(58)【調査した分野】(Int.Cl.,DB名)
前記混合装置が、固形炭素質燃料、液状炭素質燃料、および気体炭素質燃料の内の1つを、前記濃縮酸素および前記作動流体と混合するようにさらに構成され、前記作動流体が、二酸化炭素および水の内の1つを備える、請求項1に記載の装置。
前記多孔性蒸散部材が、それを通って延在する少なくとも1つの蒸散ポートをさらに含み、前記少なくとも1つの蒸散ポートが、その流量特性に影響を与えるために、前記燃料混合物および前記燃焼生成物の内の1つの中へ前記蒸散物質の補足的な線形流れを導くように構成される、請求項1に記載の装置。
前記燃焼室から前記燃焼生成物を受け取るように構成される変換装置をさらに備え、前記変換装置が前記燃焼生成物に反応して、それと関連付けられるエネルギーを運動エネルギーに変換する、請求項1に記載の装置。
前記炭素質燃料が固体であり、前記システムが、前記燃焼器装置と前記変換装置との間に配置される分離器装置をさらに備え、前記分離器装置が、前記燃焼生成物が前記変換装置に誘導される前に、それによって受け取られる前記燃焼生成物から液化不燃性汚染物質を除去するように構成される、請求項17に記載の装置。
前記蒸散物質は、前記多孔性蒸散部材を介して前記燃焼室の中に導入されるように構成され、前記燃焼室の中に前記蒸散物質を導いて、前記分離器装置に進入する前記燃焼生成物との混合物を形成し、前記不燃性汚染物質の液化温度を超える温度で前記混合物を調整するように構成される、請求項18に記載の装置。
前記分離器装置が、複数の直列に配列される遠心分離器装置をさらに備え、各遠心分離器装置が並列で動作可能に配列される複数の遠心分離器要素を有し、前記分離器装置によって前記燃焼生成物から除去される前記液化不燃性汚染物質が、前記分離器装置と関連付けられるサンプ内に除去可能に収集される、請求項18に記載の装置。
前記変換装置が、それと関連付けられる前記エネルギーを運動エネルギーに変換するために前記燃焼生成物に反応するように構成されるタービン装置、および前記運動エネルギーを電気に変換するように構成されるジェネレータ装置の内の1つを備える、請求項17に記載の装置。
前記作動流体として、前記混合装置、および前記蒸散物質として、前記蒸散部材の内の少なくとも1つに前記蒸散物質を供給するように構成される少なくとも1つの蒸散物質源をさらに備える、請求項1に記載の装置。
【発明の概要】
【発明が解決しようとする課題】
【0003】
化石燃料または適切なバイオマスからの電力生産のための従来の装置は、隔離場所への送達のための高圧でのCO
2回収の要件でますます負担をかけられている。ところが、現在の技術ではCO
2回収のための最善の設計に対してさえ非常に低い熱効率しか実現されないので、この要件は達成するのが困難であることが判明してきている。さらに、CO
2回収を達成するための資本費用は高く、したがって大気中にCO
2を放出するシステムに比較してはるかに高価な発電コストを生じさせることがある。その結果、CO
2排出量が削減される、および/または生成されたCO
2の回収および隔離の容易さが改善される高効率発電用の装置および方法に対するニーズは、技術においてたえず高まりつつある
【0004】
炭素質燃料のオキシ燃料燃焼は、空気から実質的な純酸素を分離すること(またはそれ以外の場合、かかる実質的な純酸素を燃焼プロセスでの使用のために提供すること)および燃焼媒質として酸素を使用して実質的に窒素を含まず、二酸化炭素および水蒸気を含む燃焼生成物を生成することを必要とする。現在の技術の空気およびオキシ燃料の燃焼器は、限られた温度および圧力で動作して、燃焼器壁に対する、および/またはタービン翼等の他のシステム構成要素に対する過剰温度損傷を妨げる。いくつかの例では、運転温度および運転圧力を制限することが、望ましくなく燃焼プロセスを延長させる、および/または相対的に大きな燃焼量を必要とすることがある。さらに、燃焼プロセス、燃焼設計、および/または下流排ガス処理供給も、プロセスに活用される燃料のタイプに望ましくなく依存することがある。さらに、現在の技術での従来のボイラーシステムに適用される大量の燃焼ガス、およびこれらのガスの大気中への排出のため、汚染物質を排気煙突ガスから除去する現在の方法、および提案されているオキシ燃料燃焼システムは、プラントの詳細な設計、およびプラント内で燃焼される燃料の正確なタイプに高く依存している。各種燃料は、汚染物質の対照的な化学成分および化学量を有する。したがって、望ましくないことに、現在の技術は、特に特定の化学成分の特定のタイプの燃料に対処するためにプラントごとの排出ガススクラバーシステムまたはオキシ燃料燃焼改造が特注されることを必要とする。
【0005】
例として、石炭のための現在の技術は、一般に、高圧の蒸気が別の過熱器部分で生成され、過熱される垂直管状壁または螺旋状に構成された管状壁を装備した非常に大型の単一の燃焼器を活用する。大型燃焼器は多大な熱損失を経験することがあり、一般に、使用されている特定の石炭に応じて、石炭灰、スラグ、および燃焼ガス中のSO
x、HCl、NO
x等の腐食性成分から、バーナー、放射伝熱表面、および対流熱伝達表面、ならびにの他の成分の汚れだけではなく損傷にもさらされる。かかる例示的な欠点は、損傷を受けたパーツまたは腐食したパーツ、および/または他の構成要素を定期的な間隔で修理するまたは交換するために、プラント全体が停止されることを必要とする可能性があり、したがってプラントの可用性を下げ、ダウンタイムの間のプラントの生産高の損失を補償する上での望ましくない障害を生じさせる可能性がある。
【課題を解決するための手段】
【0006】
上記のニーズおよび他のニーズは、1つの特定の態様に従って、燃料混合物を形成するために炭素質燃料を濃縮酸素および作動流体と混合するように構成される混合装置を含む、燃焼装置等の装置を提供する本開示の態様によって対処される。燃焼器装置は、対向する出口部分から長手方向に相隔たる入口部分を有する燃焼室を画定し、入口部分は、燃焼温度での燃焼室内部での燃焼のための燃焼混合物を受け入れて、燃焼生成物を形成するように構成される。燃焼室は、さらに出口方向に向かって長手方向に燃焼生成物を導くように構成される。燃焼器装置は、圧力抑制部材、および少なくとも部分的に燃焼室を画定し、少なくとも部分的に圧力抑制部材によって囲まれている多孔性の周界蒸散部材を含む。多孔性蒸散部材は、そこを通って燃焼室に向かって蒸散物質を実質的に均一に導くように構成され、したがって蒸散物質は、その周縁の回りでらせん状にかつ入口部分と出口部分との間で長手方向に流れるように導かれて、燃焼生成物と多孔性蒸散部材との間の相互作用を和らげる。いくつかの例では、蒸散物質の流れは、その周縁の回りで実質的に均一にかつ入口部分と出口部分との間で長手方向に多孔性蒸散部材によって燃焼室の中に導かれてよく、したがって蒸散物質は、多孔性蒸散部材の周縁に実質的に接線方向に、およびその回りでらせん状に流れるように導かれる。さらに、蒸散物質は燃焼室の中に導入されて、燃焼生成物の所望される出口温度を達成してよい。変換装置は、燃焼生成物を受け入れるように構成されてよく、変換装置は燃焼生成物に反応して、それと関連付けられる熱エネルギーを運動エネルギーに変換する。
【0007】
また、別の態様では、炭素質燃料(および/または炭化水素性燃料)のオキシ燃料燃焼が、空気から実質的な純酸素を分離すること(またはそれ以外の場合、かかる実質的な純酸素を提供すること)、および実質的に窒素を含まず、二酸化炭素および水蒸気を含む燃焼生成物を生成するために燃焼プロセスでそれを使用することを必要とすることもある。(冷却および水濃縮の後の)二酸化炭素が豊富な燃焼生成物は、次いで強化された石油回収または強化された天然ガス生産または(圧縮および精製に続く)適切な地理的な隔離場所での処理等の以後の商業的な使用に利用可能であってよい。オキシ燃料電力生産システムの高圧での運用は、燃料から導出される二酸化炭素を高圧で生産できるようにし、二酸化炭素を加圧する必要性を削減する、または排除することによって省力化につながる。さらに、高圧運用は、CO
