(58)【調査した分野】(Int.Cl.,DB名)
前記チタン−アルミ化合物TAは、チタン原子とアルミニウム原子、チタン原子同士、又はアルミニウム原子同士が、酸素原子を介して結合されて構成されるチタン−アルミ構造単位を備える、請求項2に記載の触媒[B]。
【発明を実施するための形態】
【0014】
本発明の有機重合体又はオルガノポリシロキサン用硬化触媒[B]は、反応性ケイ素含有基を有する有機重合体[A1]又はオルガノポリシロキサン[A2](これらをまとめて「重合体[A]」とも称する。)の硬化に用いられる。重合体[A]は、室温で液状のものが好ましい。
【0015】
重合体[A]は、反応性ケイ素含有基を、分子末端または側鎖に1分子当たり少なくとも1個有する。反応性ケイ素含有基は、重合体[A]分子の末端に存在していても、側鎖に存在していてもよく、さらに末端と側鎖の両方に存在していてもよい。反応性ケイ素含有基は、重合体[A]の1分子当たり少なくとも1個あればよいが、硬化速度、硬化物性の点からは、1分子当たり平均して1.5個以上あるのが好ましい。反応性ケイ素含有基を前記主鎖重合体に結合させる方法としては公知の方法が採用できる。
【0016】
反応性ケイ素含有基は、加水分解性基(例:ハロゲン、アルコキシ、アルケニルオキシ、アシロキシ、アミノ、アミノオキシ、オキシム、アミド)又は水酸基からなる反応性基と結合したケイ素原子を有する基であり、湿気や架橋剤の存在下、必要に応じて触媒などを使用することにより縮合反応を起こす性質を有する。具体的には、ハロゲン化シリル基、アルコキシシリル基、アルケニルオキシシリル基、アシロキシシリル基、アミノシリル基、アミノオキシシリル基、オキシムシリル基、アミドシリル基などが挙げられる。
【0017】
ここで、1つのケイ素原子に結合した反応性基の数は1〜3の範囲から選択される。また、1つのケイ素原子に結合した反応性基は1種であってもよく、複数種であってもよい。さらに反応性基と非反応性基が1つのケイ素原子に結合していてもよく、加水分解性基と水酸基が1つのケイ素原子に結合していてもよい。反応性ケイ素含有基としては、取り扱いが容易である点で、特にアルコキシシリル基(モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基を含む)が好ましい 。
【0018】
また上記のアルコキシシリル基のうち、トリアルコキシシリル基 は、活性が高く良好な硬化性が得られること、また、得られる硬化物の復元性、耐久性、耐クリープ性に優れることから好ましい。一方、ジアルコキシシリル基、モノアルコキシシリル基は、貯蔵安定性に優れ、また、得られる硬化物が高伸び、高強度であることから好ましい。また 、トリアルコキシシリル基を有する重合体[A]を硬化させて得られる硬化体は、脆くなりやすく、十分な伸びや柔軟性が得られない傾向にある。
【0019】
このようなトリアルコキシシリル基を有する重合体[A]の課題を補う為の方法として以下の方法が採用できる。
第一に、硬化後の伸びや柔軟性を向上させる効果のある添加剤を使用する方法である。これら添加剤としては、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシドデシルメチルシラン、ジエトキシメチルオクタデシルシラン、ジメトキシドデシルメチルシラン、ジメトキシメチルオクタデシルシラン、プロピルメチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン等が挙げられる。
第二に、反応性ケイ素含有基がジアルコキシシリル基である重合体[A]と、トリアルコキシシリル基である重合体[A]を併用することで、硬化物物性と硬化性のバランスを取る方法である。
【0020】
(有機重合体[A1])
本発明に用いる有機重合体[A1]の主鎖としては炭素原子を有するもの、例えば、アルキレンオキシド重合体、ポリエステル重合体、エーテル・エステルブロック共重合体、エチレン性不飽和化合物の重合体、ジエン系化合物の重合体などが挙げられる。
【0021】
前記アルキレンオキシド重合体としては、
〔CH
2CH
2O〕
n
〔CH(CH
3)CH
2O〕
n
〔CH(C
2H
5)CH
2O〕
n
〔CH
2CH
2CH
2CH
2O〕
n
などの繰り返し単位の1種または2種以上を有するものが例示される。ここで、nは同一又は異なって2以上の整数である。これらアルキレンオキシド重合体は単独で用いてもよく、2種以上を併用してもよい。また、上記の繰り返し単位を2種以上含む共重合体も使用できる。
【0022】
ポリエステル重合体としては、酢酸、プロピオン酸、マレイン酸、フタル酸、クエン酸、ピルビン酸、乳酸等のカルボン酸およびその無水物ならびにそれらの分子内および/または分子間エステルおよびそれらの置換体等を繰返し単位として有するものが例示される。
【0023】
エーテル・エステルブロック共重合体としては、上述したアルキレンオキシド重合体に用いられる繰り返し単位および上述したポリエステル重合体に用いられる繰り返し単位の両方を繰返し単位として有するものが例示される。
【0024】
また、エチレン性不飽和化合物及びジエン系化合物の重合体としては、エチレン、プロピレン、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、アクリロニトリル、スチレン、イソブチレン、ブタジエン、イソプレン、クロロプレンなどの単独重合体、またはこれらの2種以上の共重合体が挙げられる。より具体的にはポリブタジエン、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、エチレン−ブタジエン共重合体、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸エステル共重合体、ポリイソプレン、スチレン−イソプレン共重合体、イソブチレン−イソプレン共重合体、ポリクロロプレン、スチレン−クロロプレン共重合体、アクリロニトリル−クロロプレン共重合体、ポリイソブチレン、ポリアクリル酸エステル、ポリメタクリル酸エステルなどが挙げられる。これらは単独で用いてもよく、あるいは2種類以上を併用してもよい。
【0025】
