【実施例1】
【0016】
図1は本発明の実施例1の真空遠心鋳造装置の構造の説明図である。
図1を参照すると、上記真空遠心鋳造装置には一個の真空炉1、一個の回転軸2、一個の回転プラットフォーム3、一個のシェルモールド4と一個のヒーター5が含まれる。回転軸2、回転プラットフォーム3、シェルモールド4とヒーター5は全て真空炉1の中に設けられ、回転プラットフォーム3は回転軸2と連接し、さらに回転軸2と同期して回転し、シェルモールド4は回転プラットフォーム3に位置決めして配置され、ヒーター5はシェルモールド4に対して加熱を行うのに用いられる。
【0017】
真空炉1の内部には一個の収容室11が含まれる。真空炉1には一個のエアダクト12が設けられ、エアダクト12と収容室11は互いに連通する。そして、一個の真空制御器(図示せず)は予定の数値に基づいてエアダクト12を通じて収容室11に対してエアの抽出を行うことにより、収容室11の真空度を制御することができる。他に、真空炉1には一個の開口13が設けられ、開口13は使用者が収容室11に物品を入れたり取り出したりするのに用いられ、さらに開口13を開閉するための一個のカバー14が設けられる。
【0018】
図2は本発明の実施例1の真空遠心鋳造装置の局部の斜視分解図である。
図1、2を参照すると、回転軸2は軸方向で回動自在に真空炉1の収容室11の中に設けられる。本実施例において、回転軸2は一個のモーターMの出力端と互いに連接し、さらにモーターMによって駆動して回転することができる。また、モーターMは選択的に真空炉1の外部に設けられ、回転軸2の一端は真空炉1から突き出てモーターMと連接する。回転軸2は一個の軸受Bの中に穿設され、軸受Bは真空炉1に連接して位置決めされることにより、回転軸2の回転の安定性を高めるように補助することができるため、回転軸2が回動時に生じる偏りの現象を防止することができる。
【0019】
その他に、回転軸2が収容室11の中に位置する部分は一個の本体21と一個の回転止め部22に分けられている。本体21と回転止め部22の半径方向の断面形状は異なり、
上記回転止め部22の径方向断面の面積が本体21の径方向断面の面積よりも小さく、そして二者の境界において一個の当接部23が形成されるため、回転プラットフォーム3は回転止め部22に結合されて当接部23に当接されることにより、回転プラットフォーム3は回転軸2に従って同期して回転するように形成される。本実施例において、本体21の半径方向の断面は円形の態様に形成され、回転止め部22は回転軸2の端部に設けられ、そして回転止め部22の半径方向の断面は円形ではない態様に形成される。回転プラットフォーム3は回転止め部22に嵌設して結合され、さらに当接部23に当接される。
【0020】
図3は本発明の実施例1の真空遠心鋳造方法の実施状態の説明図(一)である。
図2、3を参照すると、回転プラットフォーム3はシェルモールド4を位置決めして配置する器具として用いられる。回転プラットフォーム3には互いに連接する一個の軸接合部31と一個の位置決め部32が設けられる。本実施例において、軸接合部31には一個の貫穿孔311が設けられ、貫穿孔311の半径方向の断面形態は好ましくは回転軸2の回転止め部22の半径方向の断面形態と互いに対応するように形成される。これにより、回転プラットフォーム3は軸接合部31の貫穿孔311を通じて回転軸2の回転止め部22に嵌合して連接することができる。
【0021】
回転プラットフォーム3の位置決め部32は大体として一個の坩堝位置決め部32aと一個のキャビティー位置決め部32bに分けられる。坩堝位置決め部32aは軸接合部31とキャビティー位置決め部32bの間に位置され、かつ軸接合部31、坩堝位置決め部32aおよびキャビティー位置決め部32bは回転軸2の半径方向に従って延伸して配列される。また、坩堝位置決め部32aには一個の配置孔321が設けられる。配置孔321はシェルモールド4の一部分がその中に穿設するのに用いられる。キャビティー位置決め部32bには一個の収容溝322が設けられ、シェルモールド4のその他の一部分を収容するのに用いることができる。
【0022】
再び
図2、3を参照すると、シェルモールド4には互いに連通する一個の坩堝部41と一個のキャビティー部42が含まれる。坩堝部41は加熱して熔融しようとする金属鋳塊を収容するのに用いられ、キャビティー部42は鋳造品を成形する部位として用いられる。シェルモールド4の坩堝部41は回転プラットフォーム3の坩堝位置決め部32aに位置決めして配置することができ、シェルモールド4のキャビティー部42は回転プラットフォーム3のキャビティー位置決め部32bに位置決めして配置することができる。そのため、シェルモールド4の坩堝部41はキャビティー部42よりさらに回転プラットフォーム3の軸接合部31に隣接するように形成される。
