特許第5922801号(P5922801)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シェンゼェン ビーワイディー オート アールアンドディー カンパニー リミテッドの特許一覧 ▶ ビーワイディー カンパニー リミテッドの特許一覧

特許5922801金属および樹脂を一体成形する方法および該方法によって得られる金属−樹脂複合構造
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5922801
(24)【登録日】2016年4月22日
(45)【発行日】2016年5月24日
(54)【発明の名称】金属および樹脂を一体成形する方法および該方法によって得られる金属−樹脂複合構造
(51)【国際特許分類】
   B29C 45/14 20060101AFI20160510BHJP
【FI】
   B29C45/14
【請求項の数】11
【全頁数】12
(21)【出願番号】特願2014-556903(P2014-556903)
(86)(22)【出願日】2012年7月18日
(65)【公表番号】特表2015-511188(P2015-511188A)
(43)【公表日】2015年4月16日
(86)【国際出願番号】CN2012078830
(87)【国際公開番号】WO2013123754
(87)【国際公開日】20130829
【審査請求日】2014年8月18日
(31)【優先権主張番号】201210043648.8
(32)【優先日】2012年2月24日
(33)【優先権主張国】CN
(73)【特許権者】
【識別番号】512197733
【氏名又は名称】シェンゼェン ビーワイディー オート アールアンドディー カンパニー リミテッド
(73)【特許権者】
【識別番号】505327398
【氏名又は名称】ビーワイディー カンパニー リミテッド
【氏名又は名称原語表記】BYD COMPANY LIMITED
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100109449
【弁理士】
【氏名又は名称】毛受 隆典
(74)【代理人】
【識別番号】100132883
【弁理士】
【氏名又は名称】森川 泰司
(74)【代理人】
【識別番号】100148633
【弁理士】
【氏名又は名称】桜田 圭
(74)【代理人】
【識別番号】100147924
【弁理士】
【氏名又は名称】美恵 英樹
(72)【発明者】
【氏名】ゴン、チン
(72)【発明者】
【氏名】ジャン、ション
(72)【発明者】
【氏名】ジャン、イフ
(72)【発明者】
【氏名】ヂョウ、ウェイ
【審査官】 粟野 正明
(56)【参考文献】
【文献】 特開2010−064496(JP,A)
【文献】 再公表特許第2004/055248(JP,A1)
【文献】 特開2012−006392(JP,A)
【文献】 国際公開第2008/078714(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 45/00−45/84
B32B 1/00−43/00
(57)【特許請求の範囲】
【請求項1】
金属と樹脂とを一体成形する方法であって、
A)金属シートの表面にナノ細孔を形成する工程と、
B)前記ナノ細孔を有して形成された前記金属シートの前記表面に熱可塑性樹脂を溶融し、ついで、前記金属シートの前記表面に前記熱可塑性樹脂を射出成形する工程と、
を含み、
前記熱可塑性樹脂が主樹脂とポリオレフィン樹脂との混合物であり、前記主樹脂がポリフェニレンオキシドとポリアミドとの混合物であり、かつ、前記ポリオレフィン樹脂が約65℃以上約105℃以下の融点を有する、
ことを特徴とする方法。
【請求項2】
工程A)において、金属シートの表面にナノ細孔を形成する工程が、前記金属シートの前記表面に酸化層を形成するように前記金属シートの前記表面を陽極酸化処理する工程を含み、前記酸化層が前記ナノ細孔を有して形成される、
ことを特徴とする請求項1に記載の方法。
【請求項3】
前記酸化層が、約1μm以上約10μm以下の厚さを有し、前記ナノ細孔が、約10nm以上約100nm以下の細孔径と、約0.5μm以上約9.5μm以下の深さと、を有する、