2または蒸気等の適切な加熱された作動流体と混合されるときに、精製された燃焼生成物を直接的に動力サイクルで使用できるようにし得る。高圧での電力システムの動作は、動力サイクルでの容積測定流体の流量を削減させ、より小型の装置およびより低い資本費用につながる可能性もある。温度制御のための備えのある高圧オキシ燃料燃焼器は、別の重要な態様である。また、燃焼室/空間の、蒸散によって冷却され、保護された壁を通した燃焼生成物ガスまたは二酸化炭素または液体水または(リサイクル蒸気からの)蒸気等の適切な流体の循環は、燃焼温度を制御するために役立つこともある。蒸散物質の燃焼室壁を通る流れも、熱起因するチャンバ壁に対する損傷および/またはチャンバ壁上での蓄積、または灰もしくは液体スラグの衝突影響にを排除するために役立つことがある。したがって、さまざまな気体燃料、液体燃料、もしくは固形燃料または燃料混合物を燃焼して、現在の技術よりも著しくより高い効率および低い資本費用で動作できる電力システムの一部として多様な要件を満たすように適応できる効率的な高圧、高温燃焼器が提供される。いくつかの例では、燃焼器は、電力生産以外に、下流の要件に利用可能になる水素および一酸化炭素を含む燃焼生成物を生成するために動作されてよい。
【0008】
さらに追加の態様では、本開示は、たとえば作動流体としてCO
2および/またはH
2Oのどちらかを使用する発電サイクルと組み合わせてのように、発電で使用するための高圧、高温、高効率の、蒸散流体が保護されたオキシ燃料燃焼器と関連付けられる方法および装置を概して提供する。かかる用途では、燃焼器は、それによって生成される燃焼生成物が約500
ppmと約3%モルの間の範囲の酸素濃度、および約50 ppm未満、好ましくは約10 ppmモル未満の一酸化炭素濃度を含む酸化モードで動作することができる。別の態様では、燃焼器は、それによって生成される燃焼生成物がほぼゼロの酸素濃度を有し、燃焼生成物がCOおよびH
2の濃度を含む還元モードで動作できる。還元モードでの動作は、H
2およびCOの生成を最大限にし、O
2の消費を最小限にするように構成できる。還元動作モードは、電力生産にとってだけではなく、H
2またはH
2+CO合成ガスの生成にも有益である場合がある。特定の態様では、動作圧力は約40バールと約500バールとの間の範囲内にあってよく、好ましくは少なくとも80バールであってよく、燃焼生成物温度は、一般に約400℃と約3500℃との間の範囲内にあってよい。
【0009】
電力生産を必要とする態様では、作動流体の一部が、燃焼のために燃料およびオキシダント(つまり、濃縮酸素)とともに燃焼器の内部に導入され、したがって作動流体および燃焼生成物を含む高圧、高温の流体流れ(燃焼生成物)が生成される。作動流体は、燃焼室の蒸散で保護された壁を通して、および/または燃焼室の回りの追加の噴射点を通して導入できる。燃焼プロセスに続き、蒸散を通して燃焼生成物と混合する作動流体は、タービン等の発電装置の中に直接的に導入するために適した(つまり十分に低い)範囲の温度を有することがある。かかる事例では、燃焼生成物に対する希釈剤として燃焼器の中に導入される作動流体の総量は、運転入口温度および出力タービンの圧力に適した燃焼器を離れる総作動流体流れの流出温度を提供するために調整されてよい。有利なことに、流体流れは、タービン全体での圧力比(つまり、タービンの入口での圧力対出口での圧力の比)が約12未満になるように、タービン内での膨張の間に相対的に高圧で維持されてよい。また、流体流れは流体流れの構成要素を分離するためにさらに処理することもでき、かかる処理は、流体流れに熱交換器を通過させることを含むことがある。特に、(少なくとも一部が流体の流れからリサイクルされ得る)膨張した作動流体は、燃焼器の中に同を導入する前に高圧作動流体を加熱するために同じ熱交換器を通過させることができる。一定の態様では、開示は、低い資本費用で高効率で電力を生産することができ、商業用途または隔離用のパイプライン圧力で実質的に純粋なCO
2を生産することもできる電力生産システムに高圧オキシ燃料燃焼器を提供する。CO
2は、電力生産システムにリサイクルされてもよい。
【0010】
他の態様では、開示されている燃焼システムおよび方法は、さまざまな燃料源を使用するように構成されてよい。たとえば、本開示にかかる高効率燃焼器は、気体(たとえば、天然ガスまたは石炭由来ガス)燃料、液体(たとえば、炭化水素、瀝青)燃料、および/または固形(たとえば、石炭、褐炭、石油コークス)燃料を使用してよい。藻類、バイオマス、または他の任意の適切な可燃性有機物等の別段に本書に説明される他の燃料も使用できるだろう。
【0011】
他の態様では、本開示の方法およびシステムは、パイプライン圧力でのCO
2回収を行う電力システムと組み合わせられるときに、CO
2の回収に備えない現在の石炭燃焼蒸気サイクル発電所の最良効率を超えることがあるという点で有用である場合がある。かかる現在の発電所は、瀝青炭を使用して1.7インチ水銀濃縮器圧力で、たとえばせいぜい約45%の効率(L.H.V.)を提供できる。本システムの態様は、たとえば200バール圧力でCO
2を送達している間に、かかる効率を超えることがある。
【0012】
さらに別の態様では、本開示は、類似する燃料を使用する現在の技術に比較して、発電システムの物理的な規模および資本費用を削減する能力を提供し得る。したがって、本開示の方法およびシステムは、電力生産システムに関連する建設費の大幅な削減に貢献、またはそれ以外の場合促進することができ、一定のシステム組合せの相対的に高い効率は、化石燃料の使用削減だけではなく、電気またはエネルギーの生産費用削減にもつながることがある。
【0013】
1つの特定の態様では、本開示は、CO
2および/またはH
2O等の作動流体の使用を組み込む発電方法を対象にしている。いくつかの態様では、方法は、加熱され、圧縮されたCO
2および/または過熱された蒸気を燃料燃焼器の中に導入することを含んでよい。好ましくは、CO
2および/または蒸気は、少なくとも約80バールの圧力で動作する燃焼器の中に導入できる。CO
2および/またはH
2Oは、2箇所以上の別々の場所にある燃焼器の中に導入できる。CO
2および/またはH
2Oの部分は、燃焼室内部の燃焼温度が燃焼器にとって所望される設計値に基づいて決定できるように、O
2、および固形燃料、液体燃料、気体燃料、または超臨界燃料と混合できる。加熱されたCO
2および/または過熱された蒸気の残りは、次いで燃焼室の中に導入されて、それとの直接的な混合によって燃焼生成物を冷却し、電力生産システムによって必要とされることがある約400℃と約3500℃との間の所望される総流出流体流れ温度を達成する。かかる条件下では、CO
2および/またはH
2Oは、燃料の燃焼から生じる燃焼ガスと、つまり85%モルを超える純度での酸素等のオキシダントと混合し、所望される温度でCO
2および/またはH
2Oを含む流体流れを生成できる。特定の態様では、流出流体蒸気温度は、約400℃と約3500℃との間の範囲内にあってよい。他の態様では、流出流体流れは、発電する(つまり、タービンに与えられるエネルギーを介して電気を発生させる)ためにタービン全体で膨張してよい。
【0014】
