(58)【調査した分野】(Int.Cl.,DB名)
前記第1の信号は周期波信号を含んでおり、前記検出器ロジックが前記第1の入力と前記第2の入力とに基づいて前記加速度を評価することは、前記検出器ロジックが差分共振周波数及び平均共振周波数のうちの一方を評価することを含む、請求項1に記載の装置。
前記検出器ロジックは更に、前記加速度の評価のために、前記第1の入力及び前記第2の入力に基づいて、前記差分共振周波数と前記平均共振周波数との間で選択を行う、請求項5に記載の装置。
前記第1の信号は周期波信号を含んでおり、前記検出器ロジックが前記第1の入力と前記第2の入力とに基づいて前記加速度を評価することは、前記検出器ロジックが差分共振周波数及び平均共振周波数のうちの一方を評価することを含む、請求項9に記載のシステム。
前記検出器ロジックは更に、前記加速度の評価のために、前記第1の入力及び前記第2の入力に基づいて、前記差分共振周波数と前記平均共振周波数との間で選択を行う、請求項13に記載のシステム。
当該方法は更に、検出器ロジックを含んだダイを前記基板上に配設するステップを有し、前記検出器ロジックは、力を指し示す前記微小電気機械加速度計のバイアスを指し示す第1の入力を受信し、共振周波数を指し示す第2の入力を受信し、前記第1の入力と前記第2の入力とに基づいて前記質量体の加速度を評価し、前記評価された加速度を表す信号を生成するものであり、前記第1の入力は、前記第1のワイヤ部及び前記第2のワイヤ部で伝導される信号から得られ、前記第2の入力は、前記第1の支持ビーム部及び前記第2の支持ビーム部で伝導される時変信号から得られる、請求項17に記載の方法。
第1の磁石と、質量体と、第1の支持ビーム部と、第2の支持ビーム部と、前記質量体に結合され且つ第1のアンカーに柔軟に結合された第1のワイヤ部と、前記質量体に結合され且つ第2のアンカーに柔軟に結合された第2のワイヤ部とを含む加速度計であり、前記質量体が前記第1の支持ビーム部と前記第2の支持ビーム部とで吊られ、前記第1のアンカー及び前記第2のアンカーが第1の信号を交換し、前記第1の信号及び前記磁石の磁場に基づいて、前記第1のワイヤ部及び前記第2のワイヤ部が前記質量体に力を与える、加速度計、のバイアスを指し示す第1の入力を受信するステップであり、該第1の入力は前記力を指し示す、ステップと、
前記第1の支持ビーム部及び前記第2の支持ビーム部の共振周波数を指し示す第2の入力を受信するステップであり、前記共振周波数は、前記磁場と、前記質量体に前記力が与えられている間に前記第1の支持ビーム部及び前記第2の支持ビーム部で伝導される時変信号とに基づく、ステップと、
前記第1の入力と前記第2の入力とに基づいて前記質量体の加速度を評価するステップと、
前記評価された加速度を表す信号を生成するステップと、
を有する方法。
前記第1の信号は周期波信号を含んでおり、前記第1の入力と前記第2の入力とに基づいて前記加速度を評価するステップは、差分共振周波数及び平均共振周波数のうちの一方を評価することを含む、請求項22に記載の方法。
【発明を実施するための形態】
【0007】
以下の説明において、本開示に係る1つ以上の態様を明瞭且つ簡潔に例示するため、図面は必ずしも縮尺通りでないことがあるし、特定の機構が幾分模式的な形態で示されることがある。1つの態様に関して記載且つ/或いは図示される機構が、1つ以上のその他の態様において同一あるいは同様の手法で使用されてもよく、且つ/或いは、ここに開示される技術のその他の態様の機構に組み合わせて、あるいは代えて、使用されてもよい。
【0008】
一実施形態に係る加速度計は、1つ以上の永久磁石又は電磁石と、各々が少なくとも部分的にそれぞれの導電経路を提供する1つ以上のビーム(梁)構造(ここでは、“支持ビーム部”又は単に“支持ビーム”として様々に参照する)によって吊られたプルーフマスとを含む。このような導電経路に時変信号が印加されるとき、特性共振周波数が作り出される。プルーフマスが加速度を受けるとき、共振周波数にそれぞれの変化が作り出される。一実施形態において、加速度計は更に、プルーフマスにバイアス力を及ぼすバイアスワイヤを含む。このようなバイアス力は、例えば、向上された加速度計感度や改善された加速度計校正に様々に寄与するため、且つ/或いはより小さい加速度計幾何学構成を可能にするために活用され得る。
【0009】
次に、様々な実施形態の特定の態様を検討するに、
図1Aは、一実施形態に係る加速度を計測するシステム100の要素を例示する上面図である。システム100は、加速度計150と、加速度計150の動作を検知し、この検知された動作に基づいて加速度の1つ以上の特性を決定する検出器ロジック155とを含み得る。
【0010】
一実施形態において、加速度計150は、例示的な永久磁石112によって表されている1つ以上の磁石と、慣性質量として作用するプルーフマス102と、上記1つ以上の磁石を含んだ階層より上にプルーフマス102を吊る支持構造とを含む。限定ではなく例示として、この支持構造は、プルーフマス102と加速度計150のアンカー110aとの間に結合された支持ビーム108a、及び/又はプルーフマス102と加速度計150のアンカー110bとの間に結合された支持ビーム108bを含み得る。加速度計150は、様々な実施形態によって、プルーフマス102を吊るための多様な付加的あるいは代替的な支持構造のうちの何れを含んでいてもよい。磁石112の磁気極性の配置は、単に例示的なものであり、特定の実施形態に限定するものではない。
【0011】
アンカー110a、110bは、例えばプルーフマス102を吊るための機械的支持を提供することに加えて、支持ビーム108a、108bの電気接続を提供し得る。限定ではなく例示として、支持ビーム108a、108bは、アンカー110a、110b間で交換される例えば時変信号といった電気信号のための導電経路の少なくとも一部を提供し得る。一実施形態において、この電気信号は、例えば図示のX次元に沿った方向など、少なくとも第1の方向に、磁石112によって生成される磁場を横切る。この電気信号は更に、特定の実施形態はこの点で限定されないが、プルーフマス102を介して導通され得る。少なくとも部分的に磁場に起因して、この導電経路は関連した共振周波数特性を有することになる。磁場を貫いて電流を流すことは、電流を担持する構造に機械的な力を与える。電流及び機械力が構造体の機械的な共振周波数に近い場合、導電経路は関連した共振周波数特性を示すことになる。
【0012】
支持ビーム108a、108bは、例えば、検出器ロジック155に含まれるか結合されるかした電流源(図示せず)からの電流のインパルスによって、結果として生じる共振周波数を有するように励起され得る。例えば、支持ビーム108a、108bは、数ミリ秒から何十ミリ秒のオーダーの期間(例えば、およそ5msから20ms)にわたって電流を担持し得る。支持ビーム108a、108bのこのような励起の後、検出器ロジック155が数百マイクロ秒だけ支持ビーム108a、108bの共振特性を検出し得る。一実施形態において、検出器ロジック155の位相ロックループ(PLL)又はその他のそのような回路が、支持ビーム108a、108bの振動の周波数を測定する。
【0013】
一実施形態において、検出器ロジック155は、1つ以上の支持ビームを励起することと、それら1つ以上の支持ビームの共振を測定することとの間で切り換わることができる。例えば、検出器ロジック155は、励起及び/又は共振測定(例えば、間隔を置いて共振周波数を周期的にサンプリングすることを含む)のために支持アームの多様な組み合わせのうちの何れかを選択的にアクティブにするスイッチ回路を含み得る。支持ビーム励起及び/又はサンプリングとの間のこのような切換えのための具体的な機構は、特定の実施形態に限定するものではない。