有機重合体[A1]としては、分子内に含窒素特性基等の極性基を有する有機重合体を用いることもできる。上記含窒素特性基の具体例としては(チオ)ウレタン基,アロファネート基,その他のN−置換ウレタン基,N−置換アロファネート基等の(チオ)ウレタン基由来の結合基、(チオ)ウレア基,ビウレット基,それ以外のN−置換ウレア基,N,N'−置換ウレア基、N−置換ビウレット基,N,N'−置換ビウレット基等の(チオ)ウレア基由来の結合基、アミド基、N−置換アミド基等のアミド基由来の結合基、イミノ基由来の結合基に代表される含窒素特性基や、(チオ)エステル基、(チオ)エーテル基等が挙げられるが、これらに限定されるわけではない。これらのなかでは、硬化性の高さから含窒素特性基が好ましく、合成の容易さから、(チオ)ウレタン基由来の結合基、(チオ)ウレア由来の結合基がより好ましい。また、該含窒素特性基は、上記有機重合体[A1]中に1個だけ含まれていてもよく、さらに1種又は2種以上の含窒素特性基が複数含まれていてもよい。ここで「(チオ)」及び「N−置換」の表記は上記と同様である。
【0026】
有機重合体[A1]中に上記含窒素特性基等の極性基が含まれると、硬化物の強靱性が向上するうえ、硬化性及び接着強さが高まる。特に、上記架橋性ケイ素基が含窒素特性基等の極性基を介して主鎖に連結されている場合、より硬化性が高まる。その理由としては、該含窒素特性基の極性基同士が、水素結合等の相互作用により強く引き合うことが挙げられる。該含窒素特性基の極性基同士が強く引き合うことにより、硬化性樹脂の分子同士も強く結びつく(ドメイン形成する)ことで硬化物に強靱性が発現すると考えられるのである。また、上記架橋性ケイ素基が含窒素特性基等の極性基を介して主鎖に連結されている場合、該含窒素特性基同士ドメイン形成に際し、それに伴って該架橋性ケイ素基同士も近接することによって、該架橋性ケイ素基同士の接触確率も向上し、さらに、該含窒素特性基中の極性基による触媒硬化によって該架橋性ケイ素基同士の縮合反応性が向上することが考えられる。
【0027】
このような有機重合体[A1](変成シリコーン系ポリマー)は、例えば、特公昭61−18569号公報に記載されている方法等の公知の方法によって製造することができるか、或いは市販されている。市販品としては、例えば、株式会社 カネカ製のカネカMSポリマーシリーズ(MSポリマーS−203、MSポリマーS−303、MSポリマーS−903、MSポリマーS−911等)、サイリルシリーズ(サイリルポリマーSAT−200、サイリルポリマーMA430、サイリルポリマーMAX447等)、MAシリーズ、SAシリーズ、ORシリーズ;旭硝子株式会社製のESシリーズ(ES−GX3440ST等),ESGXシリーズ等、が例示される。
【0028】
本発明で用いる有機重合体[A1]の数平均分子量は、特に制限はないが、過度に高分子のものは高粘度であり、硬化性組成物とした場合、使用上困難となる為、30000以下が望ましい。このような有機重合体は、公知の方法によって製造することができるが、上記した株式会社カネカ製のカネカMSポリマー等の市販品を使用してもよい。
【0029】
(オルガノポリシロキサン[A2])
本発明に用いるオルガノポリシロキサン[A2]は、主鎖がSi−Oで表されるシロキサン結合で構成されたものであり、さらにシロキサン結合を構成するケイ素原子に有機基が結合している。このような有機基としては、具体的にはメチル、エチル、プロピル、ブチル等のアルキル基;シクロヘキシル等のシクロアルキル基;ビニル、アリル、イソプロペニル、クロチル等のアルケニル基;フェニル、トルイル、キシリル等のアリール基;ベンジル、フェニルエチル等のアラルキル基;及びこれら有機基の水素原子の全部もしくは一部がハロゲン原子で置換された基、例えばクロロメチル基、3,3,3−トリフルオロプロピル基などが挙げられる。
【0030】
オルガノポリシロキサン[A2]としては、
(−Si(R)
2−O−)
m
(式中、Rは同一又は異なって有機基、mは2以上の整数を示す。)
で表される繰り返し単位を有するものが例示される。具体例としては、
(−Si(CH
3)
2−O−)
m
(−Si(C
2H
5)
2−O−)
m
(−Si(Ph)
2−O−)
m
(−Si(−CH=CH
2)
2−O−)
m
などの繰り返し単位の1種または2種以上を有するものが例示される。ここでmは同一又は異なって2以上の整数である。オルガノポリシロキサン[A2]は単独の主鎖から構成されていてもよく、あるいは2種以上の主鎖から構成されていてもよい。
【0031】
オルガノポリシロキサンは直鎖状であっても、3官能形(R'SiO
1.5)または4官能形(SiO
2)を含む分岐状のものであってもよい。また、硬化物の物性や用途により、必要に応じて2官能形(R'
2SiO)や1官能形(R'
3SiO
0.5)を組み合わせてもよい(ここで、R'は有機基)。
なお、オルガノポリシロキサンは一般的に平均組成式としてR
aSiO
4-a/2で示される(例えば、特開2005-194399号や特願平6-290588号公報等)。上記の表記はこれに従った。
【0032】
本発明で用いるオルガノポリシロキサン[A2]の粘度は特に制約はないが過度に高粘度のものは、作業性が低下したり、得られる硬化物の物性が損なわれたりするおそれがあるので、25℃における粘度が0.025〜100Pa・sの範囲にあるのが望ましい。このようなオルガノポリシロキサンは、公知の方法によって製造することができるが、GE東芝シリコーン(株)製のトスシールシリーズ、信越化学工業(株)製のシーラントシリーズ、東レダウコーニング(株)製のSHシリーズ等の市販品を使用することができる。
【0033】
(硬化触媒[B])
硬化触媒[B]は、少なくとも一つのTi−O−Al結合部を有するチタン−アルミ化合物TAを含有する。
【0034】
チタン-アルミ化合物TA中のチタン原子数は、好ましくは1〜10であり、さらに好ましくは1〜5であり、さらに好ましくは1〜3である。チタン-アルミ化合物TA中のアルミニウム原子数は、好ましくは1〜10であり、さらに好ましくは1〜5であり、さらに好ましくは1〜3である。チタン原子数及びアルミニウム原子数は、1、2、3、4、5、6、7、8、9、10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0035】
チタン-アルミ化合物TAは、好ましくは、チタン原子とアルミニウム原子、チタン原子同士、又はアルミニウム原子同士が、酸素原子を介して結合されて構成されるチタン−アルミ構造単位を備える。このチタン−アルミ構造単位は、好ましくは、Ti−O−Al結合のみ、又はTi−O−Al結合とTi−O−Ti結合のみによって構成される。
【0036】
チタン-アルミ化合物TAは、好ましくは、Ti−O−R
1結合とAl−O−R
2結合の少なくとも一方と、前記チタン−アルミ構造単位とで構成される。R
1、R
