【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度、経済産業省、「課題解決型医療機器の開発・改良に向けた病院・企業間の連携支援事業」委託研究、産業技術力強化法第19条の規定の適用を受ける特許出願
【文献】
電位−pH曲線図,http://www.mmm.muroran-it.ac.jp/~isaos/page3/page11/page19/files/EC09W05.pdf
(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に開示されている焼結体は、金属塩の溶液を用いて作製されるセラミックスである。また、特許文献2に開示されている複合材料は、カーボンナノチューブとセラミックス粉体の間にはファンデルワールス力以上の強力な化学結合がない。また特許文献3に開示されている焼結体は、母材であるアルミナにppm単位で添加物を入れて作製されるセラミックスである。これらのセラミックスは、高靭性化させたセラミックスであるが、強度および破壊靭性値が製品としての要求に応えられる値ではないという課題があった。
【0006】
そこで本発明は上記課題を解決するためになされたもので、その目的とするところは、
アルミナを含むセラミックス粉体とカーボンナノチューブを結合させる結合剤を用いて、高い破壊靭性値で、かつ高い強度をもつ
アルミナを主成分とするセラミックス複合材料の製造方法および
アルミナを主成分とするセラミックス複合材料を提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明の
アルミナを主成分とするセラミックス複合材料の製造方法は次の構成を備える。すなわち本発明は、
アルミナを主成分とするセラミックス複合材料の製造方法において、水系媒体に、
pHを4〜4.5の範囲に調整する酸と、
アルミナを含むセラミックス粉体と、フェニル基とカルボキシル基を含む共重合体と、カーボンナノチューブとを混合することによって、水系媒体中にカーボンナノチューブ‐
アルミナ結合物を生成させた混合液を得る工程と、前記混合液を乾燥して、カーボンナノチューブ‐
アルミナ結合粉体を製造する工程と、
前記カーボンナノチューブ‐
アルミナ結合粉体を成形して焼成する焼成工程とを含むことを特徴とする。この構成によれば、
アルミナを含むセラミックス粉体とカーボンナノチューブが共に分散した状態で混合液を製造するので、カーボンナノチューブが凝集せずに高靭性化、高強度化した
アルミナを含むセラミックス複合材料を製造することができる。
【0008】
また、上記目的を達成するため、本発明の
アルミナを主成分とするセラミックス複合材料の製造方法は次の構成を備える。すなわち本発明は、
アルミナを主成分とするセラミックス複合材料の製造方法において、水系媒体に、
pHを4〜4.5の範囲に調整する酸と、
アルミナを含むセラミックス粉体とを混合して、
アルミナを含むセラミックス粉体を分散させた
アルミナを含むスラリーを製造する工程と、水系媒体にフェニル基とカルボキシル基を含む共重合体とカーボンナノチューブを添加して、カーボンナノチューブを分散させたカーボンナノチューブ分散液を製造する工程と、前記
アルミナを含むスラリーと前記カーボンナノチューブ分散液とを混合して、フェニル基とカルボキシル基を含む共重合体を介して前記
アルミナと前記カーボンナノチューブ
とが結合した、カーボンナノチューブ‐
アルミナ結合物を生成させた混合液を得る工程と、前記混合液を乾燥して、カーボンナノチューブ‐
アルミナ結合粉体を製造する工程と、
前記カーボンナノチューブ‐
アルミナ結合粉体を成形して焼成する焼成工程とを含むことを特徴とする。この構成によれば、
アルミナを含むスラリーとカーボンナノチューブ分散液を別個に製造し、それらを混合しても、カーボンナノチューブが分散し、
アルミナとカーボンナノチューブが結合した高靭性化、高強度化した
アルミナを主成分とするセラミックス複合材料を製造することができる。
【0011】
また、本発明において、前記フェニル基とカルボキシル基を含む共重合体が、スチレン‐マレイン酸共重合体であることが好ましい。これによれば、水系媒体にカーボンナノチューブ分散させることができ、セラミックスと強固に結合させることができる。
【0012】
また、本発明において、前記
pHを4〜4.5の範囲に調整する酸は、焼成後に酸の成分が残留しない酸であることが好ましい。これによれば、焼成工程後に得られるセラミックス複合材料中に、酸を構成する元素が残らず、セラミックス複合材料の強度が低下しない。