【0014】
このような共振周波数の変化は、加速度の大きさに相関付けられることができる。実際に、用途に応じて、共振周波数の変化を加速度に関する値として直接的に用いることができ、あるいは、例えばルックアップテーブル又はその他適切な校正技術のどちらかを用いて、相関を設定することができる。認識されるように、周波数の具体的な変化は、ビームの幅、厚さ、長さ及び材料、並びにプルーフマスの重量を含むシステム100の構造的特徴と、測定される加速度とに依存することになる。
【0015】
動作時、例えば加速度計150が内蔵された装置の動きによって、プルーフマス102が加速度を被ると、導電経路の共振周波数が変化することになる。例えば、図示した支持ビーム108a、108bの構成において、共振周波数はX次元に沿った加速度とともに線形に変化する傾向にある。しかしながら、X次元の加速度は、支持ビーム108a、108bのうちの一方における伸張と、支持ビーム108a、108bのうちの他方における圧縮とを生じさせるので、その効果は、Y次元(又はZ次元)に沿った加速度と比較して相対的に小さい。
【0016】
対照的に、プルーフマス102がY次元(又はZ次元)に沿って加速されると、双方の支持ビーム108a、108bに伸張が誘起され、それらの弾性挙動を変化させることになる。従って、加速度計150は、X次元の加速と比較して、Y次元及び/又はZ次元の加速に対して感度が高い。しかしながら、加速度計150の構成に起因して、共振周波数は、それらY次元及び/又はZ次元の加速度とともに非線形に変化する傾向にある。
【0017】
特定の種類の加速度に対する非線形な感度に対処するため、加速度計150は更に、各々がプルーフマス102に結合され且つそれぞれのアンカーに柔軟に結合されて、プルーフマス102のバイアシング(付勢)を支援する複数のワイヤを含んでいる。限定ではなく例示として、加速度計150は、プルーフマス102に結合されるとともにアンカー120aに柔軟に結合されたバイアスワイヤ118aを含み得る。これに加えて、あるいは代えて、加速度計150は、プルーフマス102に結合されるとともにアンカー120bに柔軟に結合されたバイアスワイヤ118bを含んでいてもよい。バイアスワイヤ118a、118bは各々、磁石112の上方に吊られることができ、例えば、バイアスワイヤ118a、118bは各々が磁石112の面の上を延在し、且つ/或いは各々が磁石112のそれぞれの極に向けてオフセットされる。そのような構成の側面図を
図1Bに例示する。バイアスワイヤ118a、118bのそれぞれアンカー120a、120bへのフレキシブル接続は、例えば、1つ以上のバネ構造(陰影によって様々に表現されている)を用いたものとし得る。様々な実施形態によれば、多様な付加的あるいは代替的なバイアスワイヤのうちの何れかが加速度計150のバイアシングを提供し得る。
【0018】
アンカー120a、120bは、例えば磁石112の上にバイアスワイヤ118a、118bを吊るための機械的支持を提供することに加えて、バイアスワイヤ118a、118bの電気接続を提供し得る。限定ではなく例示として、バイアスワイヤ118a、118bは、アンカー120a、120b間で交換される例えば直流信号又は矩形波、三角波若しくはその他の周期波の信号といった電気信号のための導電経路の少なくとも一部を提供し得る。一実施形態において、アンカー120a、120b間で交換される電気信号は、例えば少なくとも部分的にX次元に沿って、磁石112によって生成される磁場を横切る。この電気信号は更に、特定の実施形態はこの点で限定されないが、プルーフマス102を介して導通され得る。バイアスワイヤ118a、118bによって担持される電流と磁石112によって生成される磁場との間の相互作用が、バイアスワイヤ118a、118bがプルーフマス102に力(例えば、この力はY次元に沿う)を及ぼすことをもたらし得る。
【0019】
図2Aは、一実施形態に係る加速度計200の要素を例示する上面図である。加速度計200は、例えば、加速度計150の機能のうちの一部又は全てを提供するように動作し得る。
【0020】
一実施形態において、加速度計200は、例えば永久磁石といった磁石220、225と、慣性質量として作用するプルーフマス210と、磁石220、225を含む高さレベルより上にプルーフマス210を吊ることに寄与する支持ビーム230、232、234、236とを含む。限定ではなく例示として、支持ビーム230、232、234、236は各々、互いに独立にプルーフマス102に結合することができ、支持ビーム230、232、234、236は更に、それぞれ、加速度計200のアンカー240、242、244、246に結合される。加速度計200は、様々な実施形態によって、プルーフマス210を吊るための多様な付加的あるいは代替的な支持構造のうちの何れを含んでいてもよい。
【0021】
アンカー240、242、244、246は、例えばプルーフマス210を吊るための機械的支持を提供することに加えて、支持ビーム230、232、234、236の電気接続を提供し得る。そのような構成の側面図を
図2Bに例示する。一実施形態において、支持ビーム230、232、234、236の様々な対(ペア)が各々、少なくとも部分的にそれぞれの導電経路を提供する。限定ではなく例示として、支持ビーム230、232は、アンカー240、242間で交換される第1の信号用の導電経路に寄与し得る。これに代えて、あるいは加えて、支持ビーム234、236は、アンカー244、246間で交換される第2の信号用の別の導電経路に寄与し得る。これらの信号に基づいて、例えば検出器ロジック155又は同様の手段によって、これらの導電経路の一部又は全ての共振周波数分析が実行され、プルーフマス210が被った加速度が見積もられ得る。
【0022】
加速度計150を参照してここに記載したように、加速度計200は、例えば図示のY次元に沿った方法を含む特定の1つ以上の方向における加速度に対して非線形の感度を示し得る。このような非線形性に対処するため、加速度計200は更に、各々が互いに独立にプルーフマス210に結合され且つそれぞれアンカー260、262、264、266に柔軟に結合されたバイアスワイヤ250、252、254、256を含み得る。バイアスワイヤ250、252、254、256は各々、磁石112の上方に吊られることができ、例えば、バイアスワイヤ250、252、254、256のうちの1つ以上が、加速度計200のX次元の中央線からY次元に沿ってオフセットされる。このオフセットは、例えば、支持ビーム230、232、234、236のうちの関連付けられた1つについての対応するオフセットより大きくし得る。
【0023】
バイアスワイヤ250、252、254、256のフレキシブル接続構造270、272、274、276は各々、例えば、コイル(輪状部)及び/又はひだ(波状部)などの1つ以上のバネ構造を含み得る。フレキシブル接続構造270、272、274、276は、加速度計200による加速度感度の損失を抑制しながら(例えば、アンカー260、262、264、266がそれぞれバイアスワイヤ250、252、254、256の電気接続を提供しながら)、バイアスワイヤ250、252、254、256がプルーフマス210とともに動くことを可能にし得る。限定ではなく例示として、バイアスワイヤ250、252は、アンカー260、262間で交換される電気信号のための導電経路の少なくとも一部を提供することができ、且つ/或いは、バイアスワイヤ254、256は、アンカー264、266間で交換される別の電気信号のための導電経路の少なくとも一部を提供することができる。
【0024】