【0023】
さらに詳しく言えば、坩堝部41は大体として杯状に形成され、かつ内部には一個の収容空間411が形成される。坩堝部41の環状周面には他に一個の第一連接管412が設けられ、第一連接管412は収容空間411と連通する。キャビティー部42の外形は特に制限されず、キャビティー部42の内部には一個のキャビティー421が含まれる。キャビティー421の形態は鋳造して成形しようとする鋳造品と互いに対応するように形成される。この鋳造品は、例えば、一個のゴルフクラブヘッドまたは一個のタービン羽根からなることができる。
【0024】
キャビティー部42には他に一個の第二連接管422が設けられる。第二連接管422はキャビティー421と連通し、かつ坩堝部41とキャビティー部42は第一連接管412と第二連接管422によって互いに連接するため、収容空間411はキャビティー421と互いに連通することができる。本実施例において、シェルモールド4の坩堝部41とキャビティー部42は一体に連接する形態からなることができる(その製造方法については後で詳しく説明する。)。
【0025】
図1、3を参照すると、ヒーター5は真空炉1の収容室11の中に設けられ、シェルモールド4の坩堝部41に対して加熱を行うのに用いられる。本実施例において、ヒーター5は選択的に一個の高周波コイルからなり、かつ一個の昇降制御器Lによってヒーター5を連動して収容室11の中において移動することができる。シェルモールド4の坩堝部41を加熱しなければならない時、ヒーター5は連動されて一個の予定される位置まで上昇されることにより、坩堝部41の外周を取り囲むように位置され、さらにヒーター5を起動することにより、坩堝部41は加熱されて温度が上昇される。加熱を終えた後、ヒーター5は昇降制御器Lによって降下するように連動され、ヒーター5は再び坩堝部41の外周を取り囲まなくなるため、シェルモールド4が回転プラットフォーム3と回転軸2に従って回転して作動することを邪魔してしまうのを避けることができる。
【0026】
上述した構造を有することにより、本発明においては一種の真空遠心鋳造方法を実施することができ、その方法は大体として下記の段階を含む。
【0027】
再び
図1、2、3を参照すると、一個のシェルモールド4を一個の回転プラットフォーム3に位置決めして配置し、かつ回転プラットフォーム3は軸方向で回転自在な回転軸2に連接される。さらに詳しく言えば、回転プラットフォーム3は一個の真空炉1の中に設けられることにより、シェルモールド4が位置する空間の真空度を制御するのに役立てることができる。
【0028】
他に、シェルモールド4には互いに連通する一個の坩堝部41と一個のキャビティー部42が含まれる。シェルモールド4は坩堝部41から回転プラットフォーム3の配置孔321の中に穿設され、さらに坩堝部41の第一連接管412によって回転プラットフォーム3に当接される。シェルモールド4のキャビティー部42が回転プラットフォーム3の収容溝322に配置されることにより、シェルモールド4は回転プラットフォーム3の上に予定される位置に安定して位置決めすることができる。
【0029】
さらに、一個の金属鋳塊Pをシェルモールド4の坩堝部41の中に配置する。金属鋳塊Pは活性金属からなることができ、例えばチタン合金、チタンアルミ合金、ニッケル基合金、コバルト基合金、アルミ合金、ジルコニウム合金または鉄基合金などからなることができる。
【0030】
また、実施例1におけるシェルモールド4、坩堝部41およびキャビティー部42は一体に連接するような形態に形成される。
図4は本発明の実施例1の真空遠心鋳造装置のシェルモールド成形のプロセスの説明図である。
図4を参照すると、シェルモールド4の成形の段階は、一個のワックスコア6を準備する。ワックスコア6は一個の坩堝コア61と一個の鋳造品コア62を含む。坩堝コア61の環状周面には一個の第一連接部611が設けられ、鋳造品コア62に一個の第二連接部621が設けられ、第一連接部611と第二連接部621は相対的に一体になるように連接される段階と、ワックスコア6に対してつけ塗り、砂かけ、砂つけなどのプロセスを行ってワックスコア6の表面において一層の被覆層7を形成させる段階と、ワックスコア6と被覆層7に対して加熱を行うことにより、ワックスを熔け出す段階とを含む。
【0031】
一例を挙げて言えば、ワックスコア6と被覆層7を一緒に一個の蒸氣釜の中に入れて加熱することにより、ワックスコア6は熔けて被覆層7の中から排出される。脱ろうを完成した被覆層7を高温で焼結してシェルモールド4を形成し、さらにシェルモールド4には一体に連接される坩堝部41とキャビティー部42が含まれる。