一定の態様では、燃焼器の中への導入以前になおさらに高い温度に作動流体を加熱することが有用なことがある。たとえば、CO
2および/またはH
2Oは、燃焼器の内部への導入前に少なくとも約200℃から約700℃の間の温度に加熱されてよい。他の態様では、たとえば、CO
2および/またはH
2Oは、燃焼器の中への導入前に約700℃と約1000℃との間の温度に加熱されてよい。いくつかの態様では、かかる加熱は、熱交換器装置を使用して実施できる。さらに本書で開示されるように、発電タービンを出る流体流れを冷却するために同じ熱交換器が使用されてよい。
【0015】
同様に、燃焼器は、電力生産サイクルにおいて非常に高い効率を達成できる作動流体を生成するためにより高圧で有用に動作されてよい。たとえば、燃焼器および作動流体CO
2および/またはH
2Oの導入された部分は、少なくとも約200バールに加圧されてよい。他の態様では、圧力は約200バールと約500バールとの間であってよい。
【0016】
一定の態様では、燃焼器の中に導入される作動流体の部分は、作動流体内のどのような含水量も燃料から生じるように実質的に純粋なCO
2のリサイクルされた流れであることがある。言うまでもなく、外部源からのCO
2は作動流体として使用できるだろう。
【0017】
燃焼器から出る流体流れは、燃料または燃焼プロセスに由来する燃焼の生成物等の1つまたは複数の他の構成要素だけではなく、CO
2および/またはH
2O作動流体も含んでよい。流出する流体の流れは、約300
ppmと約3%モルとの間の範囲内の余分な酸素を加えた、H
2O、SO
2、SO
3、NO、NO
2、Hg、HCl等の構成要素を含むことがある。他の態様では、流出する流体流れは、H
2およびCOの少なくとも変化する部分を含有し、実質的にゼロのO
2含有量を有することがある。
【0018】
燃焼器は、作動流体の一部が加えられた酸素が加えられた燃料がそれを通して燃焼器の中に導入され、燃焼が開始され、通常設計容量の約50%と約100%との間である所望される燃料流量範囲で酸化モードまたは還元モードのどちらかで燃焼が安定的に行われる入口ノズル装置を含んでよい。一定の態様では、運転圧力は約150バールを超えてよく、この圧力で、酸素はCO
2、および天然ガスのような燃料、または炭化水素蒸留液等の液体との単相混合物として導入され、必要とされる断熱火炎温度を達成できる。この高圧でのCO
2が約100℃未満の温度である場合、CO
2の密度は、微粉炭のかなりの部分をサポートして、スラリーを形成するために使用されるほど十分に高く、スラリーは、次いで管内の必要とされる燃焼圧力および流量まで、ならびにCO
2および酸素の超臨界混合物が添加されて、燃焼器内の必須断熱火炎温度を達成する混合点まで高圧ポンプによって注入できる。望ましくは、事前に混合された燃料、希釈剤CO
2、および酸素は、システムの自動点火温度未満である結合温度であるべきである。CO
2流れの温度は、この基準を満たすために調整されてよい。入口ノズルは、噴射器プレート内に一列の穴を含むことがあり、穴のそれぞれは、急激な伝熱および燃焼を生じさせる流体の細かい噴流を作り出し、それによって安定した燃焼ゾーンを作り出す。穴のサイズは、直径約0.5mmと約3mmの間の範囲となることがある。
【0019】
燃焼室の壁は多孔材の層で裏打ちされてよく、CO
2および/またはH
2O希釈剤流れの第2の部分が層を通して導かれ、流れる。この多孔性の蒸散層を通り、任意選択で追加の設備を通る流体の流れは、約400℃と約3500℃との間の必須総流出流体流れ出口温度を達成するように構成される。この流れは、蒸散部材を形成する材料の最大許容操作温度未満の温度に蒸散部材を冷却する働きをしてもよい。CO
2および/またはH
2O希釈液流れ等の蒸散物質は、あらゆる液状灰物質もしくは固形灰物質、または壁を腐食する、汚す、またはそれ以外の場合損傷を与える可能性がある燃料中の他の汚染物質の衝突を防止する働きをしてもよい。かかる事例では、入射放射熱が、多孔性蒸散部材を通って外向きに放射状に伝導され、次いで多孔層構造の表面から、蒸散層を通って内向きに放射状に通る流体への対流熱伝達によって遮断されるように、妥当な(低い)熱伝導性の蒸散部材のための材料を使用することが望ましいことがある。かかる構成は、同時に多孔性蒸散部材の温度をそのために使用される材料の設計範囲内に維持しながら、蒸散部材を通して導かれる希釈剤流れの以後の部分を、約500℃と約1000℃との間の範囲内の温度まで加熱できるようにする。多孔性蒸散部材の適切な材料は、たとえば多孔質セラミックス、耐火金属繊維マット、穴あけ円筒部、および/または焼結金属層もしくは焼結金属粉末を含んでよい。蒸散部材の第2の機能は、燃焼器に沿って長手方向にだけではなく、希釈剤蒸散部材の実質的にさらに放射状に内向きの流れも保証して、燃焼室の長さに沿ったさらに軸に沿った流れを促進しつつ、希釈剤流れの第2の部分と燃焼生成物との間の優れた混合を達成することであってよい。蒸散部材の第3の機能は、蒸散層の表面に対するバッファを提供すること、またはそれ以外の場合、燃焼生成物の中の灰または他の汚染物質の固体粒子および/または液体粒子が、蒸散層の表面に衝突して、閉塞または他の損傷を引き起こすのを妨害するように、放射状に内向きの希釈剤流体の速度を達成することである。かかる要因は、残留する不活性で不燃性の残渣を有する、たとえば石炭等の燃料を燃焼するときだけに重要である場合がある。蒸散部材を取り囲む燃焼圧力容器の内側壁も断熱されて、燃焼器内部で高温の第2の希釈液の流れを隔離してもよい。
【0020】
不燃性残差のある石炭または他の燃料は、水に入れられたスラリー、つまり好ましくは液状CO
2に入れられたスラリーとして燃焼器の中に導入されてよい。スラリーの液状部分は、発電サイクルでほぼ周囲温度かつ最低圧力でパワーシステムを離れる。スラリー入口状態とガス出口状態との間のモル毎のエンタルピーの差は、かかる事例では、H
2Oの場合には約10kcal/gm−mol、およびCO
2の場合には約2.78kcal/gm−molであってよく、CO
2スラリー化流体のための著しく高い効率を提供する。CO
2を作動流体として用いる高圧発電サイクルでは、約‐30℃と約10℃との間の範囲の温度で液状CO
2を生成するためにほとんど追加エネルギーは必要とされない。
【0021】
不燃性残差を生じさせる燃料、一般に石炭のような固体の燃焼温度は、好ましくは約1800℃と約3000℃の間の範囲にある。かかる状態では、灰または他の汚染物質は、スラリー燃料供給内の燃料粒子から生じる液状スラグ液滴の形をとる。これらの液状スラグ液滴は、出力タービンまたは他の下流プロセスの汚染を妨げるために効率よく除去されなければならない。除去は、たとえばサイクロン分離器、衝突分離装置、もしくは環状構成内に配列される勾配耐火粒状ろ材の台、またはその組合せを使用して達成されてよい。特定の態様では、液滴は、一連のサイクロン分離機によって高温作動流体流れから取り除かれてよい。効率的な除去を達成するために、直列の好ましくは少なくとも2台、および好ましくは3台のサイクロン分離器がある。除去効率は多くの要因によって強化され得る。たとえば、除去温度は、スラグ粘度が分離器から自由に流れ出る液状スラグを取り除くほど十分に低いことを保証するために調整できる。燃焼温度と最終流出流体流れ温度との間の中間温度でスラグ除去を実施することが必要な場合もある。かかる場合、最終流出流体流れ出口温度は、スラグ除去システムを離れる流体流れとリサイクルされた作動流体(蒸散物質)の一部を直接的に混合することによって達成されてよい。サイクロン分離器の直径は、望ましくは相対的に低く(つまり、直径約20cmと約50cmとの間の範囲内に)なるべきである。一方、スラグ液滴の直径は、良好な分離効率を提供するほど十分に高くあるべきである。かかる状態は、たとえば石炭燃料を研削して、>50ミクロンの粒径の高部分を達成することによって達成されてよい。石炭は、好ましくは、平均粒子直径が約50ミクロンと約100ミクロンとの間に粒子化され、その結果、流出作動流体の流れの中に直径10ミクロン未満のスラグ粒子の最小部分が存在することになる場合がある。いくつかの事例では、サイクロン分離器の後に、タービンのすぐ上流に配置される環状フィルタが続くことがある。