2は、各々独立して、炭素原子数1〜10の直鎖、分岐もしくは環状のアルキル基、アリール基またはアラルキル基である。炭素原子数1〜10のアルキル基としては、直鎖又は分岐していてもよく、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、アミル、イソアミル、tert―アミル、ヘキシル、ヘプチル、オクチル、2−エチルヘキシル、ノニル、デシルなどが挙げられ、好ましくは、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル等の炭素原子数1〜4の炭化水素基で、さらに好ましくは、メチル、エチル、プロピル又はイソプロピルである。アリール基としては、フェニル、1−ナフチル、2−ナフチル、インデニル、ビフェニリル、アントリル、フェナントリル、ベンジルなどが挙げられ、好ましくは炭素原子数6〜10のアリール基で、さらに好ましくはフェニル又はベンジルである。アラルキル基としては、ベンジル、フェネチルなどが挙げられ、好ましくはベンジルである。R
1、R
2の炭素数は、例えば、1、2、3、4、5、6、7、8、9、10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0037】
チタン-アルミ化合物TAは、好ましくは、下記一般式(I)又は(II)で表される。
【0038】
【化1】
【化2】
(Xは、各々独立して、−OR
1、−O−Al−Y
2、−O−Ti−X
3の何れかであるか、又は2つのXが以下の一般式(III)又は(IV)で置換される。Yは、各々独立して、−OR
2、−O−Al−Y
2、−O−Ti−X
3の何れかであるか、又は2つのYが以下の一般式(III)又は(IV)で置換される。)
【0040】
Xは、−OR
1、−O−Al−Y
2、−O−Ti−X
3の何れであってもよく、Yは、−OR
2、−O−Al−Y
2、−O−Ti−X
3の何れであってもよい。Xが−O−Al−Y
2である場合、Xの位置に、酸素原子を介してアルミニウム原子が結合され、そのアルミニウム原子にYが2つ結合される。また、Xが−O−Ti−X
3である場合、Xの位置に、酸素原子を介してチタン原子が結合され、そのチタン原子にXが3つ結合される。Yが−O−Al−Y
2である場合、Yの位置に、酸素原子を介してアルミニウム原子が結合され、そのアルミニウム原子にYが2つ結合される。また、Yが−O−Ti−X
3である場合、Yの位置に、酸素原子を介してチタン原子が結合され、そのチタン原子にXが3つ結合される。
【0041】
さらに、一般式(I)又は(II)の2つのX又はYを一般式(III)又は(IV)で置き換えてもよい。これによって、酸素原子と、金属原子(Ti又はAl)で構成される環状部が導入される。なお、この環状部に含まれる金属原子数は2に限定されず、例えば一般式(I)において、Yが−O−Ti−X
3である場合には、このY由来のXと、一般式(I)でチタン原子に結合されているXとが一般式(III)で置換される場合には、環状部には、3つの金属原子が含まれる。この金属原子数は、例えば2〜5であり、例えば2,3,4,又は5である。
【0042】
このように、X,Yは、再帰的に解釈される。但し、一般式(I)又は(II)に含まれるチタン原子数及びアルミニウム原子数がそれぞれ1〜10に制限されているので、X,Yの再帰が無限に繰り返されることはない。
【0043】
一般式(I)又は(II)で表されるチタン-アルミ化合物TAは、例えば、以下の化学式(VII-1)〜(VII-10)、(VIII-1)〜(VIII-29)の構造を有する。なお、以下の式中のPrは、上記のR
1又はR
2で置換可能である。
【0048】
<チタン-アルミ化合物TAの製造方法>
次に、チタン-アルミ化合物TAの製造方法について説明する。
チタン-アルミ化合物TAは、チタンアルコキシドに含まれるチタン原子と、アルミニウムアルコキシドに含まれるアルミニウム原子との間にTi−O−Al結合を形成する反応によって得ることができる。
好ましくは、チタンアルコキシドは、下記一般式(V)で表され、アルミニウムアルコキシドは、下記一般式(VI)で表される。一般式(V)〜(VI)中でのR
1,R
2は、既に説明したように、各々独立して、炭素原子数1〜10の直鎖、分岐もしくは環状のアルキル基、アリール基またはアラルキル基である。
Ti(OR
1)
4 (V)
Al(OR
2)
3 (VI)
【0049】
式(V)で表されるチタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラsec-ブトキシチタン、テトラtert-ブトキシチタン、テトラペンチロキシチタン、テトラヘキシロキシチタン、テトラへプチロキシチタン、テトラオクチロキシチタン、テトラノニロキシチタン、テトラデシロキシチタン等が挙げられ、特に、テトライソプロポキシチタンが好ましい。
【0050】
式(VI)で表されるアルミニウム化合物としては、例えば、トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリブトキシアルミニウム、トリsec-ブトキシアルミニウム、トリtert-ブトキシアルミニウム、トリペンチロキシアルミニウム、トリヘキシロキシアルミニウム、トリへプチロキシアルミニウム、トリオクチロキシアルミニウム、トリノニロキシアルミニウム、トリデシロキシアルミニウム等が挙げられ、特に、トリイソプロポキシアルミニウムが好ましい。
【0051】
上記反応を生じさせる方法は、特に限定されないが、一例では、チタンアルコキシドのアルコキシ基の少なくとも1つをカルボキシル基で置換する置換反応を行ってチタンカルボキシレートを得て、このチタンカルボキシレートをアルミニウムアルコキシドと反応させる方法が挙げられる(反応1)。なお、アルミニウムアルコキシドのアルコキシ基の少なくとも1つをカルボキシル基で置換する置換反応を行ってアルミニウムカルボキシレートを得て、このアルミニウムカルボキシレートをチタンアルコキシドと反応させてもよい。
【0052】
置換反応によって形成されるチタンカルボキシレートは、例えば、一般式(IX)で表される。
(R
1O)
n−Ti−(OCOR
3)
4−n (IX)
式中、R
3は、R
1と同様に、各々独立して、炭素原子数1〜10の直鎖、分岐もしくは環状のアルキル基、アリール基、またはアラルキル基である。nは、0〜3の整数であり、化合物の取扱いの観点からnは、2〜3が好ましい。
【0053】
式(IX)で表されるチタンカルボキシレートとしては、例えば、メトキシチタントリアセテート、ジメトキシチタンジアセテート、トリメトキシチタンアセテート、チタンテトラアセテート、エトキシチタントリアセテート、ジエトキシチタンジアセテート、トリエトキシチタンアセテート、プロポキシチタントリアセテート、ジプロポキシチタンジアセテート、トリプロポキシチタンアセテート、イソプロポキシチタントリアセテート、ジイソプロポキシチタンジアセテート、トリイソプロポキシチタンアセテート、ベンジロキシチタントリアセテート、ジベンジロキシチタンジアセテート、トリベンジロキシチタンアセテート等が挙げられ、特にイソプロポキシチタントリアセテート、ジイソプロポキシチタンジアセテート、トリイソプロポキシチタンアセテートが好ましい。
