(58)【調査した分野】(Int.Cl.,DB名)
前記実ヨー・レートの微分が大きいほど、ダウン係数を大きくして前記副駆動輪制限駆動力を小さくするように、前記副駆動輪制限駆動力は、前記ダウン係数に基づき算出される、請求項3に記載の制御装置。
【発明を実施するための形態】
【0018】
以下に説明する実施形態は、本発明を容易に理解するために用いられている。従って、本発明が、以下に説明される実施形態によって不当に限定されないことを留意すべきである。
1. 車両
【0019】
図1は、本発明による制御装置を備える車両の概略構成図を示す。
図1に示されるように、車両1(例えば、自動車)は、様々な制御を実行可能な制御装置100を備える。制御装置100は、様々な制御の1例として、車両1の前輪駆動力(前輪71,72に伝達される駆動力の目標値)及び後輪駆動力(後輪73,74に伝達される駆動力の目標値)を制御することができる。本発明による制御装置100の具体的な制御は、「2. 制御装置」で後述する。
【0020】
図1の例において、車両1は、原動機10(例えば、ガソリン・エンジン等の内燃機関)を備え、原動機10は、出力軸11を有し、原動機10は、出力軸11を回転させることができる。車両1は、原動機10を制御する原動機制御手段20(例えば、エンジン・ECU)と、スロットル・アクチュエータ21とを備える。原動機制御手段20は、原動機駆動力(目標値)を求め、原動機10の出力軸の回転(実際の原動機駆動力)が原動機駆動力(目標値)に一致するように、原動機制御手段20は、スロットル・アクチュエータ21を制御する。
【0021】
原動機10内に混合気が流入する量を制御するスロットル(図示せず)の開度は、スロットル・アクチュエータ21を介して、原動機駆動力に基づき制御される。即ち、原動機制御手段20は、原動機駆動力に相当するスロットルの開度を求め、スロットルの開度に対応する制御信号を生成し、制御信号をスロットル・アクチュエータ21に送る。スロットル・アクチュエータ21は、原動機制御手段20からの制御信号に応じて、スロットルの開度を調整する。
【0022】
車両1は、アクセル・ペダル22及びアクセル・センサ23を備え、アクセル・センサ23は、車両1の運転者によるアクセル・ペダル22の操作量を感知し、アクセル・ペダル22の操作量を原動機制御手段20に送る。原動機制御手段20は、概して、アクセル・ペダル22の操作量に基づき原動機駆動力又はスロットルの開度を求める。車両1は、回転数センサ24及び圧力センサ25を備える。原動機10が例えばエンジンである場合、回転数センサ24は、エンジンの回転数を感知し、圧力センサ25は、混合気をエンジンに取り込む吸気管内の絶対圧力を感知することができる。原動機制御手段20は、アクセル・ペダル22の操作量、感知される回転数及び絶対圧力に基づき原動機駆動力又はスロットルの開度を求めることができる。原動機制御手段20は、制御装置100からの制御信号(例えば、車両1の走行状態)に基づきアクセル・ペダル22の操作量を修正することができる。代替的に、原動機制御手段20は、アクセル・ペダル22の操作量、感知される回転数、感知される絶対圧力及び制御装置100からの制御信号に基づき原動機駆動力又はスロットルの開度を求めることができる。
【0023】
また、
図1の例において、車両1は、動力伝達装置(パワー・トレイン、ドライブ・トレイン)を備えることができる。
図1に示されるように、動力伝達装置は、例えば、変速機30、フロント・ディファレンシャル・ギア機構51、フロント・ドライブ・シャフト52,53、トランスファ54、プロペラ・シャフト55、リア・ディファレンシャル・ギア機構61、リア・ドライブ・シャフト64,65を有する。変速機30は、トルク・コンバータ31及びギア機構32を有する。
【0024】
動力伝達装置は、
図1の例に限定されず、
図1の例を変形・修正、又は具体化してもよい。動力伝達装置は、例えば、特開平07-186758号公報の
図2で開示される駆動力伝達系3であってもよい。
【0025】