【0022】
特定の態様では、システム内の燃焼生成物の残留時間は、天然ガスの場合0.2秒から2秒、瀝青炭の場合0.4秒から4秒の範囲となることがある。
【0023】
燃焼器を出る流体流れは、さまざまな異なる特性を示す。たとえば、流体流れは、酸化流体を含んでよい。したがって、流体流れは、オキシダント(たとえば、O
2)の添加によって急激に酸化(たとえば、燃焼)されてよい。いくつかの態様では、流体流れは、H
2、CO
2、CH
4、H
2Sおよびその組合せから成るグループから選択される1つまたは複数の成分を含む還元流体であってよい。還元モードでのシステムの動作は、一般に、二次希釈剤の割合が、H
2|COに変換される燃料の部分が増加するにつれて漸次的に還元される点を除き、酸化モードに類似する。H
2+COへの変換が最大まで増加するにつれて、天然ガス燃料の場合約2.5秒と約4.5秒との間の範囲まで、および瀝青炭の場合約6秒と約10秒との間の範囲まで燃焼生成物のための平均滞留時間を増加することが必要となることもある。
【0024】
上記の態様および他の態様は、したがって識別されたニーズに対応し、それ以外に本書に詳説される優位点を提供する。
【0025】
本開示は、一般的な言葉でこのようにして説明されてきたが、ここで、必ずしも原寸に比例して描かれていない添付図面が参照される。
【発明を実施するための形態】
【0027】
本開示は、ここで添付の図面を参照して以下により完全に説明される。図には、本開示のすべての態様ではないがいくつかが示されている。実際に、本開示は多くの異なる形式で具体化されてよく、本書に述べられる態様に制限されるとして解釈されるべきではない。むしろ、これらの態様は、本開示が適用可能な法的な要件を満たすように提供されている。類似する番号が、全体を通して類似する要素を参照する。
【0028】
本開示にかかる固形燃料で動作できる燃焼器装置の一態様が、
図1に概略で示され、燃焼器装置は概して数字220で示されている。他のどのような適切な可燃性の有機物も、本書に開示されるように燃料として使用され得るが、この例では、燃焼器装置220は、石炭等の粒状の固体を燃焼して、燃焼生成物を形成するように構成されてよい。燃焼室222は、蒸散流体等の蒸散物質を、それを通して燃焼室222の中に導く(つまり、蒸散冷却を容易にする、および/または燃焼生成物と蒸散部材230との間の相互作用を緩衝する)ように構成される蒸散部材230によって画定されてよい。当業者は、蒸散部材230が、入口部分222Aおよび対向する出口部分222Bを有する実質的に円筒形の燃焼部材222を画定するために、実質的に円筒形でであってよいことを理解する。蒸散部材230は、圧力抑制部材338によって少なくとも部分的に取り囲まれてよい。燃焼室222の入口部分222Aは、一般的に数字250で示される混合装置から燃料混合物を受け取るように構成されてよい。特定の実施形態に従って、燃料混合物はある特定の燃焼温度で燃焼室内部で燃焼されて、燃焼生成物を形成し、燃焼室222は、出口部分222Bに向けて燃焼生成物を導くようにさらに構成される。除熱装置350(たとえば、
図2を参照)は、圧力抑制部材338と関連付けられ、その温度を制御するように構成されてよい。特定の事例では、除熱装置350は、圧力抑制部材338に対向する壁336によって少なくとも部分的に画定される伝熱ジャケットを含んでよく、液体はその間に画定される水循環ジャケット337内で循環されてよい。一態様では、循環される液体は水であってよい。
【0029】
混合装置250は、濃縮酸素242および作動流体236と炭素質燃料254を混合して、燃料混合物200を形成するように構成される。炭素質燃料254は、固形炭素質燃料、液体炭素質燃料、および/または気体炭素質燃料の形で提供されてよい。濃縮酸素242は、約85%より大きいモル純度を有する酸素であってよい。濃縮酸素242は、たとえば極低温空気分離プロセス等の技術で既知の任意の空気分離システム/技法によって供給されるか、または(空気からの)高温イオン輸送膜酸素分離プロセスが実現できるだろう。作動流体236は、二酸化炭素および/または水であってよい。炭素質燃料254が、微粉炭254A等の粒子状固体である事例では、混合装置250は、粒子状固体炭素質燃料254Aを流体化物質255と混合するようにさらに構成されてよい。一態様に従って、粒子状固体炭素燃料254Aは、約50ミクロンと約200ミクロンとの間の平均粒径を有することがある。さらに別の態様に従って、流体化物質255は、約450kg/m
3と約1100kg/m
3との間の密度を有する水および/または液状CO
2を含んでよい。さらに詳細には、流体化物質255は粒子状固体炭素質燃料254Aと協調して、粒子状固体炭素質燃料254Aの、たとえば約25重量%と約95重量%との間、または他の例では、粒子状固体炭素質燃料254Aの約25重量%と約60重量%との間を有するスラリー250Aを形成してよい。
図2には、燃焼室222への導入の前に燃料254および作動流体236と混合されるとして酸素242が示されているが、当業者は、いくつかの事例では、酸素242が、必要に応じてまたは所望されるように、燃焼室222の中に別個に導入されてよいことを理解する。
【0030】
混合装置250は、いくつかの態様では、たとえば、円筒形の燃焼室222の入口部分222Aと関連付けられる蒸散部材230の端壁223の回りに配列される一列の相隔たる噴射ノズル(不図示)を含んでよい。燃料/燃料混合物をこのようにして燃焼室222の中に噴射すると、同様に放射によって噴射された燃料混合物入口蒸気への迅速な伝熱を容易にすることがある、たとえば噴射された燃料混合物入口蒸気の大きな表面積が提供されてよい。噴射された燃料混合物の温度は、このようにして急激に燃料(つまり、石炭粒子)の点火温度に高められてよく、よってコンパクトな燃焼を生じさせてよい。燃料混合物の噴射速度は、たとえば毎秒約10mと毎秒約40mとの間の範囲であってよい。ただし、これらの値は、特定の噴射ノズルの構成等の多くの要因に依存することがある。かかる噴射装置は、多くの異なる形をとってよい。たとえば、噴射装置は、たとえば直径約0.5mmと約3mmとの間の範囲内の一列の穴を含んでよく、噴射される燃料は、毎秒約10mと毎秒約40mとの間の速度でそこを通って噴射されるだろう。
【0031】
一般的に直線通路、線形通路、および/または遮るものがない通路を通ってじかに燃焼室222に入る燃料/燃料混合物のかかる「直接的な噴射」は、特に燃料が固体構成要素(つまり、部分酸化(POX)燃焼器の石炭スラリー)を含む場合に、たとえば摩耗、腐食、およびまたは微粒子の蓄積を削減してよい。ただし、いくつかの事例では、燃料/燃料混合物が燃焼室222の内部でいったんまっすぐな均一な流れから逸脱することが有利である場合がある。たとえば、いくつかの態様では、たとえば燃料/燃料混合物の混合を促進させ、よってより効率的な燃焼プロセスを生じさせるために、燃料/燃料混合物に渦を巻かせる、またはそれ以外の場合、まっすぐな一様な流れから分断させることが有利な場合がある。