【0013】
また、本発明において、前記フェニル基とカルボキシル基を含む共重合体の添加量は、カーボンナノチューブの重量に対して2〜24重量%であることが好ましい。これによれば、カーボンナノチューブを分散させ、セラミックスとカーボンナノチューブを結合させつつ、得られるセラミックス複合材料の強度を十分に向上できる。
【0014】
また、本発明において、前記カーボンナノチューブの添加量は、
アルミナを含むセラミックス粉体の重量に対して0.5〜5重量%であることが好ましい。これによれば、強度の高いセラミックス複合材料を得ることができる。
【0015】
また、前記
アルミナを含むセラミックス粉体に、平均粒子径が0.05〜5μmの範囲となるセラミックス粉体を用いることが好ましい。これによれば、強度の高いセラミックス複合材料を作製することができる。
【0016】
また、本発明において、前記カーボンナノチューブは、多層構造のカーボンナノチューブであり、比表面積10〜50m
2/g、平均アスペクト比が50〜500の範囲であるカーボンナノチューブを用いることが好ましい。これによれば、得られるセラミックス複合材料の靭性、強度等の機械的特性を十分に向上させることができる。
【0017】
また、本発明において、前記焼成工程における焼成温度を1300〜1500℃、焼成雰囲気を不活性ガス雰囲気とすることが好ましい。これによれば、粒成長しすぎて強度の低下を招くことなく、かつ十分な機械的特性をもったセラミックス複合材料を得ることができる。
【0018】
上記目的を達成するため、本発明のセラミックス複合材料は次の構成を備える。すなわち本発明は、
アルミナを含むセラミックス粉体と、カーボンナノチューブから成るアルミナを主成分とするセラミックス複合材料であって、
アルミナとカーボンナノチューブの間が
、非晶質炭素を含む非晶質材料を介して結合されていることを特徴とする。この構成によれば、非晶質材料を介してセラミックスとカーボンナノチューブとを結び付けた高い破壊靭性値と強度を有するセラミックス複合材料となる。
【0022】
また、本発明において、前記カーボンナノチューブの量は、
前記アルミナを含むセラミックス粉体の重量に対して0.5〜5重量%であることが好ましい。これによれば、カーボンナノチューブを添加した効果によりセラミックス複合材料の靭性、強度を上げることができる。
【0023】
また、本発明において、前記非晶質炭素を含む非晶質材料の量は、
アルミナを主成分とするセラミックス複合材料中のカーボンナノチューブの重量に対して2〜24重量%であることが好ましい。これによれば、良好な曲げ強度を有するセラミックス複合材料となる。
【0024】
また、本発明において、前記カーボンナノチューブは、多層構造のカーボンナノチューブであり、比表面積10〜50m
2/g、平均アスペクト比が50〜500の範囲となるカーボンナノチューブであることが好ましい。これによれば、カーボンナノチューブの分散性がよく、セラミックス複合材料の靭性、強度等の機械的特性を十分に向上させることができる。
【0025】
また、本発明において、前記
アルミナを主成分とするセラミックス複合材料中のセラミックスの平均粒子径が0.5〜5μmの範囲となることが好ましい。これによれば、焼結しやすく、セラミックス粒子の異常粒成長を抑制してセラミックス複合材料の破壊靱性、曲げ強度を向上させることができる。
【0026】
また、本発明において、破壊靭性値が7MPa・m
1/2以上、3点曲げ強度が550MPa以上であることが好ましい。これによれば、生体材料にも応用可能なセラミックス複合材料となる。
【発明の効果】
【0027】
本発明に係る
アルミナを主成分とするセラミックス複合材料の製造方法および
アルミナを主成分とするセラミックス複合材料によれば、
アルミナを含むセラミックス粉体とカーボンナノチューブを結合させる結合剤を用いることで、高い破壊靭性値、かつ高い強度を有することができる。
【発明を実施するための形態】
【0029】
以下、図面を参照して、本発明の実施形態を詳細に説明する。
【0030】
[概要]
図1は、本発明の実施形態に係るフェニル基とカルボキシル基を含む共重合体を介してセラミックス粉体とカーボンナノチューブが結合した、カーボンナノチューブ‐セラミックス結合物の一例を示す説明図であり、セラミックス粉体としてアルミナ粉体を用いた時の結合物である。本実施形態では水系媒体を用い、水系媒体中にカーボンナノチューブ‐セラミックス結合物を生成させる。フェニル基とカルボキシル基を含む共重合体は界面活性剤として、または後述の結合剤としても作用し、水系媒体中においてカーボンナノチューブを分散させ、かつセラミックス粉体とカーボンナノチューブの間にあって両者を結合させる。
