のコンピュータ読み取り可能な媒体を含み、請求項1からにおいて用いられるコントローラを含むコンピュータであって、該指示がコンピュータによって読み取られると、前記コントローラを含む前記コンピュータが:
プローブによって実施される切除処置中に、体内組織の近位にある前記プローブを表わす物理的パラメータをモデル化し、
前記切除処置の非切除段階中の前記物理的パラメータのサブグループを測定することにより、前記サブグループの測定された非切除関連値を生成し、
前記切除処置の切除段階中の前記物理的パラメータの前記サブグループを測定することにより、前記サブグループの測定された切除関連値を生成し、
前記モデル化に対応して:
前記非切除段階について前記サブグループの計算された非切除関連値を生成し、
前記切除段階について前記サブグループの計算された切除関連値を生成し、かつ、
前記測定された非切除関連値を前記計算された非切除関連値と比較し、前記測定された切除関連値を前記計算された切除関連値と比較することにより、前記物理的パラメータの最適値を生成する、ことを実施する、コンピュータ
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は米国特許仮出願第61/312,447号(2010年3月10日出願)の利益を主張するものであり、同仮出願は参考として本明細書に組み込まれる。
【0002】
(発明の分野)
本発明は全般に、体内組織の切除に関するものであり、特に切除中の組織の温度の測定に関するものである。
【背景技術】
【0003】
心臓の一部切除を含む医学的処置は、さまざまな心不整脈の治療、並びに心房細動の管理のために使用され得る。そのような処置は、当該技術分野において既知である。静脈瘤の治療など、体内組織の切除を使用したその他の医学的処置も、当該技術分野において既知である。これら処置のための切除エネルギーは、高周波(RF)エネルギーの形態であり得る。
【発明の概要】
【発明が解決しようとする課題】
【0004】
この切除エネルギーを体内組織に適用する場合、制御されていないと、組織の温度の望ましくない上昇が起こることがある。したがって、切除が関与するあらゆる医学的処置の最中に、組織の温度を測定することが重要である。
【課題を解決するための手段】
【0005】
本発明の一実施形態は、次のことを含む方法を提供する:
プローブによって実施される切除処置中に、体内組織の近位にあるプローブを表わす物理的パラメータをモデル化することと、
その切除処置の非切除段階中の物理的パラメータのサブグループを測定することにより、そのサブグループの測定された非切除関連値(measured non-ablative values)を生成することと、
その切除処置の切除段階中の物理的パラメータのサブグループを測定することにより、そのサブグループの測定された切除関連値を生成することと、
そのモデル化に対応して:
非切除段階についてサブグループの計算された非切除関連値を生成することと、
切除段階についてサブグループの計算された切除関連値を生成することと、
測定された非切除関連値を計算された非切除関連値と比較することと、測定された切除関連値を計算された切除関連値と比較することにより、物理的パラメータの最適値を生成すること。
【0006】
典型的には、この物理的パラメータには、体内組織の温度の行列が含まれる。
【0007】
開示される一実施形態では、このサブグループには温度が含まれ、測定された非切除関連値にはこの温度の第一変化の第一時定数が含まれ、測定された切除関連値にはこの温度の第二変化の第二時定数が含まれる。
【0008】
別の開示される実施形態では、方法にはプローブを介して組織を潅注することが含まれ、サブグループには、非切除段階中の第一測定潅注流量と、切除段階中の第二測定潅注流量との間を行ったり来たりする潅注流量が含まれる。
【0009】
更に別の開示される実施形態では、サブグループにはプローブによって供給される動力が含まれ、この動力は切除段階中に組織を切除することができる第一動力レベルと、非切除段階中に組織を切除できない第二動力レベルとの間を行ったり来たりする。
【0010】
典型的に、サブグループには、体内組織に対するプローブの位置、向き、及び接触面積のうちの少なくとも1つが含まれる。
【0011】
典型的に、切除処置には、体内組織の高周波切除が含まれる。
【0012】
更に、本発明の別の一実施形態により、次のことを含む方法が提供される:
プローブと体内組織との間の電気的インピーダンスに対応して、体内組織に対するプローブの位置、向き、及び接触面積を表わす第一見積もり幾何学的ベクトルを計算することと、
プローブによって組織に対し実施される切除処置に関連する一組の熱パラメータに対応して、プローブの第二見積もり幾何学的ベクトルを計算することと、
その第一見積もり幾何学的ベクトル及び第二見積もり幾何学的ベクトルを比較して、最適の幾何学的ベクトルを生成することと、
その最適の幾何学的ベクトルを使用して、組織の温度を見積もること。
【0013】
典型的に、プローブには互いに絶縁された2つ又は3つ以上の電極が含まれ、電気的インピーダンスは、その2つ又は3つ以上の電極と体内組織との間でそれぞれ測定される。
【0014】
第一見積もり幾何学的ベクトルには、プローブと体内組織との間の第一距離、第一角度、及び第一接触面積が含まれ得、第二見積もり幾何学的ベクトルには、プローブと体内組織との間の第二距離、第二角度、及び第二接触面積が含まれ得、最適の幾何学的ベクトルには、プローブと体内組織との間の第三距離、第三角度、及び第三接触面積が含まれ得る。
【0015】
開示される一実施形態では、切除処置には、プローブを介して組織に対し断続的に切除動力を供給することが含まれ、これにより切除動力は、切除段階中に組織を切除するのに十分な第一実測切除動力レベルと、非切除段階中に組織を切除するのに不十分な第二実測切除動力レベルとの間を行ったり来たりする。
【0016】
典型的に、第二見積もり幾何学的ベクトルを計算することには、電気的インピーダンスに対応したベクトルを計算することが更に含まれる。
【0017】
組織の温度の見積もることには、その組織の温度値のマップを見積もることが含まれ得る。
【0018】
本発明の一実施形態により、更に、次のものを含む装置が提供される:
体内組織の近位に配置されるよう構成されたプローブと、
コントローラと、を含み、そのコントローラは、
プローブと体内組織との間の電気的インピーダンスに対応して、体内組織に対するプローブの向き、及び接触面積を表わす第一見積もり幾何学的ベクトルを計算し、
プローブによって組織に対し実施される切除処置に関連する一組の熱パラメータに対応して、プローブの第二見積もり幾何学的ベクトルを計算し、
その第一見積もり幾何学的ベクトル及び第二見積もり幾何学的ベクトルを比較して、最適の幾何学的ベクトルを生成し、かつ、
その最適の幾何学的ベクトルを使用して、組織の温度を見積もる、よう構成される。
【0019】
本発明の別の一実施形態により、更に、次のものを含む装置が提供される:
体内組織の近位に配置されるよう構成されたプローブと、
コントローラと、を含み、そのコントローラは、
体内組織に対してプローブによって実施される切除処置中に、プローブを表わす物理的パラメータをモデル化し、
その切除処置の非切除段階中の物理的パラメータのサブグループを測定することにより、そのサブグループの測定された非切除関連値を生成し、
その切除処置の切除段階中の物理的パラメータのサブグループを測定することにより、そのサブグループの測定された切除関連値を生成し、
そのモデル化に対応して:
非切除段階についてサブグループの計算された非切除関連値を生成し、
切除段階についてサブグループの計算された切除関連値を生成し、かつ、
測定された非切除関連値を計算された非切除関連値と比較し、測定された切除関連値を計算された切除関連値と比較することにより、物理的パラメータの最適値を生成する、よう構成される。
【0020】
本発明の一実施形態により、コンピュータプログラム指示が内部に記録された非一過性のコンピュータ読み取り可能な媒体を含むコンピュータソフトウェア製品が更に提供され、この指示がコンピュータによって読み取られると、コンピュータは次のことを実施する:
プローブによって実施される切除処置中に、体内組織の近位にあるプローブを表わす物理的パラメータをモデル化し、
その切除処置の非切除段階中の物理的パラメータのサブグループを測定することにより、そのサブグループの測定された非切除関連値を生成し、
その切除処置の切除段階中の物理的パラメータのサブグループを測定することにより、そのサブグループの測定された切除関連値を生成し、
そのモデル化に対応して:
非切除段階についてサブグループの計算された非切除関連値を生成し、
切除段階についてサブグループの計算された切除関連値を生成し、かつ、
測定された非切除関連値を計算された非切除関連値と比較し、測定された切除関連値を計算された切除関連値と比較することにより、物理的パラメータの最適値を生成する。
【0021】
本開示は、以下のより詳細な実施形態と、その図面の記述により、より完全に理解され得る。
【図面の簡単な説明】
【0022】
図1】本発明の一実施形態によるカテーテルプローブ切除システムの概略描写図。
図2】本発明の一実施形態によるシステムに使用されるカテーテルプローブの遠位端の概略断面図。
図3】本発明の実施形態による切除システムによって使用されるパラメータを示す概略理論図。
図4】本発明の実施形態による切除システムによって使用されるパラメータを示す概略理論図。
図5】本発明の一実施形態による、幾何学的ベクトルの値を見積もるための、切除システムによって使用される方法を示す概略理論図。
図6】本発明の一実施形態による、分析方法を示す概略ブロックダイアグラム。
図7】本発明の一実施形態による、切除システムによって生成される概略グラフ。
図8】本発明の一実施形態による、切除システムのコントローラが実施する工程を示すフローチャート。
【発明を実施するための形態】
【0023】
概観
本発明の一実施形態は、切除処置に関連する物理的パラメータの数学的モデルを利用する。モデル化されたパラメータは、プローブによって実施される処置中に体内組織の近位にあるプローブの遠位端を表わす。切除処置には、組織を切除するのに十分なレベルの動力が体内組織に印加される切除段階と、組織切除が起こらないよう動力レベルが低減される非切除段階とが含まれる。典型的には、非切除段階の時間は、切除段階の時間に比べて短い。切除段階中は、物理的パラメータのサブグループが測定され、そのサブグループの切除関連値が生成される。非切除段階中は、パラメータのサブグループが測定され、そのサブグループの非切除関連値が生成される。
【0024】
このモデルは、サブグループの切除関連値を切除段階に関して計算し、非切除関連値を非切除段階に関して計算するために使用される。これら2つの段階の測定値及び計算値が比較され、これにより物理的パラメータの最適値が生成される。
【0025】
モデル化される物理的パラメータには、組織を切除するためのプローブによって供給される動力値が含まれる。この動力は、高周波(RF)、光学、又は超音波動力などの、実質的に任意の形態であり得る。このパラメータには、体内組織に対するプローブの接触力、プローブによって提供される冷却液の潅注流量、組織のインピーダンス/導電率、組織周囲の冷却液及び血液、プローブ近位にある要素の温度(遠位端での温度を含む)、並びにプローブの幾何学的パラメータが含まれるが、これらに限定されない。
【0026】
このモデルは、心臓組織の切除を評価するのに使用され得る。一実施形態では、上述の切除処置において、複数の電極を有するプローブが組織の近位に挿入され、その電極のうち1つ又は2つ以上がRF動力を組織に伝達する。この処置中、電極と組織との間のインピーダンスが測定され、このインピーダンスが、組織に対するプローブ遠位端の位置、向き、及び/又は接触面積を見積もるのに使用される。典型的に、冷却液の潅注流量は、切除及び非切除の切除処置時間と同期して変更される。
【0027】
この見積もりは、切除される組織の温度マップを生成するために、その見積もり、並びに、切除処置中に間接的又は直接的に測定されるその他のパラメータ値(上述)を使用するモデルに対して提供され得る。
【0028】