【0032】
他の態様では、混合装置250は、燃焼室222に対して離れて、またはそれ以外の場合、燃焼室222とは別であってよい。たとえば、いくつかの態様では、混合装置250は、圧力抑制部材338および蒸散部材230を通して燃焼室222の中に延在するバーナー装置300に、燃料混合物200を導くように構成されてよい。バーナー装置300は、「直接噴射」配置と同様に、まっすぐな、実質的に一様な流れで燃焼室222の中に燃料/燃料混合物を導入するように構成されてよい。すなわち、バーナー装置300は、混合装置250から燃料/燃料混合物を受け取り、燃料/燃料混合物の実質的に一様な線形流れを燃焼室222の入口部分222Aの中に導くように構成されてよい。しかしながら、いくつかの事例(つまり、固形微粒子を含まない燃料を使用する)では、バーナー装置300は、当業者によって理解されるように、燃焼室222の中に導かれるときに、燃料/燃料混合物に渦を巻かせる、またはそれ以外の場合、燃料/燃料混合物が渦巻くようにもしくは渦を巻かせるように仕向けるための適切な設備を含んでよい。すなわち、バーナー装置300は、燃焼室222の中への燃料/燃料混合物の導入時に、燃料/燃料混合物のまっすぐで一様な流れに渦を巻かせるように構成されてよい、またはそれ以外の場合、燃料/燃料混合物のまっすぐで一様な流れから分断されてよい。いくつかの態様では、バーナー装置300は、燃焼室222の中に導かれる燃料/燃料混合物の渦巻きを誘発する一方で、混合装置250から燃料/燃料混合物を受け取り、燃焼室222の入口部分222Aの中に燃料/燃料混合物を導くように構成されてよい。さらに詳細には、バーナー装置300は、そこから燃焼室222の中への燃料/燃料混合物の流出時に、燃料/燃料混合物の渦巻きを誘発するように構成されてよい。
【0033】
より詳細に
図2に示されるように、燃焼室222は、少なくとも部分的に圧力抑制部材338によって取り囲まれてよい、蒸散部材230によって画定される。いくつかの事例では、圧力抑制部材338は、さらに伝熱ジャケット336によって少なくとも部分的に取り囲まれてよく、伝熱ジャケット336は圧力抑制部材338と協調して、その間の1つまたは複数のチャネル337を画定し、チャネル337を通して低圧水蒸気が循環されてよい。蒸発機構を通して、循環された水はこのようにして使用されて、たとえば約100℃と約250℃との間の範囲内で圧力抑制部材338の選択された温度を制御する、および/または維持してよい。いくつかの態様では、断熱層339が、蒸散部材230と圧力抑制部材338との間に配置されてよい。
【0034】
いくつかの例では、蒸散部材230は、たとえば外側蒸散部材331および内側蒸散部材332を含んでよく、内側蒸散部材332は、圧力抑制部材338から外側蒸散部材331に対向して配置され、圧縮室222を画定する。外側蒸散部材331は、たとえばステンレス鋼およびニッケル合金を含む鋼および鋼合金等の任意の適切な高温抵抗材料から構成されてよい。いくつかの事例では、外側蒸散部材331は、そこを通って、断熱層339に隣接するその表面から内側蒸散部材332に隣接するその表面に伸長する第1の蒸散流体供給通路333Aを画定するように構成されてよい。第1の蒸散流体供給通路333Aは、いくつかの事例では、圧力抑制部材338、伝熱ジャケット336、および/または断熱層339によって画定される第2の蒸散流体供給通路333Bに相当してよい。第1の蒸散流体供給通路および第2の蒸散流体供給通路333A、333Bは、したがって協調して、そこを通って内側蒸散部材332へ蒸散流体210等の蒸散物質を導くように構成されてよい。いくつかの事例では、たとえば、
図1に示されるように、蒸散流体210は作動流体236を含んでよく、それと関連付けられる同じソースから得られてよい。第1の蒸散流体供給通路および第2の蒸散流体供給通路333A、333Bは、蒸散流体210が内側蒸散部材332を通って燃焼室222の中に導かれるように、十分な供給で、および十分な圧力で蒸散流体210(つまりCO
2)を送達するために、必要に応じて断熱されてよい。本書に開示されるように、蒸散部材230および関連付けられた蒸散流体210を必要とするかかる処置は、燃焼器装置220が、それ以外の場合本書に開示される相対的に高圧で、および相対的に高温で動作できるようにする。
【0035】
この点において、内側蒸散部材332は、たとえば多孔質セラミック材料、穴のあいた材料、積層材料、二次元で無作為に配向され、三次元で並べられる繊維から構成される多孔性マット、または本書に開示されるようにその必要とされる特性を示す任意の他の適切な材料もしくはその組合せ、つまり内側蒸散部材332を通して蒸散流体を受け取り、導くための複数の流路または他の適切な開口部335から構成されてよい。かかる蒸散冷却システムに適切な多孔質セラミック材料および他の材料の非制限例は、酸化アルミニウム、酸化ジルコニウム、蒸散によって強化されたジルコニウム、銅、モリブデン、タングステン、銅が浸潤したタングステン、タングステンでコーティングされたモリブデン、タングステンでコーティングされた銅、多様な高温ニッケル合金、およびレニウム被覆またはコーティング材料を含む。適切な材料の出処は、たとえばCoorsTek, Inc.(ゴールデン、コネチカット州)(ジルコニウム)、UltraMet Advanced Materials Solutions(カリフォルニア州、パコイマ)(耐火金属コーティング)、Osram
Sylvania(マサチューセッツ州、デンバー)(タングステン/銅)、およびMarkeTech International, Inc.(ワシントン州、ポートタウンゼンド)(タングステン)を含む。かかる蒸散冷却システムに適切な穴のあいた材料の例は、上記の材料および供給業者のすべてを含む(穴のあいた端部構造は、製造技術で既知の方法を使用して、たとえば初期に多孔性ではない構造に穴をあけることによって得られてよい)。適切な積層材料の例は、上記の材料および供給業者のすべてを含む(積層端部構造は、たとえば、製造技術で既知の方法を使用して所望される端部多孔性を達成する方法で無孔構造または部分的に多孔性の構造を積層することによって得られてよい)。
【0036】
さらに追加の態様では、内側蒸散部材332は、蒸散部材230の入口部分222Aから出口部分222Bに伸長してよい。いくつかの事例では、内側蒸散部材332の穴のあいた/多孔質構造は、蒸散流体210が燃焼室222の実質的に長さ全体の中に導かれるように、入口部分222Aから出口部分222Bに実質的に完全に(軸に沿って)伸長してよい。すなわち、内側蒸散部材332の実質的に全体は、燃焼室222の実質的に全体的な長さが蒸散冷却されるように、穴のあいた/多孔質の構造で構成されてよい。より詳細には、いくつかの態様では、累積送り孔/多孔面積は、内側蒸散部材332の表面積に実質的に等しくてよい。つまり、孔面積対総壁面積の比(%多孔率)は、たとえば約50%であってよい。さらに他の態様では、送り孔/孔は、内側蒸散部材332から燃焼室222の中への蒸散物質の実質的に一様な分散が達成される(つまり、蒸散物質210の流れまたは存在が欠けている「デッドスポット」がない)ように適切な密度で相隔たってよい。一例では、内側蒸散部材332は、in
2あたり約62,500孔を提供するために1平方インチあたり約250x250の一列の送り孔/孔を含んでよく、かかる送り孔/孔は約0.004インチ(約0.1mm)相隔たっている。しかしながら、当業者は、孔アレイの構成が、他のシステム構成パラメータに適応可能となるため、またはたとえば蒸散部材230全体での所望される圧力低下対流量等の所望される結果を達成するために、適宜に変えられてよいことを理解する。追加の例では、孔の列は、1平方インチあたり約10x10から1平方インチあたり10,000x10,000にサイズが変化してよく、多孔率は約10%から約80%まで変化する。