一実施形態において、アンカー260、262間で交換される電気信号は、磁石220によって生成される磁場を横切り、例えば、少なくとも部分的にX次元に沿って該磁場を横切る信号を含む。これに代えて、あるいは加えて、アンカー264、266間で交換される電気信号は同様に、磁石225によって生成される磁場を横切り得る。アンカー260、262、264、266の間で様々に交換される一部又は全ての電気信号は更に、特定の実施形態はこの点で限定されないが、プルーフマス210を介して導通され得る。一実施形態において、バイアスワイヤ250、252、254、256によって担持されるそれぞれの電流と磁石220、225によって生成されるそれぞれの磁場の一方又は双方との間の電磁的な相互作用が、バイアスワイヤ250、252、254、256がプルーフマス210に力(例えば、この力はY次元に沿う)を及ぼすことをもたらし得る。
【0025】
図2Aに含められた矢印は、図示のZ次元に沿って同様に向けられた同じ極性(例えば、N極性)を磁石220、225がそれぞれ有する一実施形態に従って、支持ビーム230、232、234、236及びバイアスワイヤ250、252、254、256によって様々に搬送される信号の向きを表している。一実施形態において、バイアスワイヤ250、252、254、256は各々、それぞれの直流(又は代替的に、矩形波、三角波若しくはその他の周期波)信号を搬送することができ、バイアスワイヤ250、252、254、256に関する矢印は各々、例えば任意の時点におけるバイアスワイヤ250、252、254、256内の電流の相対的な向きを表すことを含め、それらの信号間の関係を表している。これに代えて、あるいは加えて、支持ビーム230、232、234、236は各々、それぞれの交流信号又はその他の時変信号を搬送することができ、支持ビーム230、232、234、236に関する矢印は各々、例えば任意の時点における支持ビーム230、232、234、236内の電流の相対的な向きを表すことを含め、それらの交流信号間の位相関係を表している。
【0026】
全てのバイアスワイヤが同じ幾何学構成を有し且つ同等の電流レベルを導通する一実施形態において、プルーフマス210は、以下の等式:
F=N(iL×B) (1)
によって表される大きさFを有し得る結果的な力を受け得る。ただし、Nはバイアスワイヤの総数であり、Lは各バイアスワイヤの長さであり、iは各バイアスワイヤによって搬送される電流であり、Bはこれらのバイアスワイヤの各々の位置での磁束密度である。
【0027】
図2Bは、加速度計200の側面図であり、磁石220、225の側面と、支持ビーム232、236(支持ビーム230、234はこの眺め方では見えない)とのそれらの関係とを例示している。認識されるように、図示した距離及び厚さは必ずしも縮尺通りではない。実施形態において、磁石220、225は、およそ100μmから300μmの間の厚さで、X寸法及びY寸法で約100μmと1000μmとの間とし得る。一例として、これらの磁石はサマリウムコバルト合金から作られ得る。ネオジム鉄ボロン磁石も同様に実施形態にて適用され得る。典型的な磁界強度は0.1−0.4Tの範囲内とし得る。
【0028】
一実施形態において、これらのビームは、約2−20μm厚、4−30μm幅、且つ200−2000μm長の程度である。プルーフマスは、20−400μgの範囲内とし得る。磁石とその上に位置するビームとの間の距離は、約5μmと約50μmとの間とし得る。回路の駆動電流は、1−20mAの範囲内とし得る。認識されるように、これらの寸法は変えられることができ、得られる特性振動周波数は具体的な設計選択に依存することになる。
【0029】
図3は、一実施形態に係る加速度計300の要素を例示する上面図である。加速度計300は、例えば、加速度計150の機能のうちの一部又は全てを提供するように動作し得る。
【0030】
一実施形態において、加速度計300の特定のコンポーネントは、加速度計200の対応するコンポーネントの構成と同様の構成で配置され得る。例えば、加速度計300は、それぞれが磁石220、225、プルーフマス210、及び支持ビーム230、232、234、236に機能的に対応する磁石320、325、プルーフマス310、及び支持ビーム330、332、334、336を含み得る。加速度計300は更に、それぞれがアンカー240、242、244、246に機能的に対応するアンカー340、342、344、346を含み得る。
【0031】
加速度計150を参照してここに記載したように、加速度計300は、例えば図示のY次元に沿った方法を含む特定の1つ以上の方向における加速度に対して非線形の感度を示し得る。このような非線形性に対処するため、加速度計300は更に、バイアスワイヤ350、352、354、356、アンカー360、362、364、366、及びフレキシブル接続構造370、372、374、376を含むことができ、これらはそれぞれ、バイアスワイヤ250、252、254、256、アンカー260、262、264、266、及びフレキシブル接続構造270、272、274、276に機能的に対応し得る。
【0032】
加速度計200と比較すると、加速度計300は、プルーフマス210に提供されるバイアシング(付勢)と同様のプルーフマスバイアシングを達成するための、磁気極性及び電気シグナリングの別の一構成を表している。
図3に含められた矢印は、磁石320、325の双方が、それらそれぞれの磁気軸が、各々が図示のY次元に沿って反対向きに揃えられるように構成された一実施形態に従って、支持ビーム330、332、334、336及びバイアスワイヤ350、352、354、356によって様々に搬送される電流の向きを表している。一実施形態において、バイアスワイヤ350、352、354、356は各々、それぞれの直流(又は代替的に、矩形波、三角波若しくはその他の周期波)信号を搬送することができ、バイアスワイヤ350、352、354、356に関する矢印は各々、任意の時点におけるそれぞれの電流の向きを表している。これに代えて、あるいは加えて、支持ビーム330、332、334、336は各々、それぞれの交流信号又はその他の時変信号を搬送することができ、支持ビーム330、332、334、336に関する矢印は、例えば任意の時点における支持ビーム330、332、334、336内の電流の相対的な向きを表すことを含め、それらの交流信号間の位相関係を表している。
【0033】
図4は、一実施形態に係る加速度計400の要素を例示する上面図であり、ここでは、加速度計400の特定のコンポーネントは、加速度計200の対応するコンポーネントの構成と同様の構成で配置されている。
【0034】
加速度計400は、磁石420、425と、プルーフマス410と、それに結合された支持ビーム430、432、434、436と、それぞれ支持ビーム430、432、434、436に結合されたアンカー440、442、444、446とを含み得る。プルーフマス410のバイアシングを提供するため、加速度計400は更に、バイアスワイヤ450、452、454、456、アンカー460、462、464、466、及びフレキシブル接続構造470、472、474、476を含んでおり、これらはそれぞれ、バイアスワイヤ250、252、254、256、アンカー260、262、264、266、及びフレキシブル接続構造270、272、274、276に機能的に対応する。
【0035】
加速度計200と比較すると、加速度計400は、プルーフマス210に提供されるバイアシングと同様のプルーフマスバイアシングを達成するための、磁気極性及び電気シグナリングの別の一構成を表している。