原動機10の出力軸の回転(実際の原動機駆動力)は、動力伝達装置を介して、実際の全輪駆動力(実際の前輪駆動力及び後輪駆動力)に変換される。このような変換に関する制御において、全輪駆動力(目標値)は、原動機制御手段20の原動機駆動力(目標値)、トルク・コンバータ31の増幅率(目標値)及びギア機構32の変速ギア比(目標値)に基づき決定される。主駆動輪駆動力である前輪駆動力(目標値)から副駆動輪駆動力である後輪駆動力(目標値)への配分は、前輪駆動力(目標値)及びリア・ディファレンシャル・ギア機構61の配分比に基づき決定される。
【0026】
リア・ディファレンシャル・ギア機構61の配分比が例えば「前輪駆動力:後輪駆動力=100:0」である場合、主駆動輪駆動力である前輪駆動力(目標値)は、全輪駆動力(目標値)と一致する。リア・ディファレンシャル・ギア機構61の配分比が例えば「前輪駆動力:後輪駆動力=(100−x):x」である場合、主駆動輪駆動力である前輪駆動力(目標値)は、全輪駆動力(目標値)から副駆動輪駆動力である後輪駆動力(目標値)を減算した値と一致する。
【0027】
なお、前輪71,72は、フロント・ディファレンシャル・ギア機構51及びフロント・ドライブ・シャフト52,53を介して前輪駆動力(目標値)によって制御される。後輪73,74は、リア・ディファレンシャル・ギア機構61及びリア・ドライブ・シャフト64,65を介して後輪駆動力(目標値)によって制御される。実際の全輪駆動力は、トランスファ54を介してプロペラ・シャフト55に伝達され、プロペラ・シャフト55に伝達される実際の全輪駆動力の一部は、リア・ディファレンシャル・ギア機構61に伝達される実際の後輪駆動力に配分される。プロペラ・シャフト55、トランスファ54及びフロント・ディファレンシャル・ギア機構51に伝達される実際の全輪駆動力の残部が、実際の前輪駆動力になる。
【0028】
図1の例において、車両1は、変速機30の変速比(例えば、ギア機構32の変速ギア比)を制御する変速機制御手段40(例えば、AT(automatic transmission)・ECU)を備える。車両1は、シフト・レバー33及びシフト位置センサ34を備え、変速機制御手段40は、概して、シフト位置センサ34によって感知されるシフト・レバー33のシフト位置(例えば、「1」,「2」,「D」)に基づき、ギア機構32の変速ギア比を決定する。
【0029】
シフト・レバー33のシフト位置が例えば「1」である場合、ギア機構32が1速を表す変速ギア比を有するように、変速機制御手段40は、ギア機構32を制御する。シフト・レバー33のシフト位置が例えば「D」である場合、変速機制御手段40は、制御装置100からの制御信号(例えば、車両1の速度及び全輪駆動力(目標値))に基づき例えば1速〜5速等で構成されるギア機構32が有する全ての変速ギアの何れか1つを表す変速ギア比を決定する。これに応じて、ギア機構32が例えば1速〜5速の何れか1つを表す変速ギア比を有するように、変速機制御手段40は、ギア機構32を制御する。その後、例えば、変速機制御手段40が例えば1速を表す変速ギア比から2速を表す変速ギア比に変更する時、ギア機構32が1速を表す変速ギア比から2速を表す変速ギア比に変更するように、変速機制御手段40は、ギア機構32を制御する。
【0030】
図1の例において、車両1は、前輪71の回転速度を感知する車輪速度センサ81を備え、前輪72の回転速度を感知する車輪速度センサ82も備える。また、車両1は、後輪73の回転速度を感知する車輪速度センサ83を備え、後輪74の回転速度を感知する車輪速度センサ84も備える。制御装置100は、車輪速度センサ81,82,83,84で感知された回転速度(車輪速度)に基づき、車両1の速度を求めることができる。車両1は、車両1の前後方向に沿った車両1の加速度を感知する前後加速度センサ85(例えば、その加速度を重力加速度単位で感知する前後Gセンサ)を備え、制御装置100は、その加速度で、車両1の速度を補正することができる。
【0031】
図1の例において、車両1は、車両1が旋回する時のヨー・レートを感知するヨー・レート・センサ86を備える。また、車両1は、車両1の横方向に沿った車両1の遠心力(遠心加速度)を感知する横加速度センサ87(その遠心加速度を重力加速度単位で感知する横Gセンサ)を備える。さらに、車両1は、ステアリング・ホイール88及び操舵角センサ89を備え、操舵角センサ89は、ステアリング・ホイール88の操舵角を感知する。