【0037】
図3Aおよび
図3Bは、燃焼器装置220の一態様では、燃焼室222を画定する構造が、蒸散部材230と、圧力抑制部材338または蒸散部材230と圧力抑制部材338との間に置かれる断熱層339等の取り囲む構造との間の「加熱」締りばめを通して形成されてよいことを示している。たとえば、相対的に「寒い」とき、蒸散部材230は、取り囲む圧力抑制部材338に関して放射状におよび/または軸状に、より小さくなるような寸法に作られてよい。したがって、圧力抑制部材338の中に差し込まれるとき、放射状および/または軸に沿った隙間がその間に存在してよい(たとえば、
図3Aを参照)。言うまでもなく、かかる寸法差は、蒸散部材230の圧力抑制部材338への挿入を容易にしてよい。ただし、たとえば操作温度に向かって加熱されるとき、蒸散部材230は、放射状におよび/または軸に沿って拡大して、留意された隙間(たとえば、
図3Bを参照)を削減するまたは排除するように構成されてよい。(たとえば、
図3Bを参照)。こうする際には、軸に沿った、および/または放射状の締りばめが、蒸散部材230と圧力抑制部材338との間に形成されてよい。外側蒸散部材331および内側蒸散部材332とともに蒸散部材230を必要とする事例では、かかる締りばめが、内側蒸散部材332を圧縮下に設置してよい。したがって、多孔質セラミックス等の適切な高温抵抗の脆い材料が使用されて、内側蒸散部材332を形成してよい。
【0038】
内側蒸散部材332がこのようにして構成された状態で、蒸散物質210は、蒸散物質210が燃焼室222内部の内側蒸散部材332にすぐに隣接するバッファ層231(つまり「蒸気の壁」)を形成するように、たとえば内側蒸散部材332を通して導かれる二酸化炭素(つまり作動流体236と同じ出処からの)を含んでよく、バッファ層231は内側蒸散部材332と液化不燃性要素との間の相互作用、および燃焼生成物と関連する熱を緩衝するように構成されてよい。つまり、いくつかの事例では、蒸散流体210は、たとえば、少なくとも燃焼室222内部の圧力で内側蒸散部材332を通って送達することができ、燃焼室222の中への蒸散流体210(つまり、CO
2流れ)の流量は、蒸散流体210が燃焼生成物と混合し、燃焼生成物を冷却して、以後の下流プロセスの入口要件に関して十分な温度で流出流体混合物を形成するために十分である(つまり、タービンは、たとえば約1225℃の入口温度を必要とすることがある)が、流出流体混合物温度は、流体状態または液体状態で燃料中のスラグ液滴または他の汚染物質を維持するほど十分に高いままとなる。燃料の不燃性要素の液体状態は、たとえば、液体形式の、好ましくは閉塞する可能性が低い、またはそれ以外の場合かかる動作のために実現されるどのような除去システムにも損傷を与える、自由に流れる低粘度形式の燃焼生成物からかかる汚染物質の分離を容易にしてよい。実際には、かかる要件は、利用される固体炭素質燃料(つまり、石炭)のタイプ、および燃焼プロセスで形成されるスラグの特定の特性等の多様な要因に依存してよい。すなわち、燃焼室222内部の燃焼温度は、好ましくは炭素質燃料のどのような不燃性要素も燃焼生成物の内部で液化されるほどである。
【0039】
特定の態様では、多孔性内側蒸散部材332は、このようにして、燃焼室222を画定する(たとえば、
図2を参照)内側蒸散部材332の表面の回りに流体バリア壁またはバッファ層231を形成するために、放射状に内向きに蒸散流体/物質を燃焼室222の中に導くように構成される。1つの特定の態様では、多孔性内側蒸散部材332は、このようにして燃焼室222の中に蒸散流体を導くように構成されており、したがって蒸散物質210は、内側蒸散部材332の内側表面に関して実質的に直角(90°)で燃焼室222に入る。他の優位点の中で、内側蒸散部材332に対して実質的に直角で蒸散物質210を導入すると、内側蒸散部材322の内面から離れてスラグ液状または固形液滴または他の汚染物質または過熱燃焼流体渦を導く効果を容易にしてよい、またはそれ以外の場合強化してよい。スラグ液状または固形液滴と内側蒸散部材332との間での接触を削減する、最小限に抑える、またはそれ以外の場合防止することは、たとえば、かかる汚染物質のより大きな液滴または質量への凝固を妨げてよく、それは液滴/粒子と固体壁との間の接触時に発生することが既知であることがあり、内側蒸散部材332に対する損傷を引き起こすことがある。内側蒸散部材332に対して実質的に直角で蒸散物質210を導入することは、このようにして内側蒸散部材32に衝突し、潜在的に損傷を与えるほど十分な速度または勢いで、内側蒸散部材332に近接した燃焼流体渦巻きが形成されるのを防止することを容易にする、またはそれ以外の場合強化してよい。
【0040】
前に開示されたように、他の事例では、燃料/燃料混合物が燃焼室222の中に導かれると、渦巻き、つまりまっすぐな均一な流れの他の分断を燃料/燃料混合物の中に誘発することが有利であることがある。燃料/燃料混合物が燃焼室222の中に送達された後にかかる流れの分断を達成することによって、燃焼室222の中への燃料/燃料混合物の送達の前にかかる流れの分断を引き起こすために使用されノズルまたは他のバーナー装置または送達装置にまつわる欠点は、回避され得るまたは最小限の抑えられ得る。ただし、当業者は、いくつかの事例では、燃料/燃料混合物のかかる事後導入がその事前導入の分断を与えるかかる燃料/燃料混合物送達装置と連動して必要となる、およびまたは所望されることがあることを理解する。
【0041】
したがって、本開示のいくつかの態様では、少なくとも内側蒸散部材332はそれを通って燃焼室222に向けて蒸散流体210を実質的に一様に導くように構成されてよく、したがって蒸散流体210はその周縁221(たとえば、
図2Aを参照)の回りでらせん状に(たとえば、
図2Eを参照)、入口部分222Aと出口部分222Bとの間で長手方向に流れるように導かれ、内側蒸散部材332の表面の回りにバリア壁またはバッファ層231を形成して、蒸散部材332と燃焼生成物および/または燃料混合物との間の相互作用を緩衝する。さらに詳細には、いくつかの態様では、少なくとも内側蒸散部材332は、その周縁221の回りで実質的に一様に、および入口部分222Aと出口部分222Bとの間で長手方向にそれを通して燃焼室222の中に蒸散流体210を導くように構成され、したがって蒸散流体210は、たとえば
図2Aおよび
図2Eに示されるように、蒸散部材332の周縁221に実質的に接線方向に、およびその回りでらせん状に(つまり、渦巻き形式またはコイル形状で)流れるように導かれる。たとえば、内側蒸散部材332によって画定される送り孔/穴335は、燃焼室222の周縁221に実質的に接線方向に、またはそれ以外の場合周縁221に沿ってそれを通って流れる蒸散流体210を導くために、その外側面と内側面(たとえば、
図2Aを参照)との間に伸びるときにアーチ形であるか、または角があってよい。
【0042】
別の例では、内側蒸散部材332の長手方向ストリップに沿った孔が、それを通って燃焼室222(たとえば、
図2Cを参照)の周縁221に実質的に接線方向に、またはそれ以外の場合周縁221に沿って流れる燃焼流体210を容易にするために結合/閉鎖されてよい。他の例では、内側蒸散部材332の長手方向ストリップを結合することに加え、または結合することの代わりに、シールド構造224(つまり、金属またはセラミックのシールド装置)が、燃焼室222(たとえば、