ことを特徴とする請求項2に記載の方法。
【請求項4】
前記金属シートの前記表面を陽極酸化処理する工程が、
約10重量%以上約30重量%以下の濃度の硫酸溶液に前処理された金属シートを陽極として配置する工程と、
前記金属シートの前記表面に約1μm以上約10μm以下の厚さの前記酸化層を形成するように、約1分間以上約40分間以下にわたって、約10ボルト以上約100ボルト以下の電圧で、約10℃以上約30℃以下の温度で前記金属を電解する工程と、
を含む、ことを特徴とする請求項2に記載の方法。
【請求項5】
工程A)において、金属シートの表面にナノ細孔を形成する工程が、
前記酸化層の外表面に腐食孔を形成するように、その表面に前記酸化層を有して形成された前記金属シートをエッチング液に浸漬する工程をさらに含む、
ことを特徴とする請求項2に記載の方法。
【請求項6】
前記腐食孔が前記ナノ細孔と連通され、前記腐食孔が、約200nm以上約2000nm以下の細孔径と、約0.5μm以上約9.5μm以下の深さと、を有する、
ことを特徴とする請求項5に記載の方法。
【請求項7】
前記エッチング液が、前記酸化層を腐食する溶液である、
ことを特徴とする請求項5に記載の方法。
【請求項8】
前記熱可塑性樹脂の100重量部を基準として、前記主樹脂の量が約70重量部以上約95重量部以下であり、前記ポリオレフィン樹脂の量が約5重量部以上約30重量部以下である、
ことを特徴とする請求項1に記載の方法。
【請求項9】
前記熱可塑性樹脂の100重量部を基準として、前記熱可塑性樹脂が約1重量部以上約5重量部以下の流動性改良剤をさらに含有し、前記流動性改良剤が環状ポリエステルである、
ことを特徴とする請求項8に記載の方法。
【請求項10】
前記主樹脂において、ポリフェニレンオキシドとポリアミドとの重量比が、約3:1から約1:3の間である、
ことを特徴とする請求項1または8に記載の方法。
【請求項11】
前記金属が、アルミニウム、ステンレス鋼およびマグネシウムからなる群から選択される少なくとも一つである、
ことを特徴とする請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、金属−プラスチック一体成形の分野に関連し、特に、金属および樹脂を一体成形する方法および該方法によって得られる金属−樹脂複合構造に関連する。
【背景技術】
【0002】
自動車、家庭用電化製品および産業機械のような製品の製造分野においては、金属と樹脂とがしっかりと接合されなければならない。現在、常法においては、金属と合成樹脂とを一体接合するために、常温または加熱温度下において接着剤が用いられている。接着剤を用いることなく、高い強度を有するエンジニアリング樹脂を、マグネシウム合金、アルミニウム合金、またはステンレス鋼のような合金鉄に、直接一体接合するというのが、研究の一つの方向性である。
【0003】
ナノモールディングテクノロジー(NMT)は金属と樹脂とを一体接合する技術である。この技術によって、金属−樹脂一体成形品を得るように、金属シートの表面をナノ成形することによって、樹脂が金属シートの表面に直接射出成形され得る。金属と樹脂との効果的な接合のために、低コストかつ高性能な金属−樹脂一体成形品を得るように、NMTは、一般的なインサート成形、または、亜鉛−アルミニウムもしくはマグネシウム−アルミニウムダイカストに取って代わり得る。接合技術と比較して、NMTは製品の総重量を低減し得て、かつ、機械構造の優れた強度、高い加工率、高出力および多くの外観装飾方法を確保し得て、それゆえに、車両、IT機器および3Cプロダクトに適用され得る。
【0004】
日本国の大成プラス株式会社は、たとえば、特許文献1、特許文献2、特許文献3および特許文献4のような一連の特許出願を出願した。これらの特許文献は、金属と樹脂組成物とを一体成形する方法を提案する。この方法においては、ポリフェニレンスルフィド(PPS)、ポリブチレンテレフタレート(PBT)およびポリアミド(PA)を含有する、高い結晶性を有する樹脂組成物を射出成形材料として用いることによって、一定の機械強度を有する金属−樹脂一体成形品を得るように、ナノ成形されたアルミニウム合金層の表面に樹脂組成物が直接射出成形され、それによって、樹脂組成物がナノスケールの微小孔に浸漬することを可能にしている。