図4に含められた矢印は、磁石420、425の双方が、それらそれぞれの磁気軸が、各々が図示のY次元に沿って同じ向きに揃えられるように構成された一実施形態に従って、支持ビーム430、432、434、436及びバイアスワイヤ450、452、454、456によって様々に搬送される電流の向きを表している。一実施形態において、バイアスワイヤ450、452、454、456は各々、それぞれの直流(又は代替的に、矩形波、三角波若しくはその他の周期波)信号を搬送することができ、バイアスワイヤ450、452、454、456に関する矢印は各々、任意の時点におけるそれぞれの電流の向きを表している。これに代えて、あるいは加えて、支持ビーム430、432、434、436は各々、それぞれの交流信号又はその他の時変信号を搬送することができ、支持ビーム430、432、434、436に関する矢印は、例えば任意の時点における支持ビーム430、432、434、436内の電流の相対的な向きを表すことを含め、それらの交流信号間の位相関係を表している。
【0036】
図5は、一実施形態に係る加速度計500の要素を例示する上面図であり、ここでは、加速度計500の特定のコンポーネントは、加速度計200の対応するコンポーネントの構成と同様の構成で配置されている。加速度計500は、磁石(図示されず)と、プルーフマス510と、それに結合された支持ビーム530、532、534、536と、それぞれ支持ビーム530、532、534、536に結合されたアンカー540、542、544、546とを含み得る。プルーフマス510のバイアシングを提供するため、加速度計500は更に、プルーフマス510に結合され且つ更にそれぞれ加速度計500のアンカー560、562、564、566に柔軟に結合された、バイアスワイヤ550、552、554、556を含んでいる。
【0037】
加速度計500の例示的な一実施形態において、プルーフマス510は、全体幅L1と、全体高さL4と、幅L3及び高さL2を有する首部分とを備えた“I”字形状を有し得る。限定ではなく例示として、L1、L2、L3及びL4は、例えば各支持ビーム530、532、534、536の長さが1000μmから1500μmの程度である場合に、それぞれ、3300μm、700μm、300μm及び1790μmとし得る。
【0038】
このような一実施形態において、加速度計500の0G加速度での基本(ベースライン)支持ビーム共振周波数は、例えば、16000Hz程度となり得る。これに加えて、あるいは代えて、加速度に対するこの共振周波数の感度は、加速度計500が0.1G加速度下にあるときに、0.18Hz/m/s
2程度となり得る。この感度は、加速度計500の更なる加速度とともに変化することができ、例えば、この感度は、加速度計500が1G加速度下にあるときに1.7Hz/m/s
2程度、加速度計500が2G加速度下にあるときに7Hz/m/s
2程度となる。
【0039】
一実施形態において、14mA程度のバイアス電流が、プルーフマス510に1Gのバイアスをもたらし得る。これに代えて、あるいは加えて、28mA程度のバイアス電流が2Gのバイアスをもたらし、且つ/或いは100mA程度のバイアス電流が8Gのバイアスをもたらし得る。上述の動作特性は、一実施形態の単なる例示であり、実装特有の幾何学構成及び/又は要素の構成に従って実施形態間で異なったものとなり得る。
【0040】
図6A−6Iは、一実施形態に係る加速度計を製造するプロセスの要素を例示している。原理上、例示される層形成は変更され得る。例えば、誘電体、機能層、又は共通の基板上に存在する他のマイクロエレクトロニクスデバイス用の他のコンポーネントを含んだ、更なる層が組み入れられてもよい。同様に、例示される層のうちの或る一定のもの(例えば、加速度計コンポーネントの下に位置する層)は、実施形態によってデバイス内に存在してもよいし存在しなくてもよい。
【0041】
図6Aは、その上でデバイスが支持される基板602を示しており、基板602は、銅板又はその他の基板(限定ではないが、ガラス又は有機材料を含む)とし得る。バンプレスビルドアップレイヤ(bumpless build up layer;BBUL)アプリケーションで使用される場合、その技術での使用に適した如何なる基板が使用されてもよい。薄い金属層604が基板602の上に位置している。層604の上に誘電体接着層606が形成されている。誘電体層606の上に、必要に応じて、薄い基板層608が配置される。この層は、必ずしも必要とされないが、磁石610用の比較的硬い(リジッドな)基板を提供することができる。接着層606の上に磁石610がピックアンドプレースされる。必要に応じて、同様に、ダイ612が磁石610に近接してピックアンドプレースされる。このダイ612は、例えば、加速度計の制御及び取り調べを行うための電流源、スイッチ、位相ロックループ、差動増幅器及び/又はその他の関連回路など、制御及び/又は検出器回路を含み得る。認識されるように、ダイ612は、これらの回路の全てを含んでいてもよいし、これらの回路を含んでいなくてもよく、また、その他の機能を実行するためのその他の回路を含んでいてもよい。
【0042】
認識されるように、システム・オン・チップの一実施形態において、ダイ612は、プロセッサ、メモリ、通信回路、及びこれらに類するものを含み得る。単一のダイが図示されているが、ウエハの同じ領域に、0個、1個又は複数個のダイが含められてもよい。
【0043】
図6Bに例示されるように、例えばドライフィルムのラミネーションによって、誘電体層614が磁石610及びダイ612を覆うように堆積され、そして、圧縮によって実質的に平坦化され得る。この層614は、例えば、有機誘電体膜とし得る。誘電体層614の上に、例示的な導電配線層616によって表される1つ以上の導電層が堆積される。一実施形態において、配線層616によって表された該1つ以上の導電層は、プルーフマス、支持ビーム、バイアスワイヤ、フレキシブル接続構造(それぞれのバイアスワイヤの各々をそれぞれのアンカー/電気接続に結合させる)、及びデバイスのその他の導電要素のうちの一部又は全てを具現化することになる。認識されるように、この層は、一般的には金属製の層になるが、如何なる導電材料であってもよい。この層は、例えば、スパッタリングされ、あるいはセミアディティブプロセスを用いてめっきされ得る。
図6Cに示されるように、配線層616内にビアホール618がドリル加工あるいはその他の方法で製造され得る。
【0044】
図6Dに示されるように、層614と同様に、更なる誘電体層620が配線層616を覆ってラミネートされる。誘電体層620を覆って、例えばプレート保護メッシュ624と電気コンタクト626とを含んだ金属層622が堆積される(
図6E)。一般に、プレート保護メッシュは、加速度計構造によって占有されない複数位置(図示されず)で、下に位置する構造に固定されるべきである。
【0045】
フォトレジストの層628が、例えばスピンコーティングによって塗布される(
図6F)。加速度計構造の上に位置する領域630が、フォトレジストを形成されないままにされるか、フォトレジストのその部分が除去されるか、の何れかにされることで、ウエハの残りの部分が保護されたまま、メッシュ624及び加速度計構造へのアクセスが実現される。
【0046】
機能しない誘電体層614及び620の部分がエッチングあるいはその他の方法で処理されて除去され、その結果、支持ビーム、バイアスワイヤ及びプルーフマスが上述のように自由に振動し得るようになる(
図6G)。一実施形態において酸素プラズマ法が用いられるが、材料除去のためのその他の手法が用いられてもよい。
【0047】
フォトレジスト層628が、例えばレジスト剥離プロセスによって除去される。湿式(ウェット)化学プロセスを使用することができ、あるいは代替的に、例えばプラズマ剥離プロセスなどの乾式(ドライ)プロセスが使用され得る(