【0054】
また、別の方法としては、チタンアルコキシドとアルミニウムアルコキシドとを水の存在下で接触させる方法が挙げられる(反応2)。この方法では、最初にチタンアルコキシド又はアルミニウムアルコキシドと水との反応によってチタンアルコキシド又はアルミニウムアルコキシドが活性化され、この活性化されたチタンアルコキシド又はアルミニウムアルコキシドが別のアルミニウムアルコキシド又はチタンアルコキシドと反応することによってTi−O−Al結合が形成される。
【0055】
上記の反応1および反応2において、各成分(式V,VI,IXの化合物や水)の反応比率(モル比)を変化させて、種々のTi−O−Al結合部を有するチタン-アルミ化合物を製造することができる。
【0056】
チタン-アルミ化合物TAとしては、例えば、式(IX)で表されるチタンカルボキシレート1モルに対して、式(VI)で表されるアルミニウムアルコキシドを0.1〜4モル反応させて得られる化合物が挙げられ、
特に、式(IX)中、R
1が、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチルまたはtert−ブチルのいずれかであり(各々のR
1は他のR
1と同一であっても異なっていても良い)、R
3が、メチルであるチタンカルボキシレート(n=0〜3)1モルに対して、
式(VI)中、R
2が、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、アミル、イソアミル、tert―アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、2−エチルヘキシル、フェニルまたはベンジルのいずれかである(各々のR
2は他のR
2と同一であっても異なっていても良い)アルミニウムアルコキシドを0.3〜1モル反応させて得られる化合物が好ましい。
【0057】
また、チタン-アルミ化合物TAとしては、例えば、式(V)で表されるチタンアルコキシド1モルに対して、式(VI)で表されるアルミニウムアルコキシドを0.1〜4モル、水存在下で(アルミニウムアルコキシドに対し1〜3当量)反応させて得られる化合物が挙げられ、特に、式(V)中、R
1が、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチルまたはtert−ブチルのいずれかである(各々のR
1は他のR
1と同一であっても異なっていても良い)チタンアルコキシド1モルに対して、式(VI)中、R
2が、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、アミル、イソアミル、tert―アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、2−エチルヘキシル、フェニルまたはベンジルのいずれかである(各々のR
2は他のR
2と同一であっても異なっていても良い)アルミニウムアルコキシド0.3〜1モルを、水存在下で(アルミニウムアルコキシドに対し1〜3当量)反応させて得られる化合物が好ましい。
【0058】
例えば、上記反応1において、式(IX)で表されるチタンカルボキシレート1モル(n=2)に対して、一般式(VI)で表されるアルミニウムアルコキシド1モルを反応させて少なくとも一つのTi−O−Al結合を有する反応生成物を製造することができる。
通常、上記反応1では、不活性ガス雰囲気下で、式(IX)で表されるチタンカルボキシレートと式(VI)で表されるアルミニウムアルコキシドを加えて、生成するエステル(R
3COOR
2)を減圧留去することにより、少なくとも一つのTi−O−Al結合部を有する反応生成物を得る事が出来る。反応温度は一般に80〜150℃程度であり、反応時間は2〜6時間程度である。
【0059】
例えば、上記反応2において、式(V)で表されるチタンアルコキシド1モルに対して、一般式(VI)で表されるアルミニウムアルコキシド1モルを、水存在下で反応させて、少なくとも一つのTi−O−Al結合部を有する反応生成物を製造することができる。
通常、上記反応2では、不活性ガス雰囲気下で、式(V)で表されるチタンアルコキシド、式(VI)で表されるアルミニウムアルコキシドと、水1〜2モルとを加えて、生成するアルコールを減圧留去することにより、少なくとも一つのTi−O−Al結合部を有する反応生成物を得ることができる。反応温度は一般に80〜150℃程度であり、反応時間は2〜6時間程度である。
【0060】
また、上記反応1又は2で得られた反応生成物に、さらにアルコールを加えて反応させることにより、容易にアルコキシ基を交換する事が出来る。
【0061】
なお、チタンアルコキシド、チタンカルボキシレート、アルミニウムアルコキシドの種類、当量数等に応じて、生成する少なくとも一つのTi−O−Al結合部を有する反応生成物の化学構造は変化し、また混合物として存在する可能性がある。
【0062】
<Ti−O−Al結合部及びTi−O-Ti結合部を有するチタン−アルミ化合物TAの製造方法>
次に、Ti−O−Al結合部を有し、かつ、Ti−O-Ti結合部を有するチタン-アルミ化合物TAの製造方法について説明する。一般式(I)又は(II)において、Xの少なくとも1つが−O−Ti−X
3又は一般式(III)である場合に、Ti−O−Al結合部及びTi−O-Ti結合部を有するチタン−アルミ化合物TAとなる。このようなチタン-アルミ化合物TAは、安定性の観点から好ましく、その具体例は、上記化学式(VIII-1)〜(VIII-29)の化合物である。
【0063】
このようなチタン-アルミ化合物TAは、チタンアルコキシドに含まれるチタン原子と、アルミニウムアルコキシドに含まれるアルミニウム原子との間にTi−O−Al結合を形成し、かつ2つのチタン原子間にTi−O-Ti結合を形成することによって生成することができる。
【0064】
Ti−O-Ti結合を形成する反応と、Ti−O−Al結合を形成する反応は、同時に行ってもく、最初に、Ti−O-Ti結合を形成し、その後で、Ti−O−Al結合してもよい。
【0065】
製造方法の一例では、チタンアルコキシドのアルコキシ基の少なくとも1つをカルボキシル基で置換すると共にTi−O-Ti結合を形成する反応を行ってチタンカルボキシレートを得て、このチタンカルボキシレートをアルミニウムアルコキシドと反応させる方法が挙げられる(反応3)。