しかしながら、この方法において用いられる樹脂は全て高度の結晶性樹脂なので、製品の機械的性能を保証するために成形中に長い冷却時間および厳密な成形温度が求められ、かつ、寸法安定性を保証するために焼きなましも求められる一方で、他方では、高い結晶性を有する樹脂によって、プラスチック層の表面を加工しにくくなるという事実が引き起こされ、それゆえにプラスチック層が次に外観製品に用いられる際に、プラスチック層と金属シートとの間の大きな外観の相違が引き起こされ、それはプラスチック製品の表面装飾の課題を解決し得ない。さらに、電子製品の部品に用いられる際、金属−樹脂一体成形品の靱性が不十分であり、それゆえに金属−樹脂一体成形品の構造は設計することが難しい。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】中国特許出願公開第1492804号明細書
【特許文献2】中国特許出願公開第1717323号明細書
【特許文献3】中国特許出願公開第101341023号明細書
【特許文献4】中国特許出願公開第101631671号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示の態様は、従来技術に存在する課題のうちの少なくとも一つ、特に、プラスチックがナノモールディングテクノロジー(NMT)において高い結晶性を有する樹脂である際の、複雑な成形プロセスの技術的課題、厳密な条件、プラスチック層の表面が加工しにくいという事実、プラスチック製品の表面装飾、および低い機械強度を、少なくともある程度解決しようとする。
【課題を解決するための手段】
【0007】
本開示の第一の側面によれば、金属と樹脂とを一体成形する方法が提供される。該方法は、
A)金属シートの表面にナノ細孔を形成する工程と、
B)前記ナノ細孔を有して形成された前記金属シートの前記表面に熱可塑性樹脂を溶融し、ついで、前記金属シートの前記表面に前記熱可塑性樹脂を射出成形する工程と、を含み、
前記熱可塑性樹脂が主樹脂とポリオレフィン樹脂との混合物であり、前記主樹脂がポリフェニレンオキシドとポリアミドとの混合物であり、かつ、前記ポリオレフィン樹脂が約65℃以上約105℃以下の融点を有する。
【0008】
本開示の第二の側面によれば、本開示の第一の側面に係る方法によって得られる金属−樹脂複合構造が提供される。
【0009】
本開示の一態様に係る金属と樹脂とを一体成形する方法においては、非晶性樹脂、特にポリフェニレンオキシドとポリアミドとの混合物、が用いられ、その混合物は、従来技術における高い結晶性を有する樹脂の表面光沢および靱性よりも優れた表面光沢および靱性を有し、約65℃以上約105℃以下の融点を有するポリオレフィン樹脂もまた用いられる。それゆえ、成形中に特定の成形温度における射出成形が要求され得ず、その後に続く焼きなまし処理も要求され得ず、成形プロセスが簡素化され得て、かつ、得られた金属−樹脂複合構造が高い機械強度および良好な表面処理特性を有し得て、それゆえにプラスチック製品の表面装飾の課題を解決し、顧客の多様なニーズに応えることが保証され得る。
【0010】
本開示の態様のさらなる側面および長所は以下の記載に部分的に述べられ、以下の記載から部分的に明らかになる、または、本開示の態様の実践から理解される。
【発明を実施するための形態】
【0011】
本開示の態様が詳細に参照される。本明細書に記載される態様は、例示的、例証的であり、本開示を広く理解するために用いられる。態様は、本開示を限定するように解釈されるものではない。
【0012】
本開示の第一の側面によれば、金属と樹脂とを一体成形する方法が提供される。該方法は、
A)金属シートの表面にナノ細孔を形成する工程と、
B)ナノ細孔を有して形成された金属シートの表面に熱可塑性樹脂を溶融し、ついで、金属シートの表面に熱可塑性樹脂を射出成形する工程と、を含み、
熱可塑性樹脂が主樹脂とポリオレフィン樹脂との混合物であり、主樹脂はポリフェニレンオキシドとポリアミドとの混合物であり、かつ、ポリオレフィン樹脂は約65℃以上約105℃以下の融点を有する。
【0013】