温度マップを生成することに加え、このモデルは、遠位端の位置、向き、及び/又は接触面積の見積もりを修正するよう構成することができる。典型的に、この見積もりを生成及び修正するプロセスは、位置、向き、及び/又は接触面積の最適値が達成されるまで反復実施される。次にこのモデルは、この最適値を使用して、組織の温度マップの最終的公式を提供することができる。
【0029】
上述(プローブの位置、向き、及び/又は接触面積を求めるためのもの)と同様の反復プロセスは、モデルの他のパラメータに適用され得る。
【0030】
システムの説明
ここで、発明の実施形態による、カテーテルプローブ切除システム20の概略描写図である図1を参照し、並びに、このシステムに使用されるカテーテルプローブ22の遠位端の概略断面図である図2を参照する。システム20において、プローブ22は、例えば、被験者26の心臓24の心腔などの、管腔23に挿入される。プローブは、体内組織25の切除を実施することを含む処置中に、システム20のオペレータ28によって使用される。
【0031】
システム20の機能は、システムコントローラ30によって管理され、このシステムコントローラには、システム20の動作のためのソフトウェアが保存されているメモリ34と通信を行う処理装置32が含まれている。コントローラ30は典型的に、一般目的のコンピュータ処理装置を含む業界標準のパーソナルコンピュータである。しかしながら、いくつかの実施形態では、コントローラの機能の少なくとも一部分が、例えば、特定用途向け集積回路(ASIC)又は現場でプログラム可能なゲートアレイ(FPGA)などの、カスタム設計のハードウェア及びソフトウェアを使用して実施される。コントローラ30は典型的に、ポインティングデバイス36及びグラフィカルユーザインタフェース(GUI)38(これらによってシステム20のパラメータをオペレータが設定することが可能になる)を使用してオペレータ28によって操作される。更に、GUI 38は典型的に、処置の結果をオペレータに対して表示する。
【0032】
メモリ34中のソフトウェアは、例えば、ネットワークを介して電子的形態でコントローラにダウンロードすることができる。あるいは、又はこれに加えて、このソフトウェアは、光学的、磁気的、又は電子的記憶媒体など、非一過性の有形媒体上に提供され得る。
【0033】
図2は、組織25の近位にあるプローブ22の遠位端40の断面図を示す。遠位端40は、液27中に浸っていると仮定され、これにより組織25は、この液に接触している表面29を有する。(後述のように、液27は典型的に、血液と生理食塩水との混合物を含む)。例として、遠位端40は明細書において、全体的に平坦な表面47によって一方の端が閉じられた円筒45の形状での、絶縁基材41から形成されていると仮定される。円筒45は、対称軸51を有する。図2に示すように、曲面部49は、平坦な表面47と円筒45とを接合している。円筒45の典型的な直径は2.5mmであり、曲面部の典型的な半径は0.5mmである。
【0034】
遠位端40は、第一電極44、第二電極46、及び第三電極48を含み、これらの電極は互いに絶縁されている。これらの電極は典型的に、絶縁基材41上に形成された薄い金属層を含む。典型的に、この遠位端は、電極44、46、及び48から絶縁された他の電極を有するが、単純化のため図には示されていない。先端電極44は、平坦な底部を備えたカップ形状を有し、本明細書においてカップ電極とも呼称される。カップ電極44は典型的に、約0.1mm〜約0.2mmの範囲の厚さを有する。第二電極46及び第三電極48は通常、リング形状であり、本明細書においてリング電極46及びリング電極48とも呼称される。本開示において、電極44、46、及び48、並びに遠位端のその他の電極は、本明細書において総じて電極53とも呼称される。
【0035】
電極44、46、及び48は、システムコントローラ30に配線(図には示されていない)で接続される。後述のように、電極のうちの少なくとも1つが、組織25の切除に使用される。切除モジュール50は、コントローラ30の制御下にあり、電極それぞれによって送達される切除動力レベルを設定及び測定できるよう構成される。
【0036】
典型的に、切除中は、切除電極内及び周囲の領域において熱が生成される。熱を消散させるため、システム20は、カップ電極内の数多くの小さな潅注開口部52を使用して、この領域に潅注を行う。この開口部は典型的に、約0.1〜0.2mmの範囲の直径を有する。潅注チューブ54がこの開口部に生理食塩水を供給し、開口部を通る生理食塩水の流量(これにより液27が血液と生理食塩水との混合物となる)は、システムコントローラ内の潅注モジュール56によって制御される。生理食塩水の流量は典型的に約10〜20cc/分の範囲であるが、この範囲より高くても低くてもよい。
【0037】
生理食塩水温度センサ58(典型的には熱電対)はチューブ54内に配置され、モジュール56への信号を供給し、これによりこのモジュールが、開口部52に流入する生理食塩水の温度Tsを測定することができる。生理食塩水は室温(例えば、約19〜22℃の範囲)でモジュール56によって供給され得るが、この溶液はプローブ22中を流れている間に加熱され、これにより温度Tは典型的に、約26〜28℃の範囲となる。
【0038】
典型的に、1つ又は2つ以上の位置検出デバイス61が遠位端に組み込まれる。デバイス61は、コントローラ30に信号を供給するよう構成され、これにより処理装置は、遠位端40の位置及び/又は向きを確かめることができる。この位置及び向きは典型的に、被験者26に対して測定される。そのような位置検出デバイスの1つには、Biosense−Webster Inc(カリフォルニア州ダイヤモンドバー)が製造する磁気ナビゲーションCARTOシステムが含まれる。
【0039】
あるいは、又はこれに加えて、位置検出デバイスは、遠位端の電極53と、被験者26の皮膚上にある1つ又は2つ以上の電極との間の電流を測定することによって動作する。皮膚電極62は、被験者26に取り付けられていると仮定される。遠位端40の位置を測定するそのような方法は、米国特許出願第2010/0079158号に開示されており、これは参考として本明細書に組み込まれる。よって、電極53は、切除を提供する電極として供されることに加え、例えば電気生理学的検出のため、及び/又は遠位端の位置測定のためなど、他の機能のために使用され得る。
【0040】