【0031】
水系媒体中において、フェニル基とカルボキシル基を含む共重合体の分子構造内にあるカルボキシル基は、水素イオン(H
+)が解離した状態(COO
−)で存在する。このCOO
−が母材のセラミックス原料粉体、例えばアルミナ粉体を用いた場合、アルミナ粉体表面のアルミニウムイオンと反応し、フェニル基とカルボキシル基を含む共重合体とアルミナが結合する。また、共重合体のフェニル基のベンゼン環とカーボンナノチューブ表面の炭素六員環との間がπ‐πスタッキングにより結合し、フェニル基とカルボキシル基を含む共重合体がカーボンナノチューブ表面に吸着する。これにより、水系媒体中においてカーボンナノチューブ‐セラミックス結合物(カーボンナノチューブ‐アルミナ結合物)が生成される。
【0032】
この水系媒体中に生成させたカーボンナノチューブ‐セラミックス結合物を含む混合液を乾燥して、カーボンナノチューブ‐セラミックス結合粉体を得る。そして、カーボンナノチューブ‐セラミックス結合粉体を成形して焼成することにより、セラミックス複合材料を得るのである。
【0033】
フェニル基とカルボキシル基を含む共重合体の配列としては、同じ種類のモノマーが長く連続して重合した部分をもつ配列であることが好ましく、ブロック共重合体、グラフト共重合体が挙げられる。フェニル基をもつモノマー、ポリマーとしては、スチレン、ジアリルフタレート、ポリカーボネートがあり、ポリスチレンが好ましい。また、カルボキシル基をもつモノマーとしては、マレイン酸、アクリル酸、マロン酸、フマル酸があり、マレイン酸が好ましい。また、本実施形態では、セラミックス原料の種類は特に限定されるものではないが、アルミナ、ジルコニア、マグネシア、カルシアから選ばれる少なくとも1種類の原料を含むものでもよく、これらを組み合わせてできる化合物を含んでいてもよい。特にアルミナを原料として用いれば、生体材料に適用することが可能である。
【0034】
[混合液の作製]
カーボンナノチューブを水系媒体に分散させるには、フェニル基とカルボキシル基を含む共重合体からなる界面活性剤を用いる。これにより、水系媒体にカーボンナノチューブを分散させたカーボンナノチューブ分散液を製造することができる。
フェニル基とカルボキシル基を含む共重合体は界面活性剤として、または後述の結合剤としても作用し、水系媒体にカーボンナノチューブを分散させることができる。すなわち、フェニル基のベンゼン環とカーボンナノチューブ表面の炭素六員環との間のπ‐πスタッキングにより、フェニル基とカルボキシル基を含む共重合体がカーボンナノチューブ表面に吸着して結合する。このとき共重合体の分子構造内にカルボキシル基が存在するため、フェニル基とカルボキシル基を含む共重合体が吸着したカーボンナノチューブは、その親水性が向上する。更に表面の立体障害により、カーボンナノチューブ同士が凝集することを防止し、水系媒体の中でも安定して高い分散性を維持することが可能となる。
【0035】
次に、水系媒体にセラミックス原料粉体を分散させるには、セラミックス粉体の表層が陽イオンで覆われた、または表層の一部が陽イオンになった状態に水系媒体のpHを調整して行う。例えばアルミナ粉体の場合、水系媒体のpHを、アルミナを構成する金属原子であるアルミニウムが陽イオンで存在する領域に調整することで行う。アルミニウムが陽イオンで存在するpHは、電位−pH図より5以下と推測できる。このため、水系媒体のpH調整は酸性水溶液を用いて行う。酸性水溶液を加えることで、アルミナ粒子が正に帯電して、粒子同士が斥力によって反発して分散した状態になる。これにより、水系媒体中にアルミナ粉体を良好に分散させ、分散状態を長時間保つことができる。セラミックス粉体の表層が陽イオンになった状態とは、表面のみがイオン化していて、内部は未反応のセラミックス粉体のままということである。このように、本実施形態は両性酸化物、塩基性酸化物に適用でき、酸性水溶液を用いて、セラミックス粉体の表層が陽イオンになった状態にさせたスラリーを製造できる。
【0036】