従来技術において用いられる樹脂は全て高度の結晶性樹脂であるため、プラスチック層の表面は処理することが難しくなり得る。この理由に基づいて、本開示においては、従来技術における高い結晶性を有する樹脂の表面光沢および靱性よりも優れた表面光沢および靱性を有する非晶性の主樹脂が射出成形材料として用いられ、約65℃以上約105℃以下の融点を有するポリオレフィン樹脂もまた用いられる。それゆえ、特定の成形温度における射出成形が成形中に要求され得ず、その後に続く焼きなましも要求され得ず、成形プロセスが簡素化され得て、かつ、得られた金属−樹脂複合構造が高い機械強度および良好な表面処理特性を有し得て、それゆえにプラスチック製品の表面装飾の課題を解決し、顧客の多様なニーズに応えることが保証され得る。
【0014】
本開示においては、金属−樹脂一体成形のメカニズムは以下の通りである。ナノスケールの微少孔が金属シートの表面に形成される。樹脂組成物が金属シートの表面に溶融され、この時、溶融された樹脂組成物の一部がナノスケールの微少孔に浸透する。ついで、金属と樹脂組成物とが一体的に射出成形される。
【0015】
特に、工程A)において、金属シートの表面にナノ細孔を形成する工程は、金属シートの表面に酸化層を形成するように金属シートの表面を陽極酸化処理する工程を含み、ナノ細孔を有して酸化層が形成される。陽極酸化処理技術は当業者に既知の技術である。いくつかの態様においては、金属シートの表面を陽極酸化処理する工程は、約10重量%以上約30重量%以下の濃度の硫酸溶液に、前処理された金属シートを陽極として配置する工程と、金属シートの表面に約1μm以上約10μm以下の厚さの酸化層を形成するように、約1分間以上約40分間以下にわたって、約10ボルト以上約100ボルト以下の電圧で、約10℃以上約30℃以下の温度で金属を電解する工程を含み得る。陽極酸化処理装置は、たとえば、陽極酸化処理槽のような既知の陽極酸化処理装置であり得る。
【0016】
陽極酸化処理をすることによって、ナノ細孔を有して形成された酸化層が、金属シートの表面に形成される。好ましくは、酸化層は、約1μm以上約10μm以下の厚さを有し、より好ましくは、約1μm以上約5μm以下の厚さを有する。
【0017】
ナノ細孔は、好ましくは、約10nm以上約100nm以下の細孔径、より好ましくは約20nm以上約80nm以下の細孔径、もっとも好ましくは約20nm以上約60nm以下の細孔径を有する。ナノ細孔は、約0.5μm以上約9.5μm以下の深さを有し、好ましくは、約0.5μm以上約5μm以下の深さを有する。ナノ細孔の構造を最適化することによって、ナノ細孔における溶融された樹脂組成物の充填度が高められ得る。そして、この深さを有するナノ微少孔が、従来の射出成形プロセスにおいて、溶融された樹脂によって充填され得ることが保証され得て、当該プロセスは樹脂と酸化層との間の接合領域を減少させないが、ナノ細孔に空隙がないことにより樹脂と金属との間の接合力をさらに向上させ得る。
【0018】
好ましい一態様においては、工程A)において、金属シートの表面にナノ細孔を形成する工程が、酸化層の外表面に腐食孔を形成するように、その表面に酸化層を有して形成された金属シートをエッチング液に浸漬する工程をさらに含み得る。腐食孔はナノ細孔と連通される。腐食孔およびナノ細孔によって形成される二層三次元の細孔構造によって、樹脂組成物の浸透性がさらに高められ得て、樹脂組成物と金属との間の接合力が向上され得て、それゆえに成形をさらに容易にする。
【0019】
腐食孔は、好ましくは約200nm以上約2000nm以下の細孔径、より好ましくは約200nm以上約1000nm以下の細孔径、もっとも好ましくは約400nm以上約1000nm以下の細孔径を有する。腐食孔は、約0.5μm以上約9.5μm以下の深さを有し、好ましくは約0.5μm以上約5μm以下の深さを有する。腐食孔の構造を最適化することによって、樹脂組成物の直接射出、および、射出成形中における樹脂組成物と合金との間の接合がさらに容易になり得る。
【0020】