図6H)。そして、得られたパッケージが別のラミネート有機層(又はその他の好適誘電体層)632で再度覆われて、パッケージングが完了される(
図6I)。この処理において、プレート保護メッシュ624が、加速度計の動作部を上記ラミネート層から保護・分離する。その後、銅基板602が除去されてもよい(図示せず)。
【0048】
図7は、一実施形態に係る加速度を計測する方法700の要素を例示している。方法700は、例えば加速度計150の機構の一部又は全てを含んだ加速度計の動作を用いて実行され、あるいは該動作に基づいて実行され得る。一実施形態において、方法700は、検出器ロジック155の機能の一部又は全てを含んだ回路によって実行される。
【0049】
一実施形態において、方法700は、ステップ710にて、加速度計のバイアスを指し示す第1の入力を受信することを含む。第1の入力は、加速度計の質量体(マス、例えばプルーフマス)に与えられる力を記述あるいはその他の方法で指し示し得る。このような力は、例えば、加速度計の磁石と第1のワイヤ部及び第2のワイヤ部で伝導される信号との間の電磁的な相互作用によって与えられ得る。
【0050】
一実施形態において、ステップ710で受信される第1の入力は、第1のワイヤ部及び第2のワイヤ部で伝導される信号を含む。他の例では、第1の入力は、そのような信号の1つ以上の特性(例えば、アンペア数を含む)を記述する情報を含み得る。これに代えて、あるいは加えて、第1の入力は、そのような信号によって質量体に与えられる力の1つ以上の特性(例えば、大きさ及び/又は向きを含む)を記述する情報を含んでいてもよい。
【0051】
方法700は更に、ステップ720にて、加速度計の第1の支持ビーム部及び加速度計の第2の支持ビーム部の共振周波数を指し示す第2の入力を受信し得る。一実施形態において、質量体は、第1の支持ビーム部と第2の支持ビーム部とで吊られる。第2の入力によって指し示される共振周波数は、質量体に力が与えられている間に第1の支持ビーム部及び第2の支持ビーム部で伝導される時変信号と磁場とに基づき得る。
【0052】
一実施形態において、ステップ720で受信される第2の入力は、第1の支持ビーム部及び第2の支持ビーム部で伝導される時変信号を含む。他の例では、第2の入力は、そのような時変信号の1つ以上の特性を記述する情報を含み得る。これに代えて、あるいは加えて、第2の入力は、共振周波数を記述する情報を含んでいてもよい。共振周波数の検出は、例えば従来からの技術を様々な実施形態における実装に適応させることにより、例えばPLL回路を用いて実行され得る。
【0053】
受信された第1の入力及び第2の入力に基づき、方法700は、ステップ730にて、質量体の加速度を評価することを含み得る。限定ではなく例示として、ステップ730での評価は、第2の入力によって指し示された共振周波数に対応する加速度の大きさ及び/又は向きを記述する1つ以上の値を特定することを含み得る。例えば、そのような1つ以上の値を特定するため、ルックアップテーブル又はその他の参照情報が第2の入力に基づいて検索され得る。そのような参照情報は、例えば初期テスト及び/又は校正において生成される加速度計の感度応答プロファイルを表し得る。特定の実施形態は、方法700での使用のために事前にそのような参照情報がどのように利用可能にされるかに関して限定されるものではない。
【0054】
一実施形態において、ステップ730での評価は、第1の入力によって指し示された力に対応するバイアス成分を特定することを含み得る。例えば、バイアス成分の大きさ及び/又は向きを記述する1つ以上の値を特定するため、ルックアップテーブル又はその他の参照情報が第1の入力に基づいて検索され得る。上述のように、特定の実施形態は、方法700での使用のために事前にそのような参照情報がどのように利用可能にされるかに関して限定されるものではない。
【0055】
一実施形態において、方法700は、ステップ740にて、評価された加速度を表す信号を生成することを含む。ステップ740で生成される信号は、例えば、多様なソフトウェア及び/又はハードウェアアプリケーションの何れかに対して、検出された加速度を描出するため(例えば、タッチスクリーン又はその他のビデオディスプレイにおいて、これら加速度計及びビデオディスプレイを含んだ装置の向き及び/又は位置を表現するものを更新するため)に提供され得る。
【0056】
プルーフマスのバイアシングは、様々な実施形態によれば、様々な技術及び/又は機構を用いて補足されてもよい。例えば、導電経路の少なくとも一部を提供する一対のバイアスワイヤに例えば矩形波(又は三角波)信号などの時変周期信号を印加することによって、差動バイアシングが使用され得る。限定ではなく例示として、バイアスワイヤ250、252の対が、プルーフマス210に+1G相当の力(例えば、−Y方向)を与える第1の電流レベルを導通することと、プルーフマス210に−1G相当の力(例えば、+Y方向)を与える第2の電流レベルを導通することとを、連続して交互に行い得る。+1G相当の力のための第1の電流レベルでプルーフマスがバイアスされることを含む第1のシステム状態(例えば、第1の時間又は期間)に関して、ビーム共振の第1の評価が実行され得る。ビーム共振の更なる評価が、−1G相当の力のための第2の電流レベルでプルーフマスがバイアスされることを含む第2のシステム状態(例えば、第2の時間又は期間)に関して実行され得る。第1及び第2のバイアス電流レベル(及び/又は対応するバイアス力)と、評価されたビーム共振周波数とが与えられ、時間に基づく差動バイアシング分析を実行することで、プルーフマス加速度の向き及び/又は大きさを計算することができる。
【0057】
差動バイアシングは、感度を高めること、及び/又は正の加速度と負の加速度とを区別することのために使用されてもよい。
図9Aのグラフ900に示されるように、小さい大きさの加速度において、以下の等式:
f
diff=f(+N bias)−f(−N bias) (2)
によって表される差分周波数f
diffを参照することで、そのような加速度における変化に対して、より高い感度が達成され得る。ただし、f(+N bias)は、プルーフマスが+Nバイアス力の下にある間に検出される共振周波数であり、f(−N bias)、プルーフマスが−Nバイアス力の下にある間に検出される共振周波数である。
図9Aにおいて、Nは1Gに等しい。
【0058】
対照的に、
図9Bのグラフ910に示されるように、より大きい大きさの加速度において、以下の等式:
f
avg=1/2{f(+N bias)+f(−N bias)} (3)
によって表される平均周波数f
avgを参照することで、そのような加速度における変化に対して、より高い感度が達成され得る。
【0059】
特定の実施形態は、例えばf
diffなどの差分共振周波数と、例えばf
avgなどの平均共振周波数とから選択を行って、例えば、ステップ730での評価に適用する具体的な式を選択し得る。一実施形態において、そのような選択は、例えばf(+N bias)、f(−N bias)、f
diff、及びf
avgのうちの1つ以上の各々のそれぞれの閾値との比較を含んだ、1つ以上のテスト条件に基づき得る。限定ではなく例示として、加速度が例えば1Gといった何らかの閾値レベル以上であることを上記1つ以上のテスト条件が指し示す場合、加速度の向き及び大きさを決定するためにf
diffが使用され得る。他の例では、加速度がそのような閾値レベルより小さいことを上記1つ以上のテスト条件が指し示す場合、加速度の向きを決定するためにf
diffが使用されるとともに、加速度の大きさを決定するためにf