水系媒体のpHによって、セラミックス粉体の表層の陽イオン存在量が変わるため、pHは制御されることが好ましい。例えば、アルミナ粉体を用いた場合、アルミナを構成する金属原子であるアルミニウムが陽イオンで存在する水系媒体は、pHを4〜4.5の範囲に調整されることが好ましい。pHが4より小さい値になると、アルミニウムイオンとして存在する量が増え、すなわち、アルミナの溶解量が増えてアルミナとして存在する量が減り、焼成体の強度が低下する。また、pHが4.5より大きい値では、アルミニウムイオンの数が少なく、フェニル基とカルボキシル基を含む共重合体を介したアルミナとカーボンナノチューブとの結合量が減少する。更にアルミナ中でのカーボンナノチューブの分散がよくない。これらのことから、十分な機械的特性、特に良好な破壊靱性値と強度を得ることができない。このように、セラミックス粉体表層の陽イオンとその内部にあるイオン化していないセラミックスとの存在比を制御して、目標値とする破壊靭性値が7MPa・m
1/2以上、強度を550MPa以上となるセラミックス複合材料を得ることができる。更に、目標値に達したセラミックス複合材料は、生体材料に適用でき、特に人工関節の部材として利用することができる。
【0037】
一方、前記したように、水系媒体中で、フェニル基とカルボキシル基を含む共重合体の分子構造内にあるカルボキシル基は、水素イオン(H
+)が解離した状態(COO
−)で存在する。この水系媒体にセラミックス原料粉体を分散させ、表層に陽イオンが存在する状態にさせると、このCOO
−が表層の陽イオンと反応して結合する。これにより、共重合体から難溶性塩が形成される。この結合は、共有結合とイオン結合を含んだ、ファンデルワールス力以上の強力な化学結合となる。これらのことから、フェニル基とカルボキシル基を含む共重合体は、カーボンナノチューブとセラミックス粉体の両方に結合し、カーボンナノチューブとセラミックス粉体との間に介在して互いを結合させる結合剤としても作用する。
【0038】
カーボンナノチューブ‐セラミックス結合物を生成させた混合液の調整において、水系媒体への各材料の添加順は特に限定されるものではない。水系媒体に、pH調整用の
酸性水溶液と、セラミックス原料粉体と、フェニル基とカルボキシル基を含む共重合体と、カーボンナノチューブとを同時に添加するようにしてもよく、他にも、水系媒体にセラミックス原料粉体を分散させたスラリーと、水系媒体にカーボンナノチューブを分散させた分散液とをそれぞれ別個に調製して混合しても得ることができる。この混合液は、強い撹拌等による強制的な分散を行わなくとも、水系媒体中でカーボンナノチューブの高い分散性が維持されていて、かつカーボンナノチューブが自発的に分散した状態でセラミックス原料粉体表面に吸着されている状態である。
【0039】
このように、混合液はセラミックス原料粉体とカーボンナノチューブが共に分散した状態で製造されるので、得られるセラミックス複合材料はカーボンナノチューブが凝集していないものとなる。
【0040】
[混合液の乾燥]
得られたカーボンナノチューブ‐セラミックス結合物を含有する混合液を乾燥させて、セラミックス粉体とカーボンナノチューブが結合したカーボンナノチューブ‐セラミックス結合粉体を製造する。乾燥方法は特に限定されないが、好ましくは噴霧乾燥させることであり、カーボンナノチューブ‐セラミックス結合粉体を微粒子化できる。また、小さくなり過ぎず、取り扱いやすい径の粒子を形成できる。
【0041】
[結合粉体の成形]
得られた結合粉体の成形には、従来技術を使うことができる。例として、テープキャスト法、押出成形法、泥しょう鋳込法、一軸加圧成形法、静水圧成形法、RIP成形法等が挙げられ、これらを併用してもよい。
【0042】
[成形体の焼成]
圧縮成形後の結合粉体は、焼成炉を用いて焼成される。このとき、真空中、あるいは非酸化雰囲気中である不活性ガス雰囲気で焼成することによって、セラミックス複合材料が得られるが、不活性ガス雰囲気であることが好ましく、アルゴン、窒素、ヘリウム、水素等が挙げられ、より好ましくはアルゴン雰囲気である。
【0043】
また、焼成方法は雰囲気を制御できれば特に限定されないが、常圧焼結法、加圧焼結法、熱プラズマ焼結法、放電プラズマ焼結法等を用いてもよく、これらを併用してもよい。しかし、プラズマ焼結方法は形状に制約があるため、本実施形態では、常圧焼結法と加圧焼結法を併用して、アルゴン雰囲気で焼成したものを、更に熱間静水圧加圧焼結によって、焼結させている。焼成温度は用いるセラミックス原料によって異なるものの、焼成温度範囲は1300〜1500℃が適していて、アルミナの場合でも1300〜1500℃である。1300℃より低い温度ではセラミックス(アルミナ)粒子が焼結せず、1500℃より高い温度ではセラミックス(アルミナ)粒子が粒成長しすぎて、複合材料の強度が550MPaより低い値となる。焼成時間は特に限定されないが、1時間から8時間、より好ましくは2〜3時間で強度および靭性の高い複合材料を得ることができる。熱間静水圧加圧焼結の加圧条件は、1350〜1400℃、0.5時間から3時間、10〜200MPaの範囲であれば、強度および靭性の高いセラミックス複合材料を得ることができる。