エッチング液は、酸化層を腐食し得る溶液であり得る。たいていの場合、エッチング液は、たとえば、酸/塩基エッチング液のような、酸化層を溶解し得て、かつ、濃度が調整可能な溶液であり得る。好ましくは、エッチング液は、pHが約10以上約13以下である単一の塩基性溶液、または、複合された緩衝液であり得る。pHが約10以上約13以下である単一の塩基性溶液は、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液および水酸化ナトリウム水溶液からなる群から選択される少なくとも一つであり得て、好ましくは、炭酸ナトリウム水溶液および/または炭酸水素ナトリウム水溶液であり得る。それゆえに、腐食孔が、酸化層の表面において均一に分布され得て、かつ、均一な細孔径を有し得る。また、アルミニウム合金複合構造のより大きな引張強度およびよりよい一体接合だけではなく、樹脂層とアルミニウム合金基質との間のよりよい接合性能も得られる。炭酸ナトリウム水溶液および/または炭酸水素ナトリウム水溶液は、約0.1重量%以上約15重量%以下の固形成分含有量を有し得る。複合された緩衝液は、たとえば、リン酸二水素ナトリウムと水酸化ナトリウムとの水溶液のような、可溶性のリン酸水素塩と可溶性塩基との混合液であり得る。リン酸二水素ナトリウムと水酸化ナトリウムとの水溶液は、約0.1重量%以上約15重量%以下の固形成分含有量を有し得る。
【0021】
その表面に酸化層を有して形成された金属シートをエッチング液に浸漬する工程は、約1分間以上約60分間以下のそれぞれの浸漬時間にわたって、2回以上10回以下、金属シートをエッチング液に繰り返し浸漬する工程と、それぞれの浸漬の後に、金属シートを脱イオン水で洗浄する工程と、を含み得る。金属シートを洗浄する工程は、約1分間以上約5分間以下にわたって金属シートを洗うように、金属シートを洗浄槽に配置する工程、または、約1分間以上約5分間以下にわたって金属シートを配置するように金属シートを洗浄槽に配置する工程を含み得る。
【0022】
本開示においては、非晶性の主樹脂において約65℃以上約105℃以下の融点を有するポリオレフィン樹脂を用いることによって、金属シートの表面におけるナノスケールの微少孔内での樹脂の流動性が高められ得て、それゆえに、金属−樹脂複合構造の高い機械強度だけでなく、金属とプラスチックとの間の強い接着力をも保証され得るということが、多くの実験の末、本発明者によって見いだされた。好ましくは、熱可塑性樹脂の100重量部を基準として、主樹脂の量は約70重量部以上約95重量部以下であり、ポリオレフィン樹脂の量は約5重量部以上約30重量部以下である。
【0023】
熱可塑性樹脂において流動性改良剤を用いることによって、樹脂の流動性が高められ得て、それゆえに樹脂の射出成形性能だけでなく、さらに、金属とプラスチックとの間の接着力をも高め得ることも、本発明者によって見いだされた。好ましくは、熱可塑性樹脂の100重量部を基準として、熱可塑性樹脂は約1重量部以上約5重量部以下の流動性改良剤をさらに含有する。好ましくは、流動性改良剤は環状ポリエステルである。
【0024】
上述の通り、本開示においては、主樹脂は非晶性樹脂である。特に、主樹脂は、ポリフェニレンオキシド(PPO)とポリアミド(PA)との混合物であり得る。好ましくは、ポリフェニレンオキシドとポリアミドとの重量比は、約3:1から約1:3の間であり、より好ましくは、ポリフェニレンオキシドとポリアミドとの重量比は、約2:1から約1:1の間である。
【0025】
本開示においては、ポリオレフィン樹脂は、約65℃以上約105℃以下の融点を有する。好ましくは、ポリオレフィン樹脂は、グラフトポリエチレンであり得る。より好ましくは、ポリオレフィン樹脂は、約100℃または約105℃の融点を有するグラフトポリエチレンであり得る。
【0026】
本開示においては、金属は、従来技術において通常用いられるいかなる金属であってもよく、その適用分野によって適切に選択され得る。たとえば、金属は、アルミニウム、ステンレス鋼およびマグネシウムからなる群から選択される少なくとも一つであり得る。
【0027】
本開示の第二の側面によれば、本開示の第一の側面に係る方法によって得られる金属−樹脂複合構造もまた提供される。
【0028】
本開示の一態様に係る金属−樹脂複合構造においては、金属シートとプラスチック層とは一体に形成された構造であり、それは強い接着力および高い機械強度を有する。表1に示されるように、それぞれの金属−樹脂複合構造は、約18MPa以上約20MPa以下の破壊強度と、約330J/m以上約380J/m以下の衝撃強度とを有する。
【0029】