avgが使用され得る。
【0060】
図8は、一実施形態に係るプルーフマスバイアシングによって生じるリンギングを抑制するためのRC遅延回路800の要素を例示している。RC遅延回路800は、例えば加速度計150の機構のうちの一部又は全てを含んだ加速度計に実装され得る。RC遅延回路800は電流源I(t)810を含んでおり、電流源I(t)810は例えば、少なくとも部分的に例えばプルーフマス102又はプルーフマス210などである加速度計のプルーフマスPM830を用いて伝導される相異なるレベルのDC電流の間で交番する。リンギングはまた、ランプ(傾斜)信号(例えば三角波など)を電流源I(t)810により供給することでも抑制され得る。
【0061】
一実施形態において、PM830は、それが意図する加速度計の慣性質量としての使用のために、非常に高いQファクタを有し得る。従って、PM830のバイアシングにおいて大きい階段(ステップ)状変化が存在するとき、PM830はリンギングを生じる傾向にあり得る。そのようなリンギングを抑制するため、RC遅延回路800は、互いに並列にされた抵抗R1 820とキャパシタC1 840とを含んでいる(例えば、PM830とR1 820とを含んだ回路レグは一対のバイアスワイヤを有する)。限定ではなく例示として、R1 820は0.1−10Ωの抵抗値を有することができ、キャパシタC1 840は1nFから100μFのキャパシタンスを有することができる。このようなインピーダンスを用いることで、RC遅延回路800は、例えば差動バイアシングにおいて、PM830のバイアシングにおける階段状変化を滑らかにして、そのリンギングを抑制することができる。
【0062】
図10は、その中に、あるいはそれに関連付けられて、1つ以上の実施形態が実装され得る包括的な装置又はシステム1000の要素を例示している。一部の実施形態において、
図10に例示した包括的な装置又はシステム1000は、可搬式(ポータブル)あるいは手持ち式(ハンドヘルド)の電子装置及び/又はコンピューティング装置を有し得る。そのような電子装置及び/又はコンピューティング装置は、ラップトップ、携帯電話、スマートフォン、ゲーム装置、タブレットコンピュータ、ネットワーク装置、及び/又はその他の装置を含み得る。図示した例において、装置又はシステム1000は、表示装置1020、スピーカ1030、マイクロフォン1040、カメラ1050、入力装置1060、メモリ1070、グラフィックスプロセッサ1075、システム・オン・チップ(SoC)チップセット1080、上述の実施形態のうちの様々なものに係る加速度計1085、通信モジュール1090、及びアンテナ1095を含んでいる。装置1000はまた、装置1000の様々なコンポーネントを接続し、それらの間で情報を通信するための、バス1097及び/又はその他の相互接続手段を含み得る。
【0063】
一部の実施形態において、表示装置1020は、ユーザに情報を表示するように構成され、また、液晶ディスプレイ(LCD)、発光ダイオード(LED)ベースのディスプレイ、又はその他のフラットパネルディスプレイを有することができ、あるいは陰極線管(CRT)を使用していてもよい。スピーカ1030、マイクロフォン1040及びカメラ1050は、オーディオ・ビデオコンテンツの作成、捕捉及び出力を行うように構成され、コンテンツは、1つ以上のプロセッサ(例えば、SoC1080内)によって処理され、装置1000に関連付けられた記憶装置に格納され得る。入力装置1060は、キーボード、タッチスクリーン又はその他同等の入力機構を介して入力され得るアルファベットキー又はその他のキーを含み得る。マイクロフォン1040及びカメラ1050は、ユーザ又は別の結合された装置若しくはシステムからの入力(情報、コマンド選択など)を受信するように構成されてもよい。1つ以上の入力装置1060を介して受信された入力情報は、更なる処理のために、例えばバス1097を介して、SoC1080のプロセッサへと通信され得る。他の種類の入力装置1060は、例えばマウス、トラックボール又はカーソル方向キーなどのカーソル制御装置を含み、方向情報及びコマンド選択を例えばSoC1080に通信するとともに、表示装置1020上でのカーソル移動を制御する。
【0064】
装置1000のメモリ1070は、バス1097に結合された動的な記憶デバイスとすることができ、SoC1080のプロセッサ及び/又は装置1000に結合されたその他のプロセッサ(若しくはコンピューティングユニット)によって実行される命令及び情報を記憶するように構成され得る。メモリ1070はまた、プロセッサによる命令の実行中に一時的な変数又はその他の中間情報を格納するために使用され得る。メモリ1070の一部又は全ては、デュアルインラインメモリモジュール(DIMM)として実装されることができ、また、以下の種類のメモリのうちの1つ以上であってもよい:スタティックランダムアクセスメモリ(SRAM)、バースト式SRAM若しくはシンクバースト式SRAM(BSRAM)、ダイナミックランダムアクセスメモリ(DRAM)、高速ページモードDRAM(FPM DRAM)、エンハンストDRAM(EDRAM)、エクステンディドデータアウトプットDRAM(EDO DRAM)、バースト式エクステンディドデータアウトプットDRAM(BEDO DRAM)、エンハンストDRAM(EDRAM)、同期式DRAM(SDRAM)、JEDECSRAM、PCIOO SDRAM、ダブルデータレートSDRAM(DDR SDRAM)、エンハンストSDRAM(ESDRAM)、シンクリンクDRAM(SLDRAM)、ダイレクトラムバスDRAM(DRDRAM)、強誘電体RAM(FRAM(登録商標))、又はその他の種類のメモリデバイス。装置1000はまた、例えばバス1097に結合されてSoC1080のプロセッサ及び/又は装置1000に結合されたその他のプロセッサ(若しくはコンピューティングユニット)のための静的な情報及び命令を格納するように構成された、読み出し専用メモリ(ROM)及び/又はその他の静的なストレージを含み得る。装置1000のこのようなデータ記憶装置は、磁気ディスク、光ディスク又はフラッシュメモリデバイスを含むことができ、また、情報及び命令を格納するためにバス1097に結合され得る。
【0065】
一部の実施形態において、SoC1080は、装置1000のコアとなる処理ユニット若しくはコンピューティングユニットの部分であり、実施形態に従って、入力されたデータ及び命令を受信して処理し、出力を提供し、且つ/或いは装置1000のその他のコンポーネントを制御するように構成され得る。SoC1080は、マイクロプロセッサ、メモリコントローラ、メモリ及び周辺コンポーネントを含み得る。マイクロプロセッサは更に、キャッシュメモリ(例えば、SRAM)を含むことができ、これは、SoC1080のメモリとともに、命令及びデータを格納するメモリ階層の部分となり得る。マイクロプロセッサはまた、例えばフィールドプログラマブルゲートアレイ(FPGA)又はその他のロジックアレイなどの1つ以上のロジックモジュールを含み得る。SoC1080のマイクロプロセッサとメモリとの間の通信は、メモリコントローラ(又はチップセット)によって支援されることができ、メモリコントローラ(又はチップセット)はまた、例えばカウンタータイマー、リアルタイムタイマー及びパワーオンリセットジェネレータなどの周辺コンポーネントとの通信を支援し得る。SoC1080はまた、以下に限られないがタイミング源(例えば、発振器及び位相ロックループ)、電圧レギュレータ及び電力管理回路を含むその他のコンポーネントを含み得る。
【0066】