上記チタンカルボキシレートは、例えば、一般式(X)で表される。一般式(X)中のカルボキシレート基の数は、例えば1〜10である。
【0066】
【化10】
式中、X
1は、各々独立して、−OR
1、−OCOR
3、−O−Ti−X
13の何れかであるか、又は2つのX
1が一般式(XI)で置換され、X
1のうちの少なくとも1つは、−OCOR
3であり、チタン原子数は、2〜10である。
【0068】
式(X)で表されるチタンカルボキシレートとしては、例えば、例えば、1,1,3,3-テトラメトキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラエトキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラプロポキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトライソプロポキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラブトキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラペンタノキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラヘキサノキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラヘプタノイキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラオクタノキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラ2-エチルヘキサノキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラノナノキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラメデカノキシ-1,4-ジチタノオキサン‐1,3-アセテート、等が挙げられ、特に1,1,3,3-テトライソプロポキシ-1,4-ジチタノオキサン‐1,3-アセテート、1,1,3,3-テトラブトキシ-1,4-ジチタノオキサン‐1,3-アセテート、が好ましい。
【0069】
また、別の方法としては、チタンアルコキシド由来の2つのチタン原子を酸素原子を介して結合させてTi−O−Ti結合を形成することによって、以下の一般式(XII)で表されるチタンアルコキシドを得て、このチタンアルコキシドとアルミニウムアルコキシドとを水の存在下で接触させる方法が挙げられる(反応4)。この方法によってTi−O−Al結合が形成される原理は、反応2と同様である。
【0070】
【化12】
式中、X
2は、各々独立して、−OR
1、−O−Ti−X
23の何れかであるか、又は2つのX
2が一般式(XIII)で置換され、チタン原子数は、2〜10である。
【0072】
式(XII)で表されるチタンアルコキシドとしては、例えば、1,1,1,3,3,3-ヘキサメトキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサエトキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサプロポキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサイソプロポキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサブトキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサペンタノキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサヘキサノキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサヘプタノイキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサオクタノキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサ2-エチルヘキサノキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサノナノキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサメデカノキシ-1,4-ジチタノオキサン等が挙げられ、特に1,1,1,3,3,3-ヘキサイソプロポキシ-1,4-ジチタノオキサン、1,1,1,3,3,3-ヘキサブトキシ-1,4-ジチタノオキサンが好ましい。
【0073】
上記の反応3および反応4において、各成分(式VI,X,XIIの化合物や水)の反応比率(モル比)を変化させて、種々のTi−O−Al結合部を有し、かつTi−O-Ti結合部を有するチタン-アルミ化合物TAを製造することができる。
【0074】
例えば、式(X)中、R
1がメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチルまたはtert−ブチルのいずれかであり(各々のR
1は他のR
1と同一であっても異なっていても良い)、R
3が、メチルであるチタンカルボキシレート1モル(チタン原子数2〜7)に対して、
式(VI)中、R
2が、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、アミル、イソアミル、tert―アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、2−エチルヘキシル、フェニルまたはベンジルのいずれかである(各々のR
2は他のR
2と同一であっても異なっていても良い)アルミニウムアルコキシド1〜16モルを反応させて得られる化合物が好ましい。
【0075】
例えば、式(XII)中、R
1が、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチルまたはtert−ブチルのいずれかである(各々のR
1は他のR
1と同一であっても異なっていても良い。)チタンアルコキシド1モル(n=0〜5)に対して、式(VI)中、R
2が、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、tert−ブチル、アミル、イソアミル、tert―アミル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、2−エチルヘキシル、フェニルまたはベンジルのいずれかであり(各々のR