本開示の技術的課題、技術的解決法および有利な効果をより明確にするために、本開示は、その実施例に関連して、以下に詳細に述べられる。本明細書に記載される個々の実施例が、本開示を理解するためにのみ用いられることは明らかである。実施例は本開示を限定すると解釈されるものではない。実施例および比較例において用いられる原材料は全て市販されているものであり、特に限定されるものではない。
【実施例】
【0030】
(実施例1)
(1)前処理
厚さ1mmの市販されているA5052アルミニウム合金板が18mm×45mmの矩形のシートに切断され、ついで、そのシートが40g/Lの水酸化ナトリウム水溶液に浸漬された。水酸化ナトリウム水溶液の温度は40℃であった。1分後、矩形のシートは水洗いされ、乾燥され、前処理されたアルミニウム合金シートが得られた。
【0031】
(2)表面処理1
それぞれのアルミニウム合金シートが、20重量%の硫酸溶液を含む陽極酸化処理槽に陽極として配置され、アルミニウム合金が、10分間にわたって、20ボルトの電圧、18℃で電解された。ついで、アルミニウム合金シートがブロー乾燥された。
【0032】
表面処理1の後のアルミニウム合金シートの断面が金属顕微鏡によって観察され、厚さ5μmのアルミニウム酸化物の層が、電解されたアルミニウム合金シートの表面に形成されたことがわかった。表面処理1の後のアルミニウム合金シートの表面が電子顕微鏡によって観察され、約40nm以上約60nm以下の細孔径と1μmの深さとを有するナノ細孔がアルミニウム酸化物の層に形成されたことがわかった。
【0033】
(3)表面処理2
温度が20℃で10重量%の500mlの炭酸ナトリウム溶液(pH=12)がビーカーに用意された。ステップ(2)の後のアルミニウム合金シートが炭酸ナトリウム溶液に浸漬され、5分後に引き上げられ、水を含むビーカーに配置され、1分間にわたって浸漬された。5サイクルの後、最後の水への浸漬の後に、アルミニウム合金シートがブロー乾燥された。
【0034】
表面処理2の後のアルミニウム合金シートの表面が電子顕微鏡によって観察され、300nm以上1000nm以下の細孔径と4μmの深さとを有する腐食孔が、浸漬されたアルミニウム合金シートの表面に形成されたことがわかった。アルミニウム酸化物の層に二層三次元の細孔構造があることと、腐食孔がナノ細孔と連通されたことも観察され得る。
【0035】
(4)成形
61重量部のポリフェニレンオキシドPPO(China Bluestar Chengrand Chemical Co.,Ltd.から市販されているPPO LXR040)と、30重量部のポリアミドPA(China Pingmei Shenma Groupから市販されているEPR27)と、1重量部の流動性改良剤、すなわち環状ポリエステル(CBT100)と、8重量部の融点が65℃のグラフトポリエチレン(Arkema Groupから市販されているLotader AX8900)とが計量され、均一に混合されて、樹脂混合物が得られた。ついで、射出成形機を用いて、ステップ(3)の後のアルミニウム合金シートの表面に、溶融された樹脂混合物が射出成形され、本実施例における金属−樹脂複合構造S1が得られた。
【0036】
(実施例2)
本実施例における金属−樹脂複合構造S2は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0037】
ステップ(1)において、実施例1におけるアルミニウム合金板の代わりに、厚さ3mmの市販のマグネシウム合金板が、18mm×45mmの矩形シートに切断された。
【0038】
ステップ(2)において、それぞれのマグネシウム合金シートが、20重量%の硫酸溶液を含む陽極酸化処理槽に陽極として配置され、マグネシウム合金が、10分間にわたって、15ボルトの電圧、18℃で電解された。ついで、マグネシウム合金シートはブロー乾燥された。
【0039】
表面処理1の後のマグネシウム合金シートの断面が金属顕微鏡によって観察され、厚さ5μmのマグネシウム酸化物の層が、電解されたマグネシウム合金シートの表面に形成されたことがわかった。表面処理1の後のアルミニウム合金シートの表面が電子顕微鏡によって観察され、20nm以上40nm以下の細孔径と1μmの深さとを有するナノ微少孔がマグネシウム酸化物の層に形成されたことがわかった。