一部の実施形態において、装置1000は、直接的に、あるいは通信モジュール1090を用いて1つ以上のネットワークを介して、その他の装置又はシステムと通信するように構成される。通信モジュール1090は、装置1000に無線通信を可能にするようにその内部に実装された、例えば変調器、復調器、ベースバンド変換器、チャンネルコーデック及び/又はその他のコンポーネントに関連した、必要且つ典型的なハードウェアモジュール、ソフトウェアモジュール及び/又はファームウェアモジュールを含み得る。従って、通信モジュール1090は、1つ以上のアンテナ1095を介して、無線周波数(RF)信号の形態でデータ及びメッセージの送信及び受信をワイヤレスに行うことができる。一部の実施形態において、通信モジュール1090は、以下に限られないがWi−Fi、Wi−Gi、Bluetooth(登録商標)、GSM(登録商標)、CDMA、GPRS、3G若しくは4G(例えば、WiMAX、LTE)セルラー規格、無線USB、衛星通信及び無線LANを含む1つ以上の通信規格及びプロトコルに基づく通信をサポートするように設計・構成される。これに加えて、あるいは代えて、通信モジュール1090はまた、例えばEthernet(登録商標)規格に基づいて、有線通信用に構成されてもよく、従って、装置1000の適当なネットワークインタフェースに結合されてもよい。
【0067】
一態様において、装置は、質量体と、磁場を生成する第1の磁石と、第1の次元に沿って前記磁場を横切る時変信号を各々が伝導する第1の支持ビーム部及び第2の支持ビーム部であり、前記時変信号に対する共振周波数が前記磁場に基づき、前記質量体が当該第1の支持ビーム部と当該第2の支持ビームとで吊られている、第1の支持ビーム部及び第2の支持ビーム部と、を含んだ微小電気機械加速度計を有する。前記微小電気機械加速度計は更に、前記質量体に結合され且つ第1のアンカーに柔軟に結合された第1のワイヤ部と、前記質量体に結合され且つ第2のアンカーに柔軟に結合された第2のワイヤ部とを含み、前記第1のアンカー及び前記第2のアンカーは、前記第1のワイヤ部及び前記第2のワイヤ部を用いて第1の信号を交換し、前記第1の信号及び前記磁場に基づいて、前記第1のワイヤ部及び前記第2のワイヤ部が、前記第1の次元に垂直な第2の次元に沿って前記質量体に力を与える。
【0068】
一実施形態において、前記第1の信号は直流信号を含む。他の一実施形態において、前記第1のワイヤ部は、バネ構造を介して前記第1のアンカーに柔軟に結合されている。他の一実施形態において、前記バネ構造は輪状部又は波状部を含む。他の一実施形態において、上記装置は更に、前記力を指し示す前記微小電気機械加速度計のバイアスを指し示す第1の入力を受信し、前記共振周波数を指し示す第2の入力を受信し、前記第1の入力と前記第2の入力とに基づいて前記質量体の加速度を評価し、前記評価された加速度を表す信号を生成する検出器ロジック、を有する。
【0069】
他の一実施形態において、前記第1の信号は周期波信号を含んでおり、前記検出器ロジックが前記第1の入力と前記第2の入力とに基づいて前記加速度を評価することは、前記検出器ロジックが差分共振周波数及び平均共振周波数のうちの一方を評価することを含む。他の一実施形態において、前記検出器ロジックは更に、前記加速度の評価のために、前記第1の入力及び前記第2の入力に基づいて、前記差分共振周波数と前記平均共振周波数との間で選択を行う。他の一実施形態において、前記微小電気機械加速度計は更に、第2の磁石と、第3の支持ビーム部及び第4の支持ビーム部と、前記質量体に結合され且つ第3のアンカーに柔軟に結合された第3のワイヤ部と、前記質量体に結合され且つ第4のアンカーに柔軟に結合された第4のワイヤ部とを有する。他の一実施形態において、上記装置は更に、前記質量体に結合された抵抗及びキャパシタを含む遅延回路を有し、前記遅延回路は前記質量体のリンギングを抑制する。
【0070】
他の一態様において、システムは、質量体と、磁場を生成する第1の磁石と、第1の次元に沿って前記磁場を横切る時変信号を各々が伝導する第1の支持ビーム部及び第2の支持ビーム部であり、前記時変信号に対する共振周波数が前記磁場に基づき、前記質量体が当該第1の支持ビーム部と当該第2の支持ビームとで吊られている、第1の支持ビーム部及び第2の支持ビーム部と、を含んだ微小電気機械加速度計を有する。前記微小電気機械加速度計は更に、前記質量体に結合され且つ第1のアンカーに柔軟に結合された第1のワイヤ部と、前記質量体に結合され且つ第2のアンカーに柔軟に結合された第2のワイヤ部とを含み、前記第1のアンカー及び前記第2のアンカーは、前記第1のワイヤ部及び前記第2のワイヤ部を用いて第1の信号を交換し、前記第1の信号及び前記磁場に基づいて、前記第1のワイヤ部及び前記第2のワイヤ部が、前記第1の次元に垂直な第2の次元に沿って前記質量体に力を与える。上記システムは更に、前記微小電気機械加速度計に結合されたタッチスクリーン式表示装置を有し、該タッチスクリーン式表示装置は、前記質量体の加速度を指し示す情報をユーザディスプレイ内に提供する。
【0071】
一実施形態において、前記第1の信号は直流信号を含む。他の一実施形態において、前記第1のワイヤ部は、バネ構造を介して前記第1のアンカーに柔軟に結合されている。他の一実施形態において、前記バネ構造は輪状部又は波状部を含む。他の一実施形態において、前記微小電気機械加速度計は更に、前記力を指し示す前記微小電気機械加速度計のバイアスを指し示す第1の入力を受信し、前記共振周波数を指し示す第2の入力を受信し、前記第1の入力と前記第2の入力とに基づいて前記質量体の加速度を評価し、前記評価された加速度を表す信号を生成する検出器ロジック、を有する。
【0072】
他の一実施形態において、前記第1の信号は周期波信号を含んでおり、前記検出器ロジックが前記第1の入力と前記第2の入力とに基づいて前記加速度を評価することは、前記検出器ロジックが差分共振周波数及び平均共振周波数のうちの一方を評価することを含む。他の一実施形態において、前記検出器ロジックは更に、前記加速度の評価のために、前記第1の入力及び前記第2の入力に基づいて、前記差分共振周波数と前記平均共振周波数との間で選択を行う。他の一実施形態において、前記微小電気機械加速度計は更に、第2の磁石と、第3の支持ビーム部及び第4の支持ビーム部と、前記質量体に結合され且つ第3のアンカーに柔軟に結合された第3のワイヤ部と、前記質量体に結合され且つ第4のアンカーに柔軟に結合された第4のワイヤ部とを有する。他の一実施形態において、前記微小電気機械加速度計は更に、前記質量体に結合された抵抗及びキャパシタを含む遅延回路を有し、前記遅延回路は前記質量体のリンギングを抑制する。
【0073】
他の一態様において、微小電気機械加速度計を製造する方法は、基板上に第1の磁石を配設し、前記第1の磁石を覆って第1の誘電体層をラミネートし、前記第1の誘電体層の上に1つ以上の導電層を形成することを有する。該1つ以上の導電層は、質量体と、第1の支持ビーム部及び第2の支持ビーム部と、前記質量体に結合され且つ第1のアンカーに柔軟に結合された第1のワイヤ部と、前記質量体に結合され且つ第2のアンカーに柔軟に結合された第2のワイヤ部とを含む。上記方法は更に、前記質量体、前記第1の支持ビーム部、前記第2の支持ビーム部、前記第1のワイヤ部、及び前記第2のワイヤ部、の各々に隣接した前記第1の誘電体層の部分を除去することを有し、前記第1の誘電体層の該部分が除去された後、前記質量体は、前記第1の支持ビーム部と前記第2の支持ビーム部とによって吊られ、且つ前記微小電気機械加速度計の加速度に応答して移動可能である。
【0074】