2は他のR
2と同一であっても異なっていても良い)アルミニウムアルコキシド1〜16モルを反応させて得られる化合物が好ましい。
【0076】
例えば、上記反応3において、式(X)で表されるチタンカルボキシレート1モル(チタン原子数=2、各チタン原子のカルボキシレート数が1)に対して、式(VI)で表されるアルミニウムアルコキシド1〜2モルを反応させて、式(I)又は(II)で表わされる少なくとも一つのTi−O-Ti結合部を有し、かつ、Ti−O−Al結合部を有する反応生成物を製造することができる。
通常、反応は、不活性ガス雰囲気下で、式(X)で表されるチタンカルボキシレートと式(VI)で表されるアルミニウムアルコキシドを加えて、生成するエステル(R
3COOR
2)を減圧留去することにより、少なくとも一つのTi−O-Ti結合部を有し、かつ、Ti−O−Al結合部を有する反応生成物を得ることができる。反応温度は一般に80〜150℃程度であり、反応時間は2〜6時間程度である。
【0077】
例えば、上記反応4において、式(XII)で表されるチタンアルコキシド1モル(n=0)に対して、式(VI)で表されるアルミニウムアルコキシド1〜2モルを反応させて、(I)又は(II)で表わされる少なくとも一つのTi−O-Ti結合部を有し、かつ、Ti−O−Al結合部を有する反応生成物を製造することができる。
通常、反応は、不活性ガス雰囲気下で、式(XII)で表されるチタンアルコキシドと、式(VI)で表されるアルミニウムアルコキシドと、水1〜2モルとを加えて、生成するエステルアルコールを減圧留去することにより、少なくとも一つのTi−O-Ti結合部を有し、かつ、Ti−O−Al結合部を有する反応生成物を得ることができる。反応温度は一般に80〜150℃程度であり、反応時間は2〜6時間程度である。
【0078】
なお、チタンアルコキシド、チタンカルボキシレート、アルミニウムアルコキシドの種類、当量数等に応じて、生成する少なくとも一つのTi−O−Al結合部を有し、かつ、Ti−O−Al結合部を有する反応生成物の化学構造は変化し、また混合物として存在する可能性がある。
【0079】
上記のチタン−アルミ化合物TAは、単独で使用してもよいし、2種以上を併用してもよい。
本発明の有機重合体[A1]又はオルガノポリシロキサン[A2]の硬化に用いる触媒[B]は、上記のチタン−アルミ化合物TA以外の成分を含むことができ、例えば、下記の他の硬化触媒等の添加剤等を含むことができる。
【0080】
少なくとも一つのTi−O-Ti結合かつTi−O−Al結合を有するチタンーアルミニウム化合物TAは毒性、環境汚染性が低く、前記有機重合体[A1]又はオルガノポリシロキサン[A2]の硬化触媒として使用した場合に、速硬化性を有し、組成物中の添加剤や充填剤中に含まれる水分で分解されにくく、また、施工時の湿度により硬化速度にばらつきが生じず、速やかに安定した硬化物を与える。したがって、前記有機重合体[A1]又はオルガノポリシロキサン[A2]を主剤とする湿気硬化型組成物、とくに1液型の湿気硬化型組成物における硬化触媒として有用である。
【0081】
(湿気硬化型組成物)
本発明の湿気硬化型組成物は、上記の硬化触媒[B]と、有機重合体[A1]又はオルガノポリシロキサン[A2]とを含み、必要に応じ後述する他の添加剤を含めても良い。本発明の湿気硬化型組成物の調製は、乾燥条件下で両者を混合すればよく、その混合形態は特に限定はない。通常、温度15〜30℃程度、60%RH以下の雰囲気下で混合すればよい。
【0082】
本発明の湿気硬化型組成物中において、硬化触媒[B]の含有量は、前記有機重合体[A1]又はオルガノポリシロキサン[A2]100重量部に対して0.1〜20重量部、さらに0.5〜10重量部、特に4〜8重量部が好ましい。硬化触媒[B]の含有量が0.1重量部未満では硬化性能が不十分であり、20重量部を超えると硬化後の硬化物の復元率、耐候性などの物性、貯蔵中の安定性が悪くなることがある。
【0083】
本発明の湿気硬化型組成物には、さらに充填剤[C]を配合しても良い。充填剤としては、例えば、炭酸カルシウム、カオリン、タルク、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、含水ケイ酸、クレー、焼成クレー、ガラス、ベントナイト、有機ベントナイト、シラスバーン、ガラス繊維、石綿、ガラスフィラメント、粉砕石英、珪藻土、ケイ酸アルミニウム、水酸化アルミニウム、酸化亜鉛、酸化マグネシウム、二酸化チタン等があげられる。充填剤は、単独で用いてもよく、2種以上を併用してもよい。充填剤を加えることにより、湿気硬化型組成物のハンドリングが良くなる。また、硬化物のゴム補強剤としても働く。最大のメリットは、増量剤として添加することで使用する樹脂の量を減らす事が出来るためコストダウンが出来ることである。
【0084】
中でも、硬化後の硬化性組成物の優れた表面ノンタック、50%モジュラス、作業性および耐候性等を維持する点から、炭酸カルシウム、酸化チタンが好ましい。炭酸カルシウムを使用する場合は、その割合を、前記有機重合体[A1]又はオルガノポリシロキサン[A2]100重量部に対して、1〜200重量部とするのが好ましい。上記範囲であると、硬化後の特性を損なわない。
【0085】
本発明の湿気硬化型組成物には、さらに硬化促進剤、着色剤、可塑剤、硬化遅延剤、タレ防止剤、老化防止剤、溶剤等、硬化性組成物に通常添加される添加剤を加えてもよい。
【0086】
硬化促進剤としては、例えば、公知の種々のアミノ基置換アルコキシシラン化合物、またはその縮合物を使用することが出来る。具体的に例示すると、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、δ―アミノブチル(メチル)ジエトキシシラン、N,N−ビス(トリメトキシシリルプロピル)エチレンジアミンおよび、これらの部分加水分解等があげられ、これらは基材への密着性を向上させる効果もある。
【0087】
着色剤としては、具体的には、酸化鉄、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等が使用される。
【0088】
可塑剤としては、具体的には、ジブチルフタレート、ジオクチルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;アジピン酸ジオクチル、コハク酸ジオクチル、コハク酸ジイソデシル、オレイン酸ブチル等の脂肪酸カルボン酸エステル類;ペンタエリスリトールエステル類等のグリコールエステル類;リン酸トリオクチル、リン酸トリクレジル等のリン酸エステル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤;塩素化パラフィン等が使用される。