必要に応じて、他の機能に使用されるとき、コントローラ30は、周波数多重化によって、違う機能の電流をそれぞれ区別することができる。例えば、切除モジュール50は典型的に、数百kHzの桁の周波数で切除動力を生成し、一方、位置検出周波数は1kHzの桁の周波数であり得る。
【0041】
典型的に、遠位端40は他の要素を含み、これらは明瞭さと単純化のため図2には示されていない。そのような要素の1つには、力センサが含まれ、これは組織42に対して先端40がかける力を測定するよう構成される。
【0042】
遠位端40は、全般的に類似した1つ又は2つ以上の温度センサ82を含み、これらは絶縁体によって固定的にカップ電極44の外表面に接続され、これによって表面から突出している。センサ82は典型的に、直径約0.3mm、及び長さ約1.5mmを有する。一実施形態では、センサ82は、General Electric Company(ニューヨーク州スケネクタディ)が製造するサーミスタNTCタイプAB6である。例として、下記の説明では、軸51に関して対称的に分配され、カップ電極の曲面部86上に配置された、3つのセンサ82(図には2つだけが示されている)があると仮定している。カップ電極の曲面部86は、遠位端の曲面部49に重なり合っている。
【0043】
図2の拡大図88は、センサ82の1つを詳細に示したものである。拡大図88に示すように、センサ82は、絶縁体84によって、カップ電極の曲面部86から分離されている。絶縁体84は、良好な断熱性及び電気絶縁性を提供するよう選択され、いくつかの実施形態では、絶縁体84は、曲面部86にセンサ82を接着する接着剤を含み得る。配線90が、センサ82とコントローラ30とを接続する。
【0044】
センサ82をカップ電極44の外表面から突出させることによって、このセンサは、組織25に直接接触することができる。よってコントローラ30は、このセンサからの信号を使用して、組織の直接温度測定を提供することができる。
【0045】
図3及び図4は、本発明の一実施形態によるシステム20によって使用されるパラメータを示す概略理論図である。図3は、先端40が組織25の表面29の上方にある状況を示し、図4は、先端40が組織に接触している状況を示す。システム20は、図に示すように、処置に関連する熱パラメータの値を測定及び分析するコントローラ30によって、切除処置中に組織25の温度を見積もる。
【0046】
この分析は、組織25の表面29を境界とする、カップ電極44を取り囲んだ液27の小さな容積100におけるエネルギー移動速度を考慮する。この分析は更に、容積100に隣接する組織内の小さな容積102内におけるエネルギー移動速度も考慮する。
【0047】
一般に、遠位端40の面積に関する式は次のようになる:
A(t)=A(b)+A(c) (1)
式中、A(t)は、容積100に接している遠位端40の全体の面積、
A(b)は、面積A(t)のうち、液に曝されている部分、
A(c)は、先端と組織との間の接触面積である。
【0048】
図3に示す状況において、A(c)=0であり、よってA(b)=A(t)である。図4に示す状況において、A(c)>0であり、よってA(b)<A(t)である。
【0049】
容積100への動力は、液中(血液及び生理食塩水)に放散される電磁気高周波(RF)切除動力QRF_Lと、組織25の容積102から容積100へと移動した熱動力Q(組織の温度は、血液の温度Tよりも高いため)とによって生じると仮定される。(典型的に、このより高い組織の温度は、約90〜100℃に達し得る。)
【0050】
容積100の血液及び生理食塩水中に放散される切除動力の値QRF_Lは、液に曝されている遠位端面積A(b)、血液の導電率σ(T)、及び生理食塩水の導電率σ(T)の関数である。(これら2つの導電率は、両方とも電解質特性を有するため、温度Tに強く従属する。典型的に、この導電率は約2%/℃で変化する。)
【0051】
RF_Lは、次のように表わすことができる:
【数1】
【0052】
組織の容積102(より詳しくは後述)に放散される切除動力は、37℃と仮定される標準体温を上回る温度に、組織温度を上昇させる。よって、組織の容積102中において、組織温度の配列、又はマップが存在する。組織温度のマップは、行列[T]によって表わすことができ、この行列の各要素は、領域内の対応する容積要素の温度である。容積102から容積100へ移動する熱動力Qは、温度マップ[T]及びTの関数である。
【0053】
行列[T]は、図4に概略が示されており、線104は100℃の等温線を表わし、線106は50℃の等温線を表わす。50℃以上の温度の領域は典型的に、壊死病変に対応する。
【0054】
容積100への動力Pinは、式(3)によって与えられる:
【数2】
式中、Q([T],T)は、血液温度TBと温度[T](典型的に、例えば線104内の組織のような、組織の最高温部分の温度を含む)との差により、容積100へ移動する熱動力を表わす関数である。
【0055】
容積100から出る動力は、血液のマスフローと、潅注生理食塩水のマスフローとによって、運び去られる。液によって放散される動力を表わすPoutは:
【数3】
式中、
【数4】
は、血液のマスフロー、
pBは、血液の比熱容量、
【数5】
は、生理食塩水のマスフロー、
pSは、生理食塩水の比熱容量、
は、生理食塩水の流入温度、
は、容積100に流入する血液の温度(典型的に、37℃で一定と仮定される)、
outは、容積100から流出する血液及び生理食塩水混合物の温度、並びに、
Xは、容積100中の生理食塩水及び血液の混合量に従属する係数である。
【0056】
典型的に、温度Toutはセンサ82によって決定され得る。図3に図示された状況においては、Toutは通常、3つのセンサすべてを使用して測定され得る。図4に図示された状況においては、角度θ(下記に定義)が約45°より大きいとき、Toutは典型的に、センサ82のうちの少なくとも1つによって記録される。
【0057】
式(4)中の係数Xは、潅注開口部52から出る生理食塩水が乱流であるか層流であるかによる関数である。これは、流れのタイプによって各開口部から出る生理食塩水噴出の長さが左右されるからである。この流れのタイプは、開口部の直径d、及び生理食塩水マスフロー流量
【数6】