【0032】
制御装置100は、ヨー・レート、遠心加速度(横加速度)及び操舵角に基づき、車両1の横滑り等の挙動を検出することができる。制御装置100は、このような挙動の検出に加えて、様々な制御(例えば、図示しないブレーキ等の制動部を介する前輪71,72及び後輪73,74の少なくとも1つに関係する制御)をすることができるが、上述の制御のすべてを実行する必要がない。以下に、制御装置100の制御の概要を説明する。
2.制御装置
【0033】
図2は、本発明による制御装置の概略構成図を示す。
図2に示されるように、制御装置100は、入力信号として、例えばヨー・レート、操舵角、車輪速度を入力し、出力信号を出力し、様々な制御を実行することができる。制御装置100は、駆動力制御手段300を備え、駆動力制御手段300は、様々な制御の1例として、主駆動輪駆動力(例えば、前輪駆動力)及び副駆動輪駆動力(例えば、後輪駆動力)を制御する。
【0034】
図2の例において、制御装置100は、車両挙動制御手段200を備える。車両挙動制御手段200は、様々な制御の1例として、制限駆動力を算出することができる。具体的には、車両挙動制御手段200は、例えば副駆動輪駆動力を制限する副駆動輪制限駆動力を算出する。車両挙動制御手段200は、算出した副駆動輪制限駆動力を駆動力制御手段300に要求することができる。
【0035】
具体的には、例えば、駆動力制御手段300は、主駆動輪駆動力(目標値)と副駆動輪駆動力(目標値)との間の比率を決定し、その比率及び全輪駆動力(目標値)に基づき例えば副駆動輪駆動力(目標値)を決定する。決定された副駆動輪駆動力(目標値)が得られるように、駆動力制御手段300は、例えば
図1のリア・ディファレンシャル・ギア機構61の配分比を出力信号で制御する。駆動力制御手段300からリア・ディファレンシャル・ギア機構61への出力信号は、副駆動輪駆動力(目標値)を制御する制御信号である。
【0036】
なお、リア・ディファレンシャル・ギア機構61の配分比によって副駆動輪駆動力がゼロである時、即ち、プロペラ・シャフト55とリア・ドライブ・シャフト64,65との間が遮断される時、
図1の例において、主駆動輪駆動力(目標値)又は前輪駆動力は、全輪駆動力(目標値)と一致する。代替的に、リア・ディファレンシャル・ギア機構61の配分比によって副駆動輪駆動力がゼロでない時、即ち、プロペラ・シャフト55とリア・ドライブ・シャフト64,65との間が接続される時、
図1の例において、主駆動輪駆動力(目標値)は、全輪駆動力(目標値)から副駆動輪駆動力(目標値)を減算した値と一致する。
【0037】
図2の例において、制御装置100は、車両挙動制御手段200を備える。車両挙動制御手段200は、例えば
図1のヨー・レート・センサ86から取得するヨー・レート等を表す入力信号を入力することができる。車両挙動制御手段200は、例えばヨー・レート等に基づく車両1の不安定状態の検出に従って、副駆動輪制限駆動力を算出することができる。
【0038】
車両挙動制御手段200が副駆動輪制限駆動力(制限駆動力)を駆動力制御手段300に要求する場合、駆動力制御手段300は、副駆動輪駆動力(目標値)を減少させる一方、駆動力制御手段300は、主駆動輪駆動力(目標値)を増加させる。この時、駆動力制御手段300は、副駆動輪駆動力(目標値)を副駆動輪制限駆動力(制限駆動力)と一致させることにより、副駆動輪駆動力(目標値)を減少させる。具体的には、リア・ディファレンシャル・ギア機構61の配分比によって副駆動輪駆動力が減少するように、駆動力制御手段300は、リア・ディファレンシャル・ギア機構61を制御する。プロペラ・シャフト55とリア・ドライブ・シャフト64,65との間がより弱く接続されることで、実際の副駆動輪駆動力が減少し、その結果として、実際の主駆動輪駆動力が増加する。副駆動輪駆動力の減少により、例えば、オーバ・ステア抑制することができる。従って、例えば、車両1の安定性は向上する。
【0039】
駆動力制御手段300は、主駆動輪駆動力(目標値)及び副駆動輪駆動力(目標値)を予め決定し、車両挙動制御手段200からの要求に応じて、予め決定された副駆動輪駆動力(目標値)を減少させ、予め決定された主駆動輪駆動力(目標値)を増加させることができる。