一実施形態において、前記第1のワイヤ部は、バネ構造を介して前記第1のアンカーに柔軟に結合される。他の一実施形態において、前記バネ構造は輪状部又は波状部を含む。他の一実施形態において、上記方法は更に、検出器ロジックを含んだダイを前記基板上に配設することを有し、前記検出器ロジックは、力を指し示す前記微小電気機械加速度計のバイアスを指し示す第1の入力を受信し、共振周波数を指し示す第2の入力を受信し、前記第1の入力と前記第2の入力とに基づいて前記質量体の加速度を評価し、前記評価された加速度を表す信号を生成するものである。他の一実施形態において、上記方法は更に、前記基板上に第2の磁石を配設するステップを有し、前記1つ以上の導電層は更に、第3の支持ビーム部及び第4の支持ビーム部と、前記質量体に結合され且つ第3のアンカーに柔軟に結合された第3のワイヤ部と、前記質量体に結合され且つ第4のアンカーに柔軟に結合された第4のワイヤ部とを含む。
【0075】
他の一態様において、方法は、第1の磁石と、質量体と、第1の支持ビーム部と、第2の支持ビーム部と、前記質量体に結合され且つ第1のアンカーに柔軟に結合された第1のワイヤ部と、前記質量体に結合され且つ第2のアンカーに柔軟に結合された第2のワイヤ部とを含む加速度計であり、前記質量体が前記第1の支持ビーム部と前記第2の支持ビームとで吊られ、前記第1のアンカー及び前記第2のアンカーが第1の信号を交換し、前記第1の信号及び前記磁石の磁場に基づいて、前記第1のワイヤ部及び前記第2のワイヤ部が前記質量体に力を与える、加速度計、のバイアスを指し示す第1の入力を受信することを有し、該第1の入力は前記力を指し示す。この方法は更に、前記第1の支持ビーム部及び前記第2の支持ビーム部の共振周波数を指し示す第2の入力を受信することを有し、前記共振周波数は、前記磁場と、前記質量体に前記力が与えられている間に前記第1の支持ビーム部及び前記第2の支持ビーム部で伝導される時変信号とに基づく。この方法は更に、前記第1の入力と前記第2の入力とに基づいて前記質量体の加速度を評価し、前記評価された加速度を表す信号を生成することを有する。
【0076】
一実施形態において、前記第1の信号は直流信号を含む。他の一実施形態において、前記第1のワイヤ部は、バネ構造を介して前記第1のアンカーに柔軟に結合されている。他の一実施形態において、前記バネ構造は輪状部又は波状部を含む。他の一実施形態において、前記第1の信号は周期波信号を含んでおり、前記第1の入力と前記第2の入力とに基づいて前記加速度を評価することは、差分共振周波数及び平均共振周波数のうちの一方を評価することを含む。他の一実施形態において、上記方法は更に、前記加速度の評価のために、前記第1の入力及び前記第2の入力に基づいて、前記差分共振周波数と前記平均共振周波数との間で選択を行うことを有する。他の一実施形態において、前記差分共振周波数と前記平均共振周波数との間で選択を行うことは、前記加速度が閾レベル以上であることを前記第1の入力及び前記第2の入力が指し示す場合に、前記加速度の向き及び大きさを決定するために前記差分共振周波数を選択し、それ以外の場合に、前記加速度の向きを決定するために前記差分共振周波数を選択し、且つ前記加速度の大きさを決定するために前記平均共振周波数を選択することを含む。
【0077】
加速度の計測を提供する技術及びアーキテクチャがここに記載されている。ここに記載された加速度計は、これに限られないがバンプレスビルドアップレイヤ(BBUL)パッケージング技術を含むチップスケールパッケージング手法の部分として製造され得る。以上の説明においては、説明の目的で、特定の実施形態の完全なる理解を提供するために、数多くの具体的詳細事項が説明されている。しかしながら、当業者には明らかなように、特定の実施形態はこれらの具体的詳細事項を用いずに実施されることができる。また、説明を不明瞭にしないよう、構造及び装置はブロック図の形態で示している
本明細書における“一実施形態”又は“或る実施形態”への言及は、その実施形態に関連して記載される或る特定の機構、構造又は特徴が、本発明の少なくとも1つの実施形態に含まれることを意味する。本明細書の様々な箇所で“一実施形態において”という言い回しが現れることは、必ずしも、全てが同一の実施形態に言及しているわけではない。
【0078】
ここでの詳細な説明の幾つかの部分は、コンピュータメモリ内のデータビットについての処理のアルゴリズム及び記号表現に関して提示されている。これらのアルゴリズム的記述及び表現は、コンピューティング技術における当業者が自身の仕事の内容を他の当業者に最も効果的に伝えるために使用する手段である。アルゴリズムは、ここでは、また一般的に、所望の結果をもたらす首尾一貫した一連のステップであると考えられる。それらのステップは、物理量の物理的な操作を必要とするものである。通常、必ずしもそうではないが、それらの量は、格納され、伝送され、結合され、比較され、そしてその他の方法で操作されることが可能な電気的あるいは磁気的な信号の形態をとる。主に一般的用法という理由から、これらの信号をビット、値、エレメント、シンボル、文字、用語、数字、又はこれらに類するものとして参照することは、往々にして好都合であることがわかっている。
【0079】
しかしながら、留意すべきことには、これら及び同様の用語は全て、適当な物理量に関連付けられるものであり、それらの量に付された簡便なラベルに過ぎない。特に断らない限り、ここでの説明から明らかなように、記載全体を通して、例えば“処理する”、“計算する”、“演算する”、“決定する”、“表示する”又はこれらに類するものなどの用語を用いた説明は、コンピュータシステムのレジスタ及びメモリの内部で物理(電子)量として表されるデータを、コンピュータシステムメモリ若しくはレジスタ若しくはその他のそのような情報ストレージ、伝送装置、又は表示装置の内部で同様に物理量として表される他のデータへと、操作・変換するコンピュータシステム又は同様の電子コンピューティング装置の動作及び処理を意味することが認識される。
【0080】
特定の実施形態はまた、ここでの処理を実行する装置に関する。この装置は、要求される目的に合わせて特別に構築されてもよいし、コンピュータに記憶されるコンピュータプログラムによって選択的に起動あるいは再構成される汎用コンピュータを有していてもよい。そのようなコンピュータプログラムは、以下に限られないが例えば、フロッピー(登録商標)ディスク、光ディスク、CD−ROM及び磁気光ディスクを含む何らかの種類のディスク、読み出し専用メモリ(ROM)、ダイナミックRAM(DRAM)などのランダムアクセスメモリ(RAM)、EPROM、EEPROM、磁気カード若しくは光カード、又は、電子的な命令を格納するのに好適であり且つコンピュータシステムバスに結合された何らかの種類のメディアなどの、コンピュータ読み取り可能記憶媒体に格納され得る。
【0081】
ここに提示されたアルゴリズム及びディスプレイは、如何なる特定のコンピュータ又はその他の装置にも本質的に関連付けられるものではない。様々な汎用システムが、ここでの教示に従ったプログラムとともに使用されてもよいし、より専用化された装置を構築して必要な方法ステップを実行することが都合がよいと判明することもある。多様なこれらシステムに必要な構造は、ここでの説明から見えてくるであろう。また、特定の実施形態は、特定のプログラミング言語を参照して説明されていない。認識されるように、ここに記載された実施形態の教示を実装することには、多様なプログラミング言語が使用され得る。
【0082】
開示した実施形態及びその実装例には、その範囲を逸脱することなく、ここに記載されたものの他に様々な変更が為され得る。故に、ここでの例示及び例は、限定の意味ではなく、例示の意味で解釈されるべきである。本発明の範囲は、請求項を参照することのみをして評価されるべきである。