に従属する。係数Xは更に、組織25の表面29に対する遠位端40の近さ(すなわち、遠位端と表面との間の距離Δx)にも従属する。図に示すように、距離Δxは、遠位端が表面29の上方にあるか(図3)、又は表面の下方にあるか(図4)によって、正の値又は負の値であり得る。
【0058】
係数Xは更に、組織に対する開口部からの流れの方向に従属する。流れの方向は、遠位端40と組織25のなす角度θの関数である。
【0059】
よって、エネルギー平衡方程式(4)は、次のように表わすことができる:
【数7】
【0060】
容積102を考慮し、組織内に放散される切除動力QRF_TISは、次の式で表わすことができる:
【数8】
式中、容積102の各容積要素Vは、この要素を介した電圧及び電流に対する潜在性により、要素内に放散されるRF動力qTISを有し、ここにおいて各容積要素は、それぞれの導電率σTISを有する。
【0061】
2つの切除動力、QRF_L及びQRF_TISは、切除モジュール50によって供給され、次の式の関係を有する:
RF=QRF_L+QRF_TIS (7)
RFは、コントローラ30によって制御され、かつ測定される。典型的に、切除処置中、QRFは30W程度である。
【0062】
下記に詳しく述べるように、本発明の実施形態は、式(1)〜(7)の値を評価する。この評価を使用して、行列[T]の要素の値が生成され得る。加えて、この評価を使用して、Δx、θ、及び/又はA(c)の値を見積もることができる。本明細書の説明において、整列三要素(ordered triple)(Δx、θ、A(c))は、遠位端の幾何学的ベクトルを指す。
【0063】
図5は、本発明の一実施形態による、Δx、θ、及び/又はA(c)の値を見積もるための、システム20によって使用される代替の方法を示した概略理論図である。単純化のため、この代替方法を説明するために必要なシステム20の要素だけが、図にラベルされている。この代替方法において、コントローラ30は、カップ電極44と(被験者26の)皮膚電極62との間のインピーダンスXを測定する。加えて、このコントローラは、リング電極48と皮膚電極との間のインピーダンスXを測定する。
【0064】
インピーダンスX、Xは、両電極が浸っている液27の導電率と、表面29までの液中の異なる有効経路長さとの関数である。液27の導電率は、血液の導電率σ(T)及び生理食塩水の導電率σ(T)に従属している。両方のインピーダンスとも、表面29と皮膚電極62との間の被験者組織の導電率の関数であり、これは、両インピーダンスについて実質的に同じ経路長さを有する。
【0065】
上述のように、遠位端40は典型的に、2つを超える電極を含み、これにより上記の説明は、各電極53と皮膚電極62との間のインピーダンスについて適用され得る。
【0066】
後述のように、コントローラ30は、この測定したインピーダンスを使用して(カップ電極及び1つ又は2つ以上のリング電極の表面積の違いを考慮するため正規化した後)、遠位端40のΔx、θ、及び/又はA(c)の値を見積もる。コントローラは典型的に、とりわけ、その他の物理的パラメータ値(例えば、組織、血液、及び生理食塩水の導電率)を使用して、この見積もりを行う。
【0067】
図6は、本発明の一実施形態による、コントローラ30によって使用される分析方法を示す概略ブロックダイアグラム200である。
【0068】
制御可能入力ブロック202は、コントローラ30が指示を行うよう構成され、かつ装置が測定することができるような、遠位端40への入力を表わす。上述のように、これらの入力は、切除モジュール50内で生成され、容積100及び102内(図3及び4)並びに遠位端40への生理食塩水潅注流量に拡散される、切除動力全体を含む。
【0069】
寸法ブロック204は、遠位端40の機械的寸法を表わす。これにより、プローブ22が円筒形であると仮定すると、この寸法は、円筒の直径、及び、その分析においてコントローラに使用される遠位端の長さを含む。
【0070】
このコントローラによる分析は、当該技術分野において既知であり、かつ、コントローラ30によって使用されるメモリ34に保存され得る、物理的パラメータの値を使用する。物理的パラメータブロック206は、これらのパラメータを表わし、これには例えば、組織及び血液の電気導電率、並びにこれら導電率の温度に対する変化率が含まれる。このパラメータにはまた、組織の熱伝導率、並びに温度に対するその変化率が含まれる。
【0071】
切除処置中、コントローラ30は、生理食塩水センサ58及び遠位端センサ82によって供給される温度を測定することができる。典型的に、少なくとも1つのセンサ82は、組織25と直接接触しており、表面29から0.数ミリ下の組織温度を直接測定する。コントローラは更に、処置中に、切除モジュール50に対して存在するインピーダンスを測定することもできる。加えて、これら測定のそれぞれの時刻をコントローラによって記録することができ、これを使用して、温度及びインピーダンスの変化率が判定される。センサブロック208は、例えば上記のような、熱及び非熱パラメータ測定を表わし、これらはコントローラによって記録することができる。
【0072】
モデルプロセスブロック210によって表わされるモデル化プロセスにおいて、コントローラは、ブロック202、204、206、及び208の入力を式(1)〜(7)に組み入れる。モデル化プロセスは典型的に、式の未知のパラメータ値を見積もり、並びにその式の結果を生成するために、有限要素法(FEM)及び計算流体力学(CFD)を適用する。FEM及びCFDの両方とも当該技術分野において既知であり、これらプロセスを適用して式(1)〜(7)を分析することは、当業者にとって明白である。
【0073】
コントローラは式の結果を評価し、結果の分析から、装置は、熱依存性パラメータ(本明細書では熱パラメータとも呼ばれる)を見積もることができ、これは後述のように、幾何学的見積もりブロック214に影響する。モデルパラメータブロック212によって表わされる熱パラメータは典型的に、温度Tの見積もりからの、血液及び生理食塩水の導電率σ(T)、σ(T)の評価を含む。この分析から、コントローラは、温度マップブロック215によって表わされる温度マップ[T]の見積もりを行うこともできる。
【0074】