【0040】
なお、駆動力制御手段300は、主駆動輪駆動力(目標値)及び副駆動輪駆動力(目標値)を決定する第1の制御手段と呼ぶこともでき、車両挙動制御手段200は、第2の制御手段と呼ぶことができる。駆動力制御手段300(第1の制御手段)は、主駆動輪駆動力(目標値)及び副駆動輪駆動力(目標値)を一次的に決定する。駆動力制御手段300(第1の制御手段)は、車両挙動制御手段200(第2の制御手段)からの副駆動輪駆動力(目標値)の制限要求に応じるか否かを判定してもよく、制限要求を拒否してもよい。車両挙動制御手段200が副駆動輪制限駆動力(制限駆動力)を駆動力制御手段300に要求する場合、駆動力制御手段300(第1の制御手段)は、主駆動輪駆動力(目標値)及び副駆動輪駆動力(目標値)を二次的に(最終的に)決定することができる。
3.車両挙動制御手段(第2の制御手段)
【0041】
図2は、本発明による車両挙動制御手段200の概略構成図も示す。車両挙動制御手段200(第2の制御手段)は、副駆動輪駆動力(目標値)の減少を駆動力制御手段300(第1の制御手段)に要求することができる。
図2の例において、車両挙動制御手段200は、検出部210及び算出部220を備える。算出部220は、副駆動輪駆動力を制限する副駆動輪制限駆動力を算出することができる。
3.1.検出部
【0042】
検出部210は、例えば車両1の不安定状態を検出し、算出部220が副駆動輪制限駆動力を出力するように、算出部220に指示することができる。不安定状態が検出された場合、検出部210は、算出部220に副駆動輪制限駆動力の出力の指示又は許可を表す信号(例えば二進法で「1」又はhighレベルを表す信号)を送ることができる。車両1の不安定状態は、例えば、ヨー・レート・センサ86から取得する実ヨー・レートと、操舵角及び車両1の速度に基づいて算出する規範ヨー・レートとを用いて、車両1の走行状態が不安定か否かを判定するためのものである。具体的には、実ヨー・レートと規範ヨー・レートとの差(ヨー・レート偏差)が所定値よりも大きいときに不安定状態であるとすることができる。また、ヨー・レート偏差に対してフィルタ処理を行なって、不安定状態を判断してもよい。さらに、横加速度センサ87から取得する横加速度で、規範ヨー・レートを修正又は訂正することができる。
【0043】
検出部210は、操舵角を、例えば操舵角センサ89から入力できる。また、検出部210は、例えば車輪速度センサ81,82,83,84で感知された4つの回転速度(車輪速度)の平均を算出し、駆動輪の平均車輪速度Vaw_avを車両1の速度として得ることができる。代替的に、検出部210は、例えば車輪速度センサ83,84で感知された2つの回転速度(車輪速度)の平均を算出し、車両1の速度Vvh_esを得る又は推定することができる。
【0044】
なお、車両1の速度Vvh_es(推定速度)は、例えば車両1の振動等によるノイズの影響を排除するために、後輪73,74(副駆動輪)の車輪速度の各々に、上昇制限及び下降制限を適用してもよい。即ち、検出部210は、車輪速度センサ83,84で感知された2つの回転速度(車輪速度)を補正又は訂正し、補正又は訂正された2つの回転速度(車輪速度)の平均を算出し、車両1の速度Vvh_esを得る又は推定することができる。車両1の速度Vvh_es(推定速度)は、他の手法で推定してもよい。
【0045】
検出部210は、車両1の走行状態が不安定であるか否かを表す信号を算出部220に送ることができ、さらに、例えば、ヨー・レート偏差を表す信号を算出部220に送ることができる。車両1の走行状態が不安定である場合、算出部220は、副駆動輪制限駆動力を駆動力制御手段300に出力することができる。
3.2.算出部
【0046】
図2の算出部220は、車両1の不安定状態の検出に基づき副駆動輪制限駆動力を算出する。車両1の走行状態が不安定である場合、算出部220又は車両挙動制御手段200は、副駆動輪駆動力を制限する副駆動輪制限駆動力を駆動力制御手段300に要求することができる。
【0047】
図3(A)及び
図3(B)は、算出部の出力例を示す。