【0032】
また、シェルモールド4の
内層材料は選択的に酸化イットリウム、安定化ジルコニアまたは酸化アルミニウムなどの耐火材料からなることができる。シェルモールド4の
外層材料は選択的にムル石(3Al
2O
3-2SiO
2)または二酸化ケイ素を耐火材料とすることができる。また、
外層材料は選択的に
不可避不純物を含むムル石からなる場合、その酸化アルミニウムの含有量は好ましくは45%〜60%で、二酸化ケイ素の含有量は好ましくは55%〜40%である。さらに、
外層材料は選択的に
不可避不純物を含む二酸化ケイ素からなる場合、その二酸化ケイ素の含有量は好ましくは95%以上に達することができる。
【0033】
本実施例1においては坩堝部41とキャビティー部42が一体に連接するシェルモールド4により坩堝と鋳造品を製造するために、その対応するシェルモールドの生産ラインを別々に製造することなく、また上記二個のシェルモールドを連接するのに使用しなければならない套管を省くことができるため、製造コストを有効に低く抑えることができる。また、焼結を完成したシェルモールド4を予熱することなく後続における鋳込み作業を直接行うことができるため、コイルが金属に対する誘導で熱衝撃(Thermal Shock)を発生してシェルモールドが破裂してしまうのを低く抑えることができる。
【0034】
図5は本発明の実施例1の真空遠心鋳造方法の実施状態の説明図(二)である。
図1、5を参照すると、真空環境で金属鋳塊Pを金属液体Nになるように加熱して熔融する。さらに詳しく言えば、シェルモールド4を配置して位置決めした後、ヒーター5は連動されて一個の予定される位置まで上昇されることにより、坩堝部41の外周を取り囲むように位置される。また、真空炉1のエアダクト12は収容室11に対してエアの抽出を行うことにより、収容室11の真空度を制御することができる。
【0035】
上記真空度が予定される数値(例えば真空度が0.3mbarより小さく)に達した後、ヒーター5を起動することができるため、シェルモールド4の坩堝部41は加熱されて温度が上昇されることにより、坩堝部41の中の金属鋳塊Pは金属液体Nに熔融することができる。また、ヒーター5が作動する時、その電源装置の周波数は例えば4kHz〜30kHzで、電力は5kW〜100kWである。金属鋳塊Pが全て金属液体Nに熔融された後、ヒーター5は作動を停止し、さらに迅速に降下するように連動されることにより、ヒーター5は上記坩堝部41の外周を取り囲まなくなる。
【0036】
図6は本発明の実施例1の真空遠心鋳造方法の実施状態の説明図(三)である。
図1、6を参照すると、回転軸2を駆動して回転プラットフォーム3を連動して回動させることにより、熔融の金属液体Nをシェルモールド4のキャビティー部42の中に流入させる。さらに詳しく言えば、回転軸2はモーターMの駆動によって軸方向の回転が生じられ、その回転速度は約200rpm〜700rpmである。この回転速度は鋳造品の肉厚(すなわちキャビティー421の空間の大きさ)に基づいて調整を行うことができる。
【0037】
回転プラットフォーム3が連動して回転軸2を軸心として回動される時、回転の過程において金属液体Nは、遠心力の作用を受けてシェルモールド4の坩堝部41の内側壁面に沿って、シェルモールド4が一体に連接する第一連接管412と第二連接管422を通過し、キャビティー部42の中に流入して鋳込み作業を行い、さらにキャビティー421を充填する。鋳込みを完成した後、回転軸2のスピードを緩めて停止し、さらにシェルモールド4を回転プラットフォーム3から取り出し、続いてシェルモールド4を破壊して鋳造品を取得することができる。
【0038】
このように、本発明の真空遠心鋳造方法によれば、熔融の金属液体Nが再び凝固する前に、遠心力を利用して金属液体Nを確実にシェルモールド4のキャビティー421に鋳込んで充填することにより、一部分の金属液体Nが坩堝部41の中に凝固して凝固殻になってしまうのを避けることができ、さらに注入型材料(すなわち金属鋳塊P)と鋳造品の間の転換率を有効に高めることができるため、注入型材料の浪費を避けて鋳造のコストを低く抑えることができる。
【0039】
他に、本発明の真空遠心鋳造装置によれば、その他の変化を行うことによって異なる効果を増進したりまたは提供したりすることができ、ここでは下記の実施例2と実施例3を例に挙げて説明する。なお、本発明の真空遠心鋳造装置の実施例2と実施例3は同様に上述した真空遠心鋳造方法を実施することができるため、ここではその説明を省く。