【0044】
図2〜
図4は、本発明の実施形態に係るセラミックス複合材料の一例であり、セラミックス原料としてアルミナを用いて作製したセラミックス複合材料の破断面の一部を示す電子顕微鏡写真である。本実施形態により得られるセラミックス複合材料は、セラミックスとカーボンナノチューブとを備え、カーボンナノチューブが良好に分散した材料である。また、セラミックスとカーボンナノチューブの間が結合されているためカーボンナノチューブのセラミックスからの引き抜きが起きにくい複合材料である。
【0045】
得られたセラミックス複合材料は、セラミックスとカーボンナノチューブの間が非晶質炭素を含む非晶質材料を介して結合されている。この非晶質炭素を含む非晶質材料は、セラミックス粉体表面およびカーボンナノチューブ表面に結合したフェニル基とカルボキシル基を含む共重合体の焼成物である。また、セラミックス複合材料は、結合剤のフェニル基がカーボンナノチューブの炭素六員環とπ‐πスタッキングし、結合剤のカルボキシル基がセラミックス粉体と結合した状態で結合粉体が焼成されることでできたものである。このように、セラミックスとカーボンナノチューブの界面に非晶質材料を析出させ、非晶質材料を介して結合させることで、カーボンナノチューブが引き抜かれにくくなる。これによって、靭性および強度が向上する。セラミックス表面とカーボンナノチューブ表面の化学結合は、共有結合とイオン結合を含んだファンデルワールス力以上の強固な化学結合である。
【0046】
非晶質炭素を含む非晶質材料は、セラミックスを構成する金属原子ならびに炭素原子ならびに酸素原子とのとの化学結合を有している。ここで、化学結合に関わる炭素原子は、フェニル基とカルボキシル基を含む共重合体から由来するものである。また、セラミックス原料がアルミナの場合C−O−Alで表される構造を含む化学結合を有する。セラミックスとカーボンナノチューブの界面にある非晶質材料は、セラミックス組成が連続的にカーボンナノチューブ組成に変化する傾斜材料となる。これらのことから、本実施形態のセラミックス複合材料は、ファンデルワールス力分子間力以上の強い結合力を有する構造体となるため、破壊されにくくなる。
【0047】
得られたセラミックス複合材料は、セラミックスの平均粒子径が0.5〜5μmの範囲となる。また、異常粒成長した粒子がなく、十分な強度と靭性をもつセラミックス複合材料である。なお、セラミックス複合材料の平均粒子径は、セラミックス複合材料の粒子自体を電子顕微鏡で観察して求めた。また、セラミックス複合材料中のカーボンナノチューブの量はセラミックス粉体の重量に対して0.5〜5.0重量%となる。
【0048】
フェニル基とカルボキシル基を含む共重合体の添加量は、カーボンナノチューブの重量に対して2〜24質量%であることが好ましい。2重量%より少ないとカーボンナノチューブが分散しにくく、24重量%より多いと焼成工程後の複合材料中に残留する炭素分が多くなり、強度が550MPaに達しない。
【0049】
カーボンナノチューブの種類は特に限定されなく、触媒気相成長法、アーク放電法などで作製される群から選ばれる少なくとも1種用いれば良い。また、単層、多層構造のカーボンナノチューブでも複合材料を得ることができるが、多層構造のカーボンナノチューブを用いることが好ましい。多層構造のカーボンナノチューブは単層構造のカーボンナノチューブと比べて分散性がよく、多層構造のカーボンナノチューブを用いれば、コストを押さえることができる。
また、用いるカーボンナノチューブのBET比表面積は10〜50m
2/gであることが好ましい。比表面積が10m
2/gより小さい値であると、すなわちカーボンナノチューブが太すぎると、強度低下を招く。また、50m
2/gより大きいとカーボンナノチューブを分散させにくい。また、平均アスペクト比は、50〜500の範囲であることが好ましい。平均アスペクト比が50より小さい値であると靭性値が向上せず、500より大きい値であるとカーボンナノチューブが分散しにくい。
【0050】