【0089】
タレ防止剤としては、具体的には、水添ヒマシ油、無水ケイ酸、有機ベントナイト、コロイド状シリカ等が使用される。
【0090】
また、他の添加剤としては、フェノール樹脂、エポキシ樹脂等の接着付与剤、紫外線吸収剤、ラジカル連鎖禁止剤、過酸化物分解剤、各種の老化防止剤等が使用される。
【0091】
本発明の硬化型組成物は、室温で十分に安定であるため貯蔵性に優れ、かつ、湿気に接触すると配合された硬化触媒[B]により硬化反応が自発的に進行する。また、スナップタイム(半ゲル化し流動性が無くなるまでの時間)やタックフリー時間(表面タックの無くなるまでの時間)も短く作業性に優れる。
【0092】
上記の特性から、本発明の硬化型組成物は1液型シーリング材として用いることができる。具体的には、建築物、船舶、自動車等の車両のシーリング材、接着剤、密封剤、防水用の目止め材等の用途に好適に用いられる。
【実施例】
【0093】
つぎに実施例をあげて本発明を具体的に説明するが、本発明の範囲はこれによって限定されるものではない。
【0094】
【表1】
【0095】
製造例1A
窒素導入管を取り付けた200mlナスフラスコに、チタン(IV)イソプロポキシド28.42g(0.1mol)を量り込み、酢酸6.00g(0.1mol)を滴下ロートで滴化する。マグネチックスターラーにて充分に混合しながら90〜100℃で反応副生生物のイソプロピルアルコールを留去した。その後、アルミニウムイソプロポキシド6.74g(0.033mol)を加え、140〜150℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物Aを得た。
この化合物をFT-IRにて分析し、1600〜1650cm
-1に-CO-O-Ti-中のカルボニル基の吸収の消失、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0096】
製造例2A〜10A
酢酸とアルミニウムイソプロポキシドの使用量を表1に示すように変更した以外は、製造例1Aと同様の方法によりチタン-アルミ化合物B〜Jを得た。表1中の数値の単位は、molである。また、チタン-アルミ化合物B−Jの性状及びFT-IR分析の結果を表1に合わせて示す。Ti-O-Al結合部の行の「○」という表示は、730〜740 cm
-1にTi-O-Alの吸収が確認されたことを意味し、Ti-O-Ti結合部の行の「○」という表示は、775〜785cm
-1にTi-O-Tiの吸収が確認されたことを意味する。また、チタン-アルミ化合物B−Jの全てにおいて、-CO-O-Ti-中のカルボニル基の吸収の消失が確認された。
【0097】
製造例11A
窒素導入管を取り付けた100mlナスフラスコに、チタン(IV)n-ブトキシド34.03g(0.1mol)を量り込み、イソプロピルアルコール20g(0.3mol)、水1.8g(0.1mol)、アルミニウムイソプロポキシド6.74g(0.033mol)を加えマグネチックスターラーにて充分に混合しながら140〜150℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物Kを得た。
この化合物をFT-IRにて分析し、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0098】
製造例12A
製造例1Aの方法で合成した淡黄色透明の液体のチタン-アルミ化合物Aにベンジルアルコール32.44g(0.3mol)添加し100〜120℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物Lを得た。この化合物をFT-IRにて分析し、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0099】
製造例13A
製造例1Aの方法で合成した淡黄色透明の液体のチタン-アルミ化合物Aに2-エチルヘキサノール39.06g(0.3mol)添加し100〜120℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物Mを得た。
この化合物をFT-IRにて分析し、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0100】
【表2】
【0101】
製造例1B
窒素導入管を取り付けた100mlナスフラスコに、チタン(IV)イソプロポキシド28.42g(0.1mol)を量り込み、酢酸6.00g(0.1mol)と水0.90g(0.05mol)を混合させた溶液を滴下ロートで滴化する。マグネチックスターラーにて充分に混合しながら90〜100℃で反応副生生物のイソプロピルアルコールを留去した。その後、アルミニウムイソプロポキシド10.21g(0.05mol)を加え、140〜150℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物aを得た。
この化合物をFT-IRにて分析し、775〜785cm
-1にTi-O-Tiの吸収、1600〜1650cm
-1に-CO-O-Ti-中のカルボニル基の吸収の消失、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0102】
製造例2B〜15B
酢酸とアルミニウムイソプロポキシドの使用量を表2に示すように変更した以外は、製造例1Bと同様の方法によりチタン-アルミ化合物b〜oを得た。表2中の数値の単位は、molである。製造例5B、13B、14Bでは、200mlナスフラスコを使用した。
チタン-アルミ化合物b−oの性状及びFT-IR分析の結果を表2に合わせて示す。Ti-O-Al結合部の列及びTi-O-Ti結合部の列中の「○」の意味は、表1と同じである。また、チタン-アルミ化合物b−oの全てにおいて、-CO-O-Ti-中のカルボニル基の吸収の消失が確認された。
【0103】
製造例16B
窒素導入管を取り付けた100mlナスフラスコに、チタン(IV)n-ブトキシド34.03g(0.1mol)を量り込み、イソプロピルアルコール20g(0.3mol)、水0.90g(0.05mol)を混合させた溶液を滴下ロートで滴化する。マグネチックスターラーにて80℃で混合した。その後、アルミニウムイソプロポキシド10.21g(0.05mol)を加え、イソプロピルアルコール20g、水1.80g(0.1mol)を混合させた溶液を滴下ロートで滴化する。140〜150℃で反応させ反応副生生物のイソプロピルアルコール、n-ブチルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物pを得た。