【0040】
表面処理2の後のマグネシウム合金シートの表面が電子顕微鏡によって観察され、300nm以上1000nm以下の細孔径と4μmの深さとを有する腐食孔が、浸漬されたマグネシウム合金シートの表面に形成されたことがわかった。マグネシウム酸化物の層に二層三次元の細孔構造があることと、腐食孔がナノ細孔と連通されたことも観察され得る。
【0041】
上記ステップの後、本実施例における金属−樹脂複合構造S2が得られた。
【0042】
(実施例3)
本実施例における金属−樹脂複合構造S3は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0043】
ステップ(2)において、それぞれのアルミニウム合金シートが、20重量%の硫酸溶液を含む陽極酸化処理槽に陽極として配置され、アルミニウム合金が、10分間にわたって、40ボルトの電圧、18℃で電解された。ついで、アルミニウム合金シートはブロー乾燥された。
【0044】
表面処理1の後のアルミニウム合金シートの断面が金属顕微鏡によって観察され、厚さ5μmのアルミニウム酸化物の層が、電解されたアルミニウム合金シートの表面に形成されたことがわかった。表面処理1の後のアルミニウム合金シートの表面が電子顕微鏡によって観察され、60nm以上80nm以下の細孔径と1μmの深さとを有するナノ細孔がアルミニウム酸化物の層に形成されたことがわかった。
【0045】
表面処理2の後のアルミニウム合金シートの表面が電子顕微鏡によって観察され、300nm以上1000nm以下の細孔径と4μmの深さとを有する腐食孔が、浸漬されたアルミニウム合金シートの表面に形成されたことがわかった。アルミニウム酸化物の層に二層三次元の細孔構造があることと、腐食孔がナノ細孔と連通されたことも観察され得る。
【0046】
上記ステップの後、本実施例における金属−樹脂複合構造S3が得られた。
【0047】
(実施例4)
本実施例における金属−樹脂複合構造S4は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0048】
ステップ(4)において、46重量部のポリフェニレンオキシドPPO(China Bluestar Chengrand Chemical Co.,Ltd.から市販されているPPO LXR040)と、46重量部のポリアミドPA(China Pingmei Shenma Groupから市販されているEPR27)と、8重量部の融点が105℃のグラフトポリエチレン(Arkema Groupから市販されているLotader 4210)とが計量され、均一に混合されて、樹脂混合物が得られた。ついで、射出成形機を用いて、ステップ(3)の後のアルミニウム合金シートの表面に、溶融された樹脂混合物が射出成形され、本実施例における金属−樹脂複合構造S4が得られた。
【0049】
(比較例1)
本例における金属−樹脂複合構造DS1は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0050】
ステップ(4)において、66重量部のポリフェニレンオキシドPPO(China Bluestar Chengrand Chemical Co.,Ltd.から市販されているPPO LXR040)と、33重量部のポリアミドPA(China Pingmei Shenma Groupから市販されているEPR27)と、1重量部の流動性改良剤、すなわち環状ポリエステル(CBT100)とが計量され、均一に混合されて、樹脂混合物が得られた。ついで、射出成形機を用いて、ステップ(3)の後のアルミニウム合金シートの表面に、溶融された樹脂混合物が射出成形され、本例における金属−樹脂複合構造DS1が得られた。
【0051】
(比較例2)
本例における金属−樹脂複合構造DS2は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0052】