また、セラミックス原料粉体の平均粒子径は、焼結のし易さ、カーボンナノチューブとの混合のし易さ、得られる複合材料の機械特性を考慮して、平均粒子径は0.05〜5μmの範囲のものを用いることが好ましい。この範囲内であればセラミックス粉体の粒度分布がいずれのものでもよい。また、粒子の形状は特に限定されない。球体以外に繊維状、不定形、樹木状や種々形態のものも適宜利用することができる。平均粒子径が0.05μmより小さいと取り扱い難く、5μmより大きいと複合材料の強度が落ちる。
なお、セラミックス原料粉体の平均粒子径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。
【0051】
pHの調整を行う酸性水溶液として、焼成後に酸の成分が残留しない酸を用いることが好ましい。焼成後に酸の成分が残留しないとは、焼成工程中に揮発してなくなることである。このことから、酸の構成元素は水素、炭素、窒素、酸素であることが好ましい。具体例として、硝酸、酢酸、シュウ酸が挙げられ、セラミックス複合材料の強度が低下しない。これとは反対に塩酸、リン酸、硫酸などはセラミックス複合材料の強度の低下を招く。またこのとき、pHを調整することができれば、酸の濃度は特に限定されない。
【0052】
水系媒体中にカーボンナノチューブ‐セラミックス結合物を生成させた混合液を得る方法において、混合方法は特に限定されなく、ミキサー、ボールミル、ポットミル、超音波ホモジナイザー等を用いることができる。特にセラミックス原料粉体を分散させたスラリーを製造する上で、セラミックス原料粉体の分散効果を高めるために、超音波ホモジナイザーを用いることができる。混合時間は特に限定されないが、10〜30分程度でよい。
【0053】
用いる水系媒体の量は、セラミックス原料粉体およびカーボンナノチューブが水系媒体に分散できれば特に限定されない。カーボンナノチューブの添加量は、セラミックス原料粉体の重量に対して0.5〜5重量%であることが好ましい。添加量が0.5重量%より少ないとカーボンナノチューブの効果が得られず、複合材料の靭性、強度を上げることができなく、5重量%より多いと、相対的にセラミックス原料の量が減少して焼結密度が上がらないために強度の低下を招く。また、水系媒体の例として水が挙げられ、不純物を除去した水を用いればよい。
【実施例】
【0054】
以下、実施例により本実施形態を詳細に説明するが、これらの実施例に限定されるものではない。
【0055】
セラミックス原料粉体として、アルミナ粉体を用いた。アルミナ粉体は、高純度アルミナ(大明化学工業社製、TM−DAR、BET比表面積14.5m
2/g、平均粒子径0.2μm、)を用いた。フェニル基とカルボキシル基を含む共重合体は、スチレン‐マレイン酸共重合体溶液(センカ株式会社製、GD55R、スチレン‐マレイン酸共重合体含有量25重量%、分子量2000〜4000)を用いた。カーボンナノチューブは、多層構造のカーボンナノチューブ(保土谷化学社製、MWNT−7)を用い、BET比表面積28m
2/gであり、平均アスペクト比が100〜200である。媒体のpH調整用の酸は一般の試薬を用い、1規定の硝酸(ナカライテスク社製)を用いた。
【0056】
得られた複合材料の曲げ強度は、JIS R 1601規格に基づいて評価を行った。試験方法としては3点曲げ試験を行った。支点間距離18mmとし、支点の中央一箇所に荷重を加えて破断するまでの荷重と変位を計測し、最大荷重を曲げ強度として測定した。
【0057】
得られた複合材料の破壊靭性値はIF法により評価した。幅W=4mm*厚さ3mm*長さ40mmの試験片を作製し、中央部分に幅0.15mmの溝をダイヤモンドカッターで作製し、3点曲げ試験を行った。試験において下部支点間距離Sは16.00mm(S/W=4.0)とした。その他は曲げ強度と同様とし、最大荷重から破壊靭性値を算出した。
【0058】
セラミックス複合材料の構造体に関する評価はHRTEM−EELS(高分解能電子エネルギー損失分光電子顕微鏡)を用いて行った。界面の構造における非晶質炭素は、HRTEMのうち、電子線回折によりアルミナおよびカーボンナノチューブの散乱パターン像ならびに非晶質炭素に起因するアモルファスハローパターンから評価した。また、炭素のK殻励起スペクトルを観察し、スペクトルの微細構造(Energy−Loss Near Edge Structure, ELNES)から非晶質炭素およびCOに起因する構造であるかを評価した。また、元素マッピングより、カーボンナノチューブとアルミナ界面内における元素分布、構造を評価した。
【0059】