図2Cおよび
図2Dを参照)の周縁221に実質的に接線方向に、またはそれ以外の場合周縁221に沿って蒸散流体210の流れを容易にする他の表面を遮ることなく、特定の多孔性壁表面を遮り、それを通る放射状の流れを妨げるために、たとえば
図2Cに示されるように内側蒸散部材332に関して並列/挿入できるだろう。構造224または結合プロセスは燃焼室222の周縁221に実質的に接線方向に、またはそれ以外の場合周縁221に沿って蒸散流体210を導くように構成されてよいが、いったんその流体が長手方向燃焼流れを相互作用すると、ベクトル和流れは実質的にらせん状になる。しかしながら、当業者は、燃焼室222の周縁221に実質的に接線方向に、またはそれ以外の場合周縁221に沿って蒸散流体210の流れを達成するために内側蒸散部材332を構成する多くの他の方法がある可能性があることを理解する。
【0043】
さらに別の例では、送り孔/穴335は、それを通って燃焼室222の周縁221に実質的に接線方向に、またはそれ以外の場合周縁221に沿って流れる蒸散流体210を導くために、それを通って導かれる蒸散流体(たとえば、
図2Fを参照)に対してコアンダ効果を与えるように構成されてよい。かかる事例では、燃料/燃料混合物および/または燃焼生成物の入口部分222Aから出口部分222Bに向かう流れは、蒸散流体210の流れを同様に出口部分222Bに向かって長手方向に導かせ、それによって燃焼室222に沿った蒸散流体210のらせん状の流れまたは渦巻き流れを達成させてよい。かかる事例では、内側蒸散部材332によって画定される孔/送り孔335は、それを通って、たとえば
図2に示されるような燃焼室222の長手方向に実質的に垂直に延在してよい。ただし、他の事例では、穴/送り孔335は、出口部分222B(たとえば、
図2Bを参照)に向かって曲げられて、蒸散流体210のらせん状/渦巻きの流れ、および/または燃料混合物/燃焼生成物との混合を促進してよい、または孔/送り孔335は入口部分222A(不図示)に向かって曲げられて、それ以外の場合蒸散流体210と燃料混合物および/または燃焼生成物との間の相互作用に影響を及ぼし(つまり、混合つまり制御燃焼率を促進し)てよい。したがって、燃料混合物/燃焼生成物の燃焼室222に沿った流れのかかる操作は、それ以外の場合燃焼室222の中への燃料/燃料混合物の実質的にまっすぐかつ一様な流れに影響を及ぼす物理的な装置なしで、いくつかの事例では、燃焼プロセスの間の燃焼特性および/またはキネティックスでの所望される影響および燃焼特性および/またはキネティックスの制御を実現してよい。かかる装置、つまり燃料混合物/燃焼生成物の流れに影響を及ぼす物理装置が存在しないことは、当業者によって理解されるように、それ以外の場合、たとえば、燃料混合物および/または燃焼生成物に含まれる微粒子の蓄積場所を排除する上で有利となることがある。
【0044】
燃料混合物/燃焼生成物の流れを、燃焼室222の内部でその渦巻きを与えるまたはそれ以外の場合渦巻きを誘発するためにこのように操作する上で、バーナー装置300および/または蒸散部材230は、異なる配列で構成されてよい。たとえば、一態様では、バーナー装置300は、混合装置250から燃料/燃料混合物を受け取り、燃焼室222の入口部分222Aの中に燃料/燃料混合物を、蒸散流体210のらせん状の流れに一般に対向する流れ方向で導くように構成されてよい。別の態様では、バーナー装置300は、混合装置250から燃料/燃料混合物を受け取り、燃焼室222の入口部分222Aの中に燃料/燃料混合物を、蒸散流体210のらせん状の流れに一致する流れ方向で(つまり、らせん状の流れと同じ方向で)導くように構成されてよい。さらに別の態様では、バーナー装置300は、混合装置250から燃料/燃料混合物を受け取り、燃焼室222の入口部分222Aの中に燃料/燃料混合物の実質的に一様な線形流れを導くように構成されてよく、蒸散流体210のらせん状の流れは、燃焼室222内部で燃料/燃料混合物および/または燃焼生成物の渦巻きを誘発するように構成される。
【0045】
それぞれのかかる構成は別々の目的および/または効果を有する。たとえば、蒸散流体210のらせん状の流れに対向する方向で燃料/燃料混合物の流れを導くことは、対向する流れの間の摩擦のため、燃料/燃料混合物で誘発される渦巻きを減速または停止することがある。したがって、燃料/燃料混合物の燃焼も減速されてよい。逆に、燃料/燃料混合物が蒸散流体210のらせん状の流れと同じ方向で導かれる場合、燃料/燃料混合物および/または燃焼生成物の渦巻きが強化され、おそらく燃料/燃料混合物の実質的に完全な燃焼に必要とされる時間を短縮する、またはそれ以外の場合、プロセスの間に燃焼される燃料/燃料混合物の割合を増加する(つまり、燃料のバーンアウト率を高める)ことがある。流れは機械装置によって妨げられないので、実質的に一様な線形流れで燃料/燃料混合物を導くことは、上記に開示されるように、たとえば、燃料/燃料混合物が固体または他の微粒子を含むときに有利であってよく、その所望される渦巻きは、次いで蒸散流体210のらせん状の流れによって誘発され、その燃焼を強化できる。
【0046】
したがって、いくつかの態様では、燃焼器装置220の有効性を強化するために、かかる効果を組み合わせることができる。たとえば、
図2Eに示されるように、燃焼室222は、入口部分222Aに向かって配置される燃焼部244A、および出口部分222Bに向かって配置される事後燃焼部244Bを含んでよく、蒸散部材230は、事後燃焼部244Bでの燃焼生成物の誘発された渦巻きを燃焼部244A内での燃料/燃料混合物の誘発された渦巻きに関して逆転するために、事後燃焼部244B上での蒸散流体210のらせん状の流れが、燃焼部244A上での蒸散210のらせん状の流れに対向するように構成されてよい。かかる事例では、燃料/燃料混合物は、上述されたように、その燃焼を強化するために、蒸散流体210のらせん状の流れと同じ方向で燃焼室222の燃焼部244Aの中に導かれてよい。事後燃焼部244B内での蒸散流体210のらせん状の流れの方向を逆転することは、たとえば、局所的なずれを増し、それによって燃焼生成物の混合を強化することによって燃焼生成物の「逆の渦巻き」を達成してよい。このように行う上で、燃焼生成物は、燃焼器装置220からより均質な流出流量流れを提供するために、出口部分222Bからより迅速にかつ完全に流出流体流れの中に混合されてよい。
【0047】
追加の態様では、蒸散部材230は、蒸散流体210のらせん状の流れが、入口部分222Aと出口部分222Bとの間での燃料/燃料混合物および/または燃焼生成物の誘発された渦巻きを交互に逆転するために、少なくともその部分に沿って交互に逆転されるように構成されてよい。蒸散流体210の対向するらせん状の流れのかかる交互の部分は、たとえば、局所的な乱流を増し、よって燃料/燃料混合物および/または燃焼生成物の混合を増大してよい。いくつかの事例では、たとえばかかる局所的な乱流をさらに増して、燃焼室222の内部のまたは燃焼室222を通る流路での燃焼原動力、キネティックス、および/または他の変化を誘発するために、蒸散部材230は、それを通って延在する少なくとも1つの蒸散ポート246(たとえば、