ステップ(4)において、91重量部のポリフェニレンスルフィドPPS(Sichuan Deyang Chemical Co.,Ltd.,Chinaから市販されているPPS−HC1)と、1重量部の流動性改良剤、すなわち環状ポリエステル(CBT100)と、8重量部の融点が105℃のグラフトポリエチレン(Arkema Groupから市販されているLotader AX8900)とが計量され、均一に混合されて、樹脂混合物が得られた。ついで、射出成形機を用いて、ステップ(3)の後のアルミニウム合金シートの表面に、溶融された樹脂混合物が射出成形され、本例における金属−樹脂複合構造DS2が得られた。
【0053】
(比較例3)
本例における金属−樹脂複合構造DS3は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0054】
ステップ(4)において、91重量部のポリフェニレンスルフィドPPS(Sichuan Deyang Chemical Co.,Ltd.,Chinaから市販されているPPS−HC1)と、1重量部の流動性改良剤、すなわち環状ポリエステル(CBT100)と、8重量部の融点が105℃のグラフトポリエチレン(Arkema Groupから市販されているLotader AX8900)とが計量され、均一に混合されて、樹脂混合物が得られた。ついで、射出成形機を用いて、ステップ(3)の後のアルミニウム合金シートの表面に、溶融された樹脂混合物が射出成形され、射出成形された金属−樹脂複合構造が得られた。該金属−樹脂複合構造が1時間にわたって180℃で焼きなましされ、本例における金属−樹脂複合構造DS3が得られた。
【0055】
(比較例4)
本例における金属−樹脂複合構造DS4は、以下の例外を除いて、実施例1における方法とおおよそ同じ方法によって準備された。
【0056】
ステップ(4)において、86重量部のポリフェニレンスルフィドPPS(Sichuan Deyang Chemical Co.,Ltd.,Chinaから市販されているPPS−HC1)と、1重量部の流動性改良剤、すなわち環状ポリエステル(CBT100)と、8重量部の融点が105℃のグラフトポリエチレン(Arkema Groupから市販されているLotader AX8900)と、5重量部の強靱化剤(Arkema Groupから市販されているLotader AX8840)とが計量され、均一に混合されて、樹脂混合物が得られた。ついで、射出成形機を用いて、ステップ(3)の後のアルミニウム合金シートの表面に、溶融された樹脂混合物が射出成形され、射出成形された金属−樹脂複合構造が得られた。該金属−樹脂複合構造が1時間にわたって180℃で焼きなましされ、本例における金属−樹脂複合構造DS4が得られた。
【0057】
(性能テスト)
1)金属−樹脂複合構造S1〜S4およびDS1〜DS4が引張試験のために万能試験機に固定され、それぞれの最大荷重が得られた。試験結果が表1に示された。
【0058】
2)ASTM D256に開示される方法に従って、片持ち梁衝撃試験機を用いて、金属−樹脂複合構造S1〜S4およびDS1〜DS4の標準サンプルの衝撃強度が試験された。
【0059】
試験結果が表1に示された。
【表1】
【0060】
金属−樹脂複合構造S1〜S4が約18MPa以上約20MPa以下の破壊強度を有し、そのことが金属−樹脂複合構造S1〜S4における金属シートとプラスチック層との間の接合力が非常に強いことを示すことと、金属−樹脂複合構造S1〜S4が約330J/m以上約380J/m以下の衝撃強度を有し、そのことが金属−樹脂複合構造S1〜S4が高い機械強度を有することを示すことが、表1における試験結果から理解され得る。
【0061】
金属−樹脂複合構造S1の試験結果と、金属−樹脂複合構造DS3、DS4の試験結果とを比較することによって、従来技術において用いられるポリフェニレンオキシド樹脂の靱性は非常に低く、また、強靱化剤によって改良された後のポリフェニレンオキシド樹脂の靱性も依然として低いことが理解され得る。
【0062】
例示的な態様が示され、記載されたが、上述の態様は本開示を限定するように解釈され得ないことと、また、本開示の精神、原理および範疇の範囲内で上述の態様における変更、代替および修正がなされ得ることとが当業者に理解されることは明白である。
【0063】
(関連出願の相互参照)
本出願は、2012年2月24日に中華人民共和国国家知識産権局に出願された中国特許出願番号第201210043648.8号明細書に基づく優先権およびその利益を主張し、その全体が参照によって本明細書に包含される。