この化合物をFT-IRにて分析し、775〜785cm
-1にTi-O-Tiの吸収、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0104】
製造例17B
製造例1Bの方法で合成した淡黄色透明の液体のチタン-アルミ化合物aにベンジルアルコール48.66g(0.45mol)添加し100〜120℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物qを得た。
この化合物をFT-IRにて分析し、775〜785cm
-1にTi-O-Tiの吸収、1600〜1650cm
-1に-CO-O-Ti-中のカルボニル基の吸収の消失、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0105】
製造例18B
製造例1Bの方法で合成した淡黄色透明の液体のチタン-アルミ化合物aに2-エチルヘキサノール58.60g(0.45mol)添加し100〜120℃で反応させ反応副生生物のイソプロピルアルコールを留去した。さらに100℃減圧下で濃縮して淡黄色透明の液体のチタン-アルミ化合物rを得た。
この化合物をFT-IRにて分析し、775〜785cm
-1にTi-O-Tiの吸収、1600〜1650cm
-1に-CO-O-Ti-中のカルボニル基の吸収の消失、730〜740 cm
-1にTi-O-Alの吸収を確認した。
【0106】
(試験1:実施例1〜31および比較例1〜9)
シリル基含有有機重合体(株式会社カネカ製MSポリマーS303)100重量部に対して、各種添加剤を、表3〜5に示される配合割合で配合し、混練して湿気硬化型組成物を調製した。また、触媒を可塑剤に希釈し50℃のインキュベーターに保存し、一定時間経過ごとにサンプリング、湿気硬化型組成物を調製した。なお、材料の配合、混練、硬化までの操作は25±1℃、50〜60%RHの雰囲気下で行った。
得られた湿気硬化型組成物について、皮張り時間(半ゲル化し流動性のなくなるまでの時間)およびタックフリータイム(表面タックのなくなるまでの時間)を測定した。
【0107】
皮張り時間は、予めシリル基含有有機重合体と触媒以外の添加剤を良く混練しておき、そこに触媒を添加し、更に3分間混練した。混練終了後、直径6.5cm、深さ1cmの円形容器に35g量り取り静置した。混練終了時から時間のカウントを開始し、容器を90度傾けても垂れが無く(1分間保持)、ゴム弾性が現れるまでに要した時間を測定した。
【0108】
タックフリータイムは、エチルアルコールで清浄した指先で、表面の3箇所に軽く触れ、混練終了時から試料が指先に付着しなくなるまでに要した時間を測定した。
【0109】
また、色差計(有限会社東京電色製 TC−PIII型)にてHW値を測定した。なおHW値は白色度を意味し、上限が100で100に近いほど白色に近い。
【0110】
表における材料の配合量は質量部である。表3〜11に示す材料の詳細は次のとおりである。
炭酸カルシウム:充填剤
二酸化チタン:チタン工業(株)製
水添ヒマシ油:伊藤製油(株)製
ノクラックNS−6:老化防止剤(大内新興化学工業(株)製)
スモイルP−350:流動パラフィン(村松石油(株)製)
A−171:ビニルアルコキシシラン化合物(日本ユニカー(株)製)
A−1100:アミノ基置換アルコキシシラン化合物(日本ユニカー(株)製)
アセチルアセトンアルミニウム:東京化成(株)製、一級試薬
ネオスタンU−200:ジブチル錫ジアセテート(日東化成(株)製)
ネオスタンU−100:ジブチル錫ジラウレート(日東化成(株)製)
サニーキャットT−100:ジイソプロポキシチタンビス(エチルアセトアセトネート)(日東化成(株)製)
チタン(IV)イソプロポキシド:キシダ化学(株)試薬
アルミニウムイソプロポキシド:キシダ化学(株)試薬
混合物a:チタン(IV)イソプロポキシドとアルミニウムイソプロポキシドの1:1(mol比)混合物
混合物b:チタン(IV)イソプロポキシドとアルミニウムイソプロポキシドの2:1(mol比)混合物
混合物c:チタン(IV)イソプロポキシドとアルミニウムイソプロポキシドの3:1(mol比)混合物
【0111】
【表3】
【0112】
【表4】
【0113】
【表5】
【0114】
表3〜5における実施例と比較例の対比から、本発明の硬化触媒は、経時安定性に優れており、長期間に渡って、皮張り時間及びタックフリータイムが短いことが確認された。また、従来のチタン系硬化触媒を使用した場合よりもHW値において顕著に優れていることが分かった。
【0115】
(試験2:実施例32〜62および比較例10〜18(硬化性試験))
加水分解性ケイ素含有基を有するオルガノポリシロキサン(GE東芝シリコーン(株)製トスシール371)100重量部に対して、各種添加剤を、表6〜8に示される配合割合で配合し、混練して湿気硬化型組成物を調製した。また、触媒を可塑剤に希釈し50℃のインキュベーターに保存し、一定時間経過ごとにサンプリング、湿気硬化型組成物を調製した。なお、材料の配合、混練、硬化までの操作は25±1℃、50〜60%RHの雰囲気下で行った。
【0116】
得られた湿気硬化型組成物について、有機重合体をオルガノポリシロキサンに変えた以外は試験1と同様の方法で、皮張り時間およびタックフリータイムを測定した。
【0117】
【表6】
【0118】
【表7】
【0119】
【表8】
【0120】
表6〜8における実施例と比較例の対比から、本発明の硬化触媒は、経時安定性に優れており、長期間に渡って、皮張り時間及びタックフリータイムが短いことが確認された。
【0121】
(試験3:実施例63〜93および比較例19〜27(硬化性試験))
加水分解性シリル基を有する有機重合体(ES−GX3440ST:旭硝子(株)製、トリメトキシシリル基を有し且つ主鎖がポリオキシアルキレンである有機重合体)及び各種添加剤を、表9〜11に示される配合割合で配合し、混練して湿気硬化型組成物を調製した。また、触媒を可塑剤に希釈し50℃のインキュベーターに保存し、一定時間経過ごとにサンプリング、湿気硬化型組成物を調製した。なお、材料の配合、混練、硬化までの操作は25±1℃、50〜60%RHの雰囲気下で行った。
【0122】
得られた湿気硬化型組成物について、試験1と同様の方法で、皮張り時間およびタックフリータイムを測定した。
【0123】
【表9】
【0124】
【表10】
【0125】
【表11】
【0126】
表9〜11における実施例と比較例の対比から、本発明の硬化触媒は、経時安定性に優れており、長期間に渡って、皮張り時間及びタックフリータイムが短いことが確認された。