図3(A)の例において、実線は、算出部220で算出した副駆動輪制限駆動力を示し、点線は、駆動力制御手段300で決定された副駆動輪駆動力を示す。時刻T1まで、算出部220又は車両挙動制御手段200は、副駆動輪駆動力の制限を駆動力制御手段300に要求しない。即ち、時刻T1まで、算出部220からの出力は、副駆動輪駆動力を制限しない値(1点鎖線)である。副駆動輪駆動力を制限しない値は、例えば、駆動力制御手段300で決定し得る副駆動輪駆動力の最大値である。時刻T1で、算出部220は、副駆動輪駆動力の制限(副駆動輪駆動力を制限する値、副駆動輪制限駆動力)を駆動力制御手段300に要求(出力)する。
図3(A)の例において、時刻T1で、駆動力制御手段300は、算出部220からの要求を受け入れ、副駆動輪駆動力を副駆動輪制限駆動力に一致させる。言い換えれば、駆動力制御手段300は、一次的に決定した副駆動輪駆動力を副駆動輪制限駆動力に一致させ、副駆動輪制限駆動力を、二次的に(最終的に)決定される副駆動輪駆動力として用いることができる。
【0048】
時刻T1で、駆動力制御手段300からの出力の減少分は、一次的に決定した副駆動輪駆動力から副駆動輪制限駆動力を減算した値である。時刻T1で、駆動力制御手段300は、算出部220からの要求を受け入れ、副駆動輪駆動力を副駆動輪制限駆動力に一致させるので、主駆動輪駆動力は、副駆動輪駆動力の減少分だけ増加する。これにより、オーバ・ステア等の不安定を抑制又は解消することができる。時刻T1で、算出部220は、車両1の不安定パラメータ又は不安定パラメータの変化に基づき副駆動輪制限駆動力を算出するので、より適切に不安定を抑制又は解消することができる。時刻T1での副駆動輪制限駆動力、又は時刻T1での駆動力制御手段300からの出力の減少分の具体的な算出方法については、後述する。以下に、時刻T1以降、即ち、時刻T1から時刻T2までの副駆動輪制限駆動力の算出方法を最初に説明する。
【0049】
時刻T1から時刻T2まで、算出部220は、車両1の走行状態が安定化するように、例えばヨー・レート偏差が小さくなるように、副駆動輪制限駆動力を算出することができる。時刻T2で、車両1の走行状態は不安定でなく、時刻T2以降、算出部220又は車両挙動制御手段200は、副駆動輪駆動力の制限を駆動力制御手段300に要求しない。なお、時刻T1から時刻T2まで算出部220は副駆動輪制限駆動力を算出しているが、
図3(A)の例において、例えば、時刻T2以前の時刻TAでのヨー・レート偏差が小さくなって車両1の走行状態が実質的に安定している場合など、時刻T1から時刻TAまでの間で、駆動力制御手段300は、第1の算出部220からの要求を受け入れ、
図3(A)の太い実線で描かれている通り、副駆動輪駆動力を副駆動輪制限駆動力に一致させるようにしている。
【0050】
図3(B)の例では、時刻T1で、算出部220は、車両1の不安定パラメータ又は不安定パラメータの変化に基づき副駆動輪制限駆動力を算出し、時刻T1から時刻T2まで、算出部220は、時刻T1より後のヨー・レート偏差の変化に依存しない固定値である副駆動輪制限駆動力を出力し続ける。
図3(B)の例において、時刻T1から時刻T2まで、駆動力制御手段300は、第1の算出部220からの要求を受け入れ、副駆動輪駆動力を副駆動輪制限駆動力に一致させ、実線は、太く描かれている。時刻T1で、算出部220又は車両挙動制御手段200は、副駆動輪駆動力の制限を駆動力制御手段300に要求することを開始し、時刻T1での副駆動輪制限駆動力は、時刻T1での不安定パラメータ又は不安定パラメータの変化に基づく。従って、より適切に不安定を抑制又は解消することができる。
【0051】
図3(A)の例及び
図3(B)の例において、時刻T1から時刻TA又は時刻T2までの期間において、主駆動輪駆動力が増加することにより、主駆動輪(例えば前輪71,72)のスリップが発生することもある。この場合、