セラミックス複合材料中の炭素量はTG−DTA(セイコーインスツルメンツ TG/DTA6300)を用いて評価した。HIP処理後に得られたセラミックス複合材料を粉砕して、試料を大気中、1000℃まで加熱し、発熱と加熱減量を計測することで非晶質炭素量、カーボンナノチューブ量を比較した。カーボンナノチューブの大気中での燃焼温度は600℃付近であることに対して、非晶質炭素は550℃以下であるとして、加熱減量を調べた。
【0060】
[実施例1]
水100mlにアルミナ粉体100gを入れて混合した。このスラリーに硝酸を添加してスラリーのpHを4.4に調整した。スラリーの混合には通常のミキサーを用い、更にアルミナ粉体の分散効果を高めるために、超音波ホモジナイザー(Branson社製、MODEL450D)を用い、アルミナ粉体を分散させたスラリーを作製した。
【0061】
スチレン‐マレイン酸共重合体溶液3gを水500mlに溶解し、得られた水溶液にカーボンナノチューブ5gを入れ、ポットミルで24時間混合し、カーボンナノチューブ分散液を作製した。
【0062】
アルミナ粉体を分散させたスラリーおよびカーボンナノチューブ分散液を、アルミナ粉体の重量に対してカーボンナノチューブ(CNT)が1.0wt%となるように秤量した。それぞれをポットミルに入れて更に24時間混合し、カーボンナノチューブ‐アルミナ結合物を生成させた混合液を作製した。
【0063】
得られた混合液を、スプレードライヤーを用いて水分を蒸発させ、0.05〜0.1mmの顆粒とし、カーボンナノチューブ‐アルミナ結合粉体を作製した。
【0064】
得られた結合粉体を100MPaで一軸加圧成形し、ゴム袋に詰め、静水圧プレス機を用いて150MPaの圧力で成形し、成形体を得た。成形体をアルゴン雰囲気焼成炉により焼成した。用いた成形型はφ50mm、焼成温度は1350℃、圧力は全圧50MPa、焼成時間は120分である。この後、150MPa、1400℃、120分で熱間静水圧(HIP)処理を行い、アルミナを主成分とするセラミックス複合材料を得た。
【0065】
[実施例2]
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、アルミナ粉体を分散させたスラリーおよびカーボンナノチューブ分散液を、アルミナ粉体の重量に対してCNTが3.0wt%となるように秤量してポットミルに入れて混合した以外の工程はすべて同じである。
【0066】
[実施例3]
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、アルミナ粉体を分散させたスラリーおよびカーボンナノチューブ分散液を、アルミナ粉体の重量に対してCNTが5.0wt%となるように秤量してポットミルに入れて混合した以外の工程はすべて同じである。
【0067】
[実施例4]
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、スチレン‐マレイン酸共重合体溶液4.8gを水500mlに溶解し、得られた水溶液にカーボンナノチューブ5gを添加してカーボンナノチューブ分散液を作製した以外の工程はすべて同じである。
【0068】
[実施例5]
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、スチレン‐マレイン酸共重合体溶液0.5gを水500mlに溶解し、得られた水溶液にカーボンナノチューブ5gを添加してカーボンナノチューブ分散液を作製した以外の工程はすべて同じである。
【0069】
[比較例1](スチレン‐マレイン酸共重合体の有無による比較)
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、スチレン‐マレイン酸共重合体を加えずに調整した以外の工程はすべて同じである。
【0070】
[比較例2](スチレン‐マレイン酸共重合体の量による比較)
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、
スチレン‐マレイン酸共重合体溶液6gを水500mlに溶解し、得られた水溶液にカーボンナノチューブ5gを添加してカーボンナノチューブ分散液を作製した以外の工程はすべて同じである。
【0071】
[比較例3](CNTの添加量による比較)
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、ポットミルにCNT分散液を、CNTの添加量がアルミナ粉体の重量に対して7.0wt%となるように秤量して添加した以外の工程はすべて同じである。
【0072】