ブロック210によって表わされるモデル化プロセスに加え、コントローラ30は、図5を参照し、上述のプロセスを使用して、ベクトル(Δx、θ、A(c))の幾何学的見積もりを実施する。この見積もりは、幾何学的見積もりブロック214によって表わされる。ブロック214は、電極53と皮膚電極62との間のインピーダンス(コントローラ30によって測定される)を、インピーダンス値ブロック213によって表わされる入力として受け取る。ブロック214によって表わされる見積もりは、コントローラによって独立に(すなわち、ブロック213の値のみを使用して)行われ得る一方、コントローラは、矢印216に示すように、見積もり実施に、ブロック212の熱パラメータの一部を適用することができる。
【0075】
コントローラ30は、幾何学的出力ブロック218によって表わされるように、ブロック214の出力を、ブロック210のモデル化プロセスへと伝達する。典型的に、フローチャート300を参照して後述するように、コントローラは、ブロック210と218との間を反復して、最適の幾何学的ベクトル(Δx、θ、A(c))を生成する。よって、最初のベクトル見積もりは、ブロック212の熱パラメータから実質的に独立していてよいが、一方、後続の見積もりはこの熱パラメータを使用する。
【0076】
図7は、本発明の一実施形態による、システム20によって生成される概略グラフを示す。このグラフは、組織切除のための断続的な切除処置中の、シミュレーションされた測定値を示す。この切除処置には、非切除段階を間に挟んだ切除段階が含まれる。グラフ250及び252は温度対時間のグラフであり、グラフ254は生理食塩水流量対時間、グラフ256は切除動力対時間である。
【0077】
処置中、コントローラは、初期時刻(0s)と時刻T1との間(時間ΔT)、既知の切除動力30W、並びに既知の潅注流量18cc/分を適用している。時間ΔTは、処置の1つの切除段階に対応する。これは、ΔTの時間中に供給される動力は、組織の壊死を起こすのに十分(すなわち、組織を切除するのに十分)であるためである。時刻T1において、コントローラは切除動力のスイッチをオフにし、短時間ΔTの間、潅注流量を2cc/分に減らし、この時間は時刻T2に終了する。一実施形態において、ΔTは典型的に、約500msである。処置の非切除段階に対応するΔTの時間中は、組織は切除されない。時刻T2で、コントローラは、ΔTの時間中に使用した切除動力及び潅注流量を、時刻T3まで、時間ΔTの間適用し、これは切除段階となる。時刻T3から、切除動力のスイッチがオフにされ、潅注流量は時間ΔTと同じ流量まで低減される。T3からの時間は、非切除段階となる。
【0078】
グラフ252は、例として組織25の表面29に接触していると仮定した場合の先端40のセンサ82によって測定される温度を示す。時間ΔT及びΔTの間、すなわち、組織が切除されている切除段階中は、コントローラは、温度と時刻測定値から、対応する時定数τ、τを抽出することができ、これはこれらの時間に温度変化率が正の割合であったことを示す。時間ΔTの間、すなわち、組織が切除されていない非切除段階中は、コントローラは時定数τを評価し、時間ΔTの間に温度変化率が負の割合であったことを示す。コントローラは更に、時刻T3の後の非切除段階についての時定数τも評価することができる。
【0079】
コントローラは、切除される組織の対応する温度マップ[T]を判定するために、モデル化ブロック210において実施される分析に、これらの時定数値を使用することができる。グラフ250は、モデル化ブロック210によって判定される組織の高温領域の温度を示す。
【0080】
被験者26の切除処置中、コントローラは、グラフ254及び256に示すような、断続的な「オン/オフ」の切除処置を実行することができる。そのような切除処置中、コントローラは、センサ82で遠位端40近くの温度を測定することができ、上に例示のように、切除が起こっている間及び切除が実施されていない間に、その温度測定を使用して、温度変化に関する時定数を導くことができる。時定数は、被験者26の組織の温度マップを導くのに、モデル化ブロック210において使用され得る。
【0081】
上述の断続的なオン/オフ切除処置は、処置の「オン」段階中の切除動力の特定値及び潅注流量の特定値を仮定する。同様に、この処置は、処置の「オフ」段階中の切除動力の別の特定値(この場合はゼロ)及び潅注流量の別の特定値を仮定する。これらの値は例であって、オン/オフ切除処置中にコントローラ30によって、他の動力値及び流量値を、実行並びに測定することができることが理解されよう。同様に、コントローラ30は、処置の切除段階の時間、及び非切除段階の時間に、上に例示されたもの以外の値を構成することができる。異なる値を使用することによって、コントローラは、ブロック210において実行される分析において、温度マップ[T]をより高い精度で生成することができる。
【0082】
図8は、本発明の一実施形態による、コントローラ30が実施する工程を示すフローチャート300である。初期パラメータ保存工程302において、装置は、寸法ブロック204及び物理的パラメータブロック206(図6)に対応する値を、メモリ34に保存する。
【0083】
処置開始工程304において、オペレータ28は、プローブ22を心臓24に挿入し、位置デバイス61を使用して遠位端40を心臓内の望ましい位置に配置する。
【0084】
外科的工程306において、オペレータは切除処置を開始する。処置中、コントローラ30は、モジュール50によって供給される切除動力、並びに、モジュール56によって供給される生理食塩水潅注流量を、調節及び測定する。この処置には典型的に、図7を参照して上述したように、断続的なオン/オフ処置が包含される。オン/オフ処置のオン及びオフ状態のパラメータを含む、ブロック202の制御可能入力パラメータは、オペレータ28によって設定され得る。このオン及びオフ状態のパラメータには、各状態の持続時間、並びにその状態中に送達される動力レベル及び生理食塩水流量が含まれる。
【0085】