図2の車両挙動制御手段200は、前輪71,72及び後輪73,74の空転を抑制する機能(トラクション・コントロール・システム)を実行してもよい。車両1がトラクション・コントロール・システムを備える場合、車両挙動制御手段200又は算出部220は、主駆動輪(前輪71,72)のスリップ量に基づいて、原動機駆動力の低減要求等を介して、空転を制御することができる。なお、車両挙動制御手段200又は算出部220は、図示しないブレーキ等の制動部を介して空転を抑制してもよい。なお、主駆動輪のスリップ量Smwは、例えば、主駆動輪の平均車輪速度Vmw_avから車両1の推定速度Vvh_esを減算した値である。時刻T1から時刻T2までの期間において、主駆動輪(前輪71,72)のスリップが発生する場合、車両挙動制御手段200は、副駆動輪駆動力の制限を例えば駆動力制御手段300に要求するとともに、例えば原動機駆動力の低減要求を例えば
図1の原動機制御手段20に要求してもよい。
【0052】
算出部220は、時刻T1での不安定パラメータ又は不安定パラメータの変化に基づき時刻T1での副駆動輪制限駆動力を算出又は出力する。時刻T1での副駆動輪制限駆動力は、時刻T1でのパラメータ又は不安定パラメータの変化が大きいほど小さく設定することができる。即ち、時刻T1での不安定パラメータ又は不安定パラメータの変化が大きい場合、時刻T1での副駆動輪駆動力の減少分及び主駆動輪駆動力の増加分を大きく設定することができる。具体的には、時刻T1での副駆動輪制限駆動力は、時刻T1での不安定パラメータの変化、例えば、実ヨー・レートの微分が大きいほど小さく設定することができる。時刻T1での実ヨー・レートの微分に基づき時刻T1での副駆動輪制限駆動力を求めることで、より適切にオーバ・ステア等の不安定を抑制又は解消できる。
【0053】
仮に、時刻T1での副駆動輪制限駆動力が実ヨー・レートの微分に依存しない場合、副駆動輪制限駆動力を一定に設定することもできる。このような比較例において、時刻T1での実ヨー・レートの微分が小さく、一定の副駆動輪制限駆動力により、オーバ・ステアが解消したとしても、その後、アンダ・ステアが発生し得る。
【0054】
算出部220は、例えば一定の副駆動輪制限駆動力(暫定的な副駆動輪制限駆動力)と実ヨー・レートの微分に基づく係数とを乗算することで、時刻T1での副駆動輪制限駆動力を算出することができる。実ヨー・レートの微分に基づく係数は、例えば「0」から「1」までの範囲にわたる係数(ダウン係数)である。ダウン係数を実ヨー・レートの微分が大きいほど大きく設定することで、時刻T1での副駆動輪制限駆動力は、実ヨー・レートの微分が大きいほど小さく設定することができる。なお、暫定的な副駆動輪制限駆動力及びダウン係数は、車両1の属性(例えば、重量、排気量等)に応じて、適宜、設定することができる。
【0055】
図4は、ダウン係数の設定例を示す。
図4の例では、ダウン係数は、実ヨー・レートの微分が大きくなるほど大きくなるが、ダウン係数と実ヨー・レートの微分との関係は、
図4の例に限定されない。例えば、ダウン係数と実ヨー・レートの微分との関係は、折れ線グラフでもよい。また、ダウン係数と実ヨー・レートの微分との関係は、一次関数でなく、2次関数、多次関数などで表される曲線でも、階段関数で表される階段状の折れ曲がった直線でもよい。
【0056】
図5(A)及び
図5(B)は、実ヨー・レートの微分に基づく副駆動輪駆動力の減少例を示す。
図5(A)及び
図5(B)において、実ヨー・レート(実線)、規範ヨー・レート(点線)、実ヨー・レートの微分(実線)及び二次的に(最終的に)決定された副駆動輪駆動力(実線)が表されている。例えば
図3(B)の実施例に適用した場合、
図5(A)の二次的に(最終的に)決定された副駆動輪駆動力(実線)は、
図3(B)の時刻T1から時刻T2までの副駆動輪駆動力の減少を表し、
図3(B)の時刻T1までの副駆動輪駆動力(点線)、時刻T1から時刻T2までの副駆動輪制限駆動力に一致する副駆動輪駆動力(実線)、及び時刻T2以降の副駆動輪駆動力(点線)に対応する。
図5(B)で示される不安定パラメータとしての時刻T1での実ヨー・レート(実線)の変化は、
図5(A)で示される時刻T1での実ヨー・レート(実線)の変化よりも大きい。従って、
図5(B)で示される時刻T1での実ヨー・レートの微分(実線)は、
図5(A)で示される時刻T1での実ヨー・レートの微分(実線)よりも大きい。
図4に示すように、実ヨー・レートの微分が大きくなるほどダウン係数の値を大きく設定している場合には、
図5(B)で示される時刻T1での副駆動輪駆動力の減少分DBは、
図5(A)で示される時刻T1での副駆動輪駆動力の減少分DAよりも大きくなる。