上記実施例1〜5および比較例1〜3で得られた非晶質炭素量、試験片の曲げ強度、破壊靭性値を測定した結果を表1に示す。非晶質炭素量は、セラミックス複合材料のカーボンナノチューブの重量に対する割合で示す。
【0073】
【表1】
【0074】
非晶質炭素量はスチレン‐マレイン酸共重合体の添加量が増えるに連れて増加した。また、非晶質炭素量が2〜24wt%の範囲では3点曲げ強度が550MPa以上となり、かつ破壊靭性値が7MPa・m
1/2以上となった。しかし、非晶質炭素が含まれない場合では強度が低くなり、非晶質炭素量が30wt%でも強度が低くなった。また、カーボンナノチューブの添加量が7.0wt%では、セラミックス複合材料中のカーボンナノチューブ含有量が多いため、3点曲げ強度が低く、破壊靭性値は高くて破壊しなかったために計測できなかった。
【0075】
TG−DTAにより、セラミックス複合材料中に含まれる非晶質炭素量を求めるのと同時にカーボンナノチューブ量を求めた。その結果、セラミックス複合材料中のカーボンナノチューブ含有量は、カーボンナノチューブ添加量と変わらない値であり、焼成しても重量減少しなかった。
【0076】
上記結果より、カーボンナノチューブとアルミナの混合粉体を作製する上で、カーボンナノチューブの添加量を0.5〜5wt%とし、スチレン‐マレイン酸共重合体の添加量を変え、非晶質炭素量を2〜24wt%とすることで、得られたセラミックス複合材料の曲げ強度が550MPa以上となり、破壊靭性値が7.0MPa・m
1/2以上となった。
【0077】
アルミナ粉体とカーボンナノチューブとの界面の構造は、アモルファスハローパターンが見られたことから、非晶質であることが確認された。また、界面から離れた箇所のアルミナ側およびカーボンナノチューブ側の散乱パターン像より、結晶質であることが確認された。更に炭素のK殻励起スペクトルを観察して、スペクトルの微細構造から界面の構造が非晶質炭素およびC−Oに起因する構造であることを確認した。また元素マッピングよりその界面内においてカーボンおよびアルミニウムの混在している膜構造であることを確認した。
【0078】
[実施例6]
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、アルミナ粉体を分散させたスラリーの作製方法におけるスラリーのpHを4.0に調整した以外の工程はすべて同じである。
【0079】
[比較例4](pHの違いによる比較)
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、アルミナ粉体を分散させたスラリーの作製方法におけるスラリーのpHを5.0に調整した以外の工程はすべて同じである。
【0080】
[比較例5](pHの違いによる比較)
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、アルミナ粉体を分散させたスラリーの作製方法におけるスラリーのpHを3.0に調整した以外の工程はすべて同じである。
【0081】
[比較例6](界面活性剤の有無による比較)
純水100mlにアルミナ粉体100gを入れて混合した。このスラリーに硝酸を添加してスラリーのpHを4.4に調整した。スラリーの混合には通常のミキサーを用い、更にアルミナ粉体の分散効果を高めるために、超音波ホモジナイザーを用い、アルミナ粉体を分散させたスラリーを作製した。緩衝能により時間経過と共にpHが3を超えることがあるので、都度pHを調整した。アルミナ粉体を分散させたスラリーにアルミナに対してカーボンナノチューブ1wt%を加え、撹拝、超音波分散処理を行った。スプレードライヤーを用いて、得られたカーボンナノチューブとアルミナの混合スラリーの水分を蒸発させ、0.05〜0.1mmの顆粒を得た。得られた加硫を実施例1と同様の焼成方法で焼成した。
【0082】
[比較例7](pH調整の有無)
実施例1に記載のアルミナを主成分とするセラミックス複合材料の製造方法において、アルミナ粉体を分散させたスラリーのpH調整をしないでスラリー作製し、その他の工程はすべて同じである。
【0083】
上記実施例6および比較例1〜4で得られた試験片の曲げ強度、破壊靭性値を測定した結果を表2に示す。
【0084】
【表2】
【0085】
上記結果より、カーボンナノチューブとアルミナの混合粉体を作製する上で、溶液のpHを4.0〜4.4に調整し、スチレン‐マレイン酸共重合体を入れて混合することで、得られる焼結体の曲げ強度が550MPa以上となり、破壊靭性値が7.0MPa・m
1/2以上となる。