あるいは、又はこれに加えて、コントローラ30は、ブロック202の制御可能入力のパラメータを設定するよう構成され得る。コントローラは、準自動的にパラメータを設定することができ(すなわち、オペレータからのある程度の入力がある)、あるいは自動的にパラメータを設定することができる(すなわち、オペレータからの入力が実質的にない)。いくつかの実施形態では、コントローラは適応的にパラメータを設定することができ、典型的には、モデル化ブロック210から導かれる結果に対応して設定することができる。
【0086】
また工程306において、コントローラ30は、センサ測定ブロック208に対応して、センサ入力値を記録する。
【0087】
典型的には工程306と同時に実施される、インピーダンス測定工程308において、コントローラは、図5を参照して上述されたように、電極53と皮膚電極62との間のインピーダンスを測定する。上述の断続的な切除処置の場合、インピーダンスは、オン状態中及びオフ状態中に測定し得る。
【0088】
ベクトル見積もり工程310において、コントローラ30は、工程308のインピーダンスを使用して、プローブの幾何学的ベクトル(Δx、θ、A(c))の値を見積もる。見積もりは典型的に、物理的パラメータブロック206に対応する物理的パラメータ(例えば導電率)を使用する。いくつかの実施形態では、コントローラはインピーダンスを使用して、幾何学的ベクトルの要素のサブグループの値を測定することができる。
【0089】
モデル適用工程312において、工程310で見積もられた値は、モデルプロセスブロック210に移され、コントローラがブロック210のプロセスを適用して、その幾何学的ベクトルの更なる見積もりを行う。
【0090】
比較工程314において、コントローラは工程310及び312の見積もりを比較する。これら2つの見積もりの間の差が、あらかじめ定められた制限値より大きい場合は、フローチャートは工程306に戻る。その差があらかじめ定められた制限値以下の場合は、フローチャートは最終工程316へ進む。
【0091】
最終工程316において、コントローラは、工程310及び312において決定されたベクトルから、最適の幾何学的ベクトル(Δx、θ、A(c))を生成する。コントローラは、モデルプロセスブロック210において、最適な幾何学的ベクトルを使用して、温度マップブロック215に対応する温度マップ[T]を生成する。コントローラは典型的に、温度マップ[T]を最適化するために、例えばセンサ82などのセンサの物理的測定値をモデル化された値と比較することによって、最適の幾何学的ベクトルを生成するために説明されたものと類似の反復プロセスを使用する。
【0092】
上述の説明は、切除動力が典型的にRF動力であると仮定しているが、本発明の実施形態は、実質的に、光学的動力又は超音波動力などを含みこれらに限定されない、ほぼあらゆるタイプの切除動力を使用することができる。
【0093】
上述された実施形態は例のために引用され、また本発明は、以上に特に示され記述されたものに限定されるものではないことが、したがって理解されるであろう。むしろ本発明の範囲は、以上に記述されたさまざまな特徴の結合及び副結合の両方とともに、当業者が前述の記述を読了後に思いつくであろう、先行技術に開示されていない、それらの変更と修正をも包含する。
【0094】
〔実施の態様〕
(1) プローブによって実施される切除処置中に、体内組織の近位にある前記プローブを表わす物理的パラメータをモデル化することと、
前記切除処置の非切除段階中の前記物理的パラメータのサブグループを測定することにより、前記サブグループの測定された非切除関連値を生成することと、
前記切除処置の切除段階中の前記物理的パラメータの前記サブグループを測定することにより、前記サブグループの測定された切除関連値を生成することと、
前記モデル化に対応して:
前記非切除段階について前記サブグループの計算された非切除関連値を生成することと、
前記切除段階について前記サブグループの計算された切除関連値を生成することと、
前記測定された非切除関連値を前記計算された非切除関連値と比較することと、前記測定された切除関連値を前記計算された切除関連値と比較することにより、前記物理的パラメータの最適値を生成することと、を含む、方法。
(2) 前記物理的パラメータが、前記体内組織の温度の行列を含む、実施態様1に記載の方法。
(3) 前記サブグループが温度を含み、前記測定された非切除関連値には前記温度の第一変化の第一時定数が含まれ、前記測定された切除関連値には前記温度の第二変化の第二時定数が含まれる、実施態様1に記載の方法。
(4) 前記プローブを介して前記組織を潅注することを含み、前記サブグループには、前記非切除段階中の第一測定潅注流量と、前記切除段階中の第二測定潅注流量との間を行ったり来たりする潅注流量が含まれる、実施態様1に記載の方法。
(5) 前記サブグループには前記プローブによって供給される動力が含まれ、前記動力は、前記切除段階中に前記組織を切除することができる第一動力レベルと、前記非切除段階中に前記組織を切除できない第二動力レベルとの間を行ったり来たりする、実施態様1に記載の方法。
(6) 前記サブグループが、前記体内組織に対する前記プローブの、位置、向き、及び接触面積のうちの少なくとも1つを含む、実施態様1に記載の方法。
(7) 前記切除処置が、前記体内組織の高周波切除を含む、実施態様1に記載の方法。
(8) プローブと体内組織との間の電気的インピーダンスに対応して、前記体内組織に対する前記プローブの位置、向き、及び接触面積を表わす第一見積もり幾何学的ベクトルを計算することと、
前記プローブによって前記組織に対し実施される切除処置に関連する一組の熱パラメータに対応して、前記プローブの第二見積もり幾何学的ベクトルを計算することと、
前記第一見積もり幾何学的ベクトル及び第二見積もり幾何学的ベクトルを比較して、最適の幾何学的ベクトルを生成することと、
前記最適の幾何学的ベクトルを使用して、前記組織の温度を見積もることと、を含む、方法。
(9) 前記プローブには互いに絶縁された2つ又は3つ以上の電極が含まれ、前記電気的インピーダンスが、前記2つ又は3つ以上の電極と前記体内組織との間でそれぞれ測定される、実施態様8に記載の方法。
(10) 前記第一見積もり幾何学的ベクトルには、前記プローブと前記体内組織との間の第一距離、第一角度、及び第一接触面積が含まれ、前記第二見積もり幾何学的ベクトルには、前記プローブと前記体内組織との間の第二距離、第二角度、及び第二接触面積が含まれ、前記最適の幾何学的ベクトルには、前記プローブと前記体内組織との間の第三距離、第三角度、及び第三接触面積が含まれる、実施態様8に記載の方法。
【0095】
(11) 前記切除処置には、前記プローブを介して前記組織に対し断続的に切除動力を供給することが含まれ、これにより前記切除動力は、切除段階中に前記組織を切除するのに十分な第一実測切除動力レベルと、非切除段階中に前記組織を切除するのに不十分な第二実測切除動力レベルとの間を行ったり来たりする、実施態様8に記載の方法。
(12) 前記第二見積もり幾何学的ベクトルを計算することには、前記電気的インピーダンスに対応して前記ベクトルを計算することが更に含まれる、実施態様8に記載の方法。
(13) 前記組織の前記温度を見積もることには、前記組織の温度値のマップを見積もることが含まれる、実施態様8に記載の方法。
(14) 体内組織の近位に配置されるよう構成されたプローブと、
コントローラと、を含み、前記コントローラは、
前記プローブと前記体内組織との間の電気的インピーダンスに対応して、前記体内組織に対する前記プローブの向き及び接触面積を表わす第一見積もり幾何学的ベクトルを計算し、
前記プローブによって前記組織に対し実施される切除処置に関連する一組の熱パラメータに対応して、前記プローブの第二見積もり幾何学的ベクトルを計算し、
前記第一見積もり幾何学的ベクトル及び第二見積もり幾何学的ベクトルを比較して、最適の幾何学的ベクトルを生成し、かつ、
前記最適の幾何学的ベクトルを使用して、前記組織の温度を見積もる、よう構成される、装置。
(15) 前記プローブには互いに絶縁された2つ又は3つ以上の電極が含まれ、前記コントローラが、前記2つ又は3つ以上の電極と前記体内組織との間の前記電気的インピーダンスを測定するよう構成される、実施態様14に記載の装置。
(16) 前記第一見積もり幾何学的ベクトルには、前記プローブと前記体内組織との間の第一距離、第一角度、及び第一接触面積が含まれ、前記第二見積もり幾何学的ベクトルには、前記プローブと前記体内組織との間の第二距離、第二角度、及び第二接触面積が含まれ、前記最適の幾何学的ベクトルには、前記プローブと前記体内組織との間の第三距離、第三角度、及び第三接触面積が含まれる、実施態様14に記載の装置。
(17) 前記切除処置には、前記プローブを介して前記組織に対し断続的に切除動力を供給することが含まれ、これにより前記切除動力は、切除段階中に前記組織を切除するのに十分な第一実測切除動力レベルと、非切除段階中に前記組織を切除するのに不十分な第二実測切除動力レベルとの間を行ったり来たりする、実施態様14に記載の装置。
(18) 前記第二見積もり幾何学的ベクトルを計算することには、前記電気的インピーダンスに対応して前記ベクトルを計算することが更に含まれる、実施態様14に記載の装置。
(19) 体内組織の近位に配置されるよう構成されたプローブと、
コントローラと、を含み、前記コントローラは、
前記体内組織に対して前記プローブによって実施される切除処置中に、前記プローブを表わす物理的パラメータをモデル化し、
前記切除処置の非切除段階中の前記物理的パラメータのサブグループを測定することにより、前記サブグループの測定された非切除関連値を生成し、
前記切除処置の切除段階中の前記物理的パラメータの前記サブグループを測定することにより、前記サブグループの測定された切除関連値を生成し、
前記モデル化に対応して:
前記非切除段階について前記サブグループの計算された非切除関連値を生成し、
前記切除段階について前記サブグループの計算された切除関連値を生成し、かつ、
前記測定された非切除関連値を前記計算された非切除関連値と比較し、前記測定された切除関連値を前記計算された切除関連値と比較することにより、前記物理的パラメータの最適値を生成する、よう構成される、装置。
(20) 前記物理的パラメータが、前記体内組織の温度の行列を含む、実施態様19に記載の装置。
【0096】
(21) 前記サブグループが温度を含み、前記測定された非切除関連値には前記温度の第一変化の第一時定数が含まれ、前記測定された切除関連値には前記温度の第二変化の第二時定数が含まれる、実施態様19に記載の装置。
(22) 前記プローブを介して前記組織を潅注するよう前記コントローラを構成することを含み、前記サブグループには、前記非切除段階中の第一測定潅注流量と、前記切除段階中の第二測定潅注流量との間を行ったり来たりする潅注流量が含まれる、実施態様19に記載の装置。
(23) 前記サブグループには前記プローブによって供給される動力が含まれ、前記動力は前記切除段階中に前記組織を切除することができる第一動力レベルと、前記非切除段階中に前記組織を切除できない第二動力レベルとの間を行ったり来たりする、実施態様19に記載の装置。
(24) 前記サブグループが、前記体内組織に対する前記プローブの、位置、向き、及び接触面積のうちの少なくとも1つを含む、実施態様19に記載の装置。
(25) 前記切除処置が、前記体内組織の高周波切除を含む、実施態様19に記載の装置。
(26) コンピュータプログラム指示が内部に記録された非一過性のコンピュータ読み取り可能な媒体を含むコンピュータソフトウェア製品であって、該指示がコンピュータによって読み取られると、前記コンピュータが:
プローブによって実施される切除処置中に、体内組織の近位にある前記プローブを表わす物理的パラメータをモデル化し、
前記切除処置の非切除段階中の前記物理的パラメータのサブグループを測定することにより、前記サブグループの測定された非切除関連値を生成し、
前記切除処置の切除段階中の前記物理的パラメータの前記サブグループを測定することにより、前記サブグループの測定された切除関連値を生成し、
前記モデル化に対応して:
前記非切除段階について前記サブグループの計算された非切除関連値を生成し、
前記切除段階について前記サブグループの計算された切除関連値を生成し、かつ、
前記測定された非切除関連値を前記計算された非切除関連値と比較し、前記測定された切除関連値を前記計算された切除関連値と比較することにより、前記物理的パラメータの最適値を生成する、ことを実施する、コンピュータソフトウェア製品。
図1
図2
図3
図4
図5
図6
図7
図8