図2Cを参照)をさらに含んでよく、その少なくとも1つの蒸散ポート246は、燃焼原動力およびキネティックスだけではなく、その流量特性にもおそらく影響を与えるように燃料/燃料混合物および/または燃焼生成物の中へ蒸散流体210の補足的な線形流れを導くように構成されてよい。いくつかの態様では、燃焼室222内部の流れを二又に分ける、またはそれ以外の場合流れを蒸散流体の噴流の回りで「曲げ」させ、それによって流れを燃焼室222の長さに沿って形成できるようにするには、その少なくとも1つの側面方向に延在する蒸散ポート246を通って導かれる蒸散流体の適切に構成される噴流で十分であってよい。かかる蒸散ポート246の内の2つ以上が使用される場合、蒸散ポート246は、たとえばより高温の燃焼領域を燃焼室222内部の他のセクタに移動する(つまり、燃焼室222の特定のセクタの局所化された加熱または過熱を妨げる)、または異なる温度を有する異なる燃焼領域間で混合を誘発するために、混合室222に関して角張っておよび/または長手方向に相隔てられてよい。
【0048】
いくつかの事例では、外側蒸散部材331、圧力抑制部材338、伝熱ジャケット336、および/または断熱層339が、蒸散物質/流体210の、内側蒸散部材332に対するおよび内側蒸散部材332を通る、燃焼室222の中への送達に関して、「マニホールド」効果を提供する(つまり、実質的に一様に分散される供給を提供する)ように、個別に、または組み合わせて構成されてよい。すなわち、蒸散物質210の燃焼室222の中への(流量、圧力、または他の任意の適当かつ適切な処置という点で)実質的に一様な供給は、外側蒸散部材331、圧力抑制部材338、伝熱ジャケット336、および/または断熱層339を、蒸散物質210の内側蒸散部材332への一様な供給を提供するように構成することによって達成されてよい、または、内側蒸散部材332の外面の回りでの蒸散物質210の供給は、燃焼室222の内部、燃焼室222の回り、または燃焼室222に沿った蒸散物質210の実質的に一様な分散が達成されるように特にカスタマイズされ、構成されてよい。加熱燃焼流体渦は、それ以外の場合、一様ではない蒸散流体流れと燃焼流体流れとの間の相互作用を通して形成され、かかる渦は、同様に内側蒸散部材332に衝突し、おそらく内側蒸散部材332に損傷を与えることがあるので、蒸散物質210の燃焼室222の中へのかかる実質的に一様な分散および供給は、かかる加熱燃焼流体の渦の形成を最小限に抑えてよい、または妨げてよい。いくつかの態様では、燃焼室222内部での蒸散物質210の分散の一様性は、少なくとも局所的な方法または基準枠で望ましい。すなわち、燃焼室222に沿った相対的に大きな距離では、蒸散物質/流体210の流れの一様性は変わることがあるが、流れが円滑に変わり、潜在的に損傷を与える渦を形成することにつながることがある流れプロファイルの不連続性を妨げることが望ましい、および/または必要な場合がある。
【0049】
また、内側蒸散部材332の表面は、燃焼生成生物によって加熱される。したがって、多孔性内側蒸散部材332は、内側蒸散部材332を通過する蒸散流体210が、多孔性内側蒸散部材332が同時に冷却される間に加熱されるように適切な熱伝導率を有するように構成されてよく、その結果、燃焼室222を画定する内側蒸散部材332の温度は、最高燃焼温度の領域内で、たとえば約200℃と約700℃との間(および、いくつかの事例では最高約1000℃)になる。内側蒸散部材332と協調する蒸散流体210によって形成される流体バリア壁またはバッファ層231は、このようにして内側蒸散部材332と高温燃焼生成物とスラグまたは他の汚染物質粒子との間の相互作用を緩衝し、したがって内側蒸散部材332を接触、汚れ、または他の損傷から緩衝する。さらに、約400℃と約3500℃との間の温度で、燃焼室222の出口部分222Bの回りで蒸散流体210および燃焼生成物の流出混合物を調整するように、内側蒸散部材332を介して燃焼室222の中に導入される蒸散流体210。
【0050】
当業者は、約400℃と約3500℃との間の温度での燃焼室222の蒸散流体210および燃焼生成物の流出混合物に対する参照が、必ずしも流出混合物の温度が燃焼室222の出口部分222Bの出口でピークに達することを示していないことを理解する。実際に、燃焼器温度は、つねに、たとえば(相対温度がy軸に沿って描かれ、入口部分と出口部分との間の燃焼室に沿った相対位置がx軸に沿って描かれる)
図1Aに概略で示されるように、燃焼室222の入口部分222Aと出口部分222Bの間の、その長さに沿ったどこかではるかに高い温度に達する。一般に、流出混合物が燃焼室222を出る前に反応が完了するように十分に迅速に燃焼室222での燃焼プロセスを完了するために十分に高温を達成することが望ましいことがある。燃焼室222内部でピーク温度が達成された後、流出混合物の温度は、いくつかの事例では、蒸散物質/流体210からの希釈のために下がる。
【0051】
一定の態様に従って、本書に開示されるように燃焼器装置220内での実現に適した蒸散流体210は、バリア壁/バッファ層231を形成するのに十分な、内側蒸散部材332を通る量のおよび圧力の流れで提供でき、作動流体/燃焼生成物流出流れの適切な最終出口温度を生じさせるために燃焼生成物を希釈できる任意の適切な流体を含んでよい。いくつかの態様では、CO
2はそれによって形成される流体バリア壁/バッファ層が、望ましい可視光およびUV光の吸収特性だけではなく、良好な断熱特性も示すことがあるという点で、適切な蒸散流体210であってよい。実現される場合、CO
2は超臨界流体として使用される。適切な蒸散流体の他の例は、たとえばH
2O、または下流プロセスからリサイクルされる冷却された燃焼生成物ガスを含む。いくつかの燃料は、動作中に使用される燃料源の噴射前に、燃焼室222内の適切な運転温度および運転圧力を達成するために、燃焼器装置の起動中の蒸散流体として使用されてよい。いくつかの燃料は、燃料源として石炭からバイオマスに切り替えるとき等、燃料源間の切り替えの間に燃焼器装置220の運転温度および運転圧力を調整または維持してもよい。いくつかの態様では、2つ以上の蒸散流体が使用できる。蒸散流体210は、蒸散流体210が流体バリア壁/バッファ層231を形成する燃焼室222の温度条件および圧力条件のために最適化できる。
【0052】
したがって、本開示の態様は、高効率燃料燃焼器装置220および関連付けられた作動流体236を使用することによって、電力等の動力を生産するための装置および方法を提供する。作動流体236は、適切な燃料254およびオキシダント242、および効率的な燃焼のためにも有用であってよいあらゆる関連付けられた材料とともに燃焼器装置220の中に導入される。特定の態様では、相対的に高温(たとえば、約1300℃と約5,000℃との間の範囲内)で動作するように構成される燃焼器装置220を実現すると、作動流体236は、電力生産のためにそこからエネルギーを抽出することによって流体の流れを活用できるように、燃焼器装置220を出る流体流れの温度の緩和を促進できる。
【0053】
一定の態様では、蒸散冷却式の燃焼器装置220は、たとえばおもにCO
2および/またはH
2Oを含む、循環された作動流体236を使用する発電システムでも実現できる。1つの特定の態様では、燃焼器装置220に進入する作動流体236は、好ましくは実質的にCO
2だけを含む。燃焼器装置220では、酸化条件下で動作すると、CO
2作動流体236は、燃料254、オキシダント242、および燃料燃焼プロセスのあらゆる生成物の内の1つまたは複数の構成要素と混じり合うことができる。したがって、本書で流出流体流れとも参照されることがある、燃焼器装置220の出口部分220Bに向かって導かれ、燃焼器装置220を出る作動流体236は、
図1に示されるように、H
2O、O
2、N
2、アルゴン、SO
2、SO
3、NO、NO
2、HCl、Hg、および燃焼プロセスの生成物(たとえば、灰または液化灰等の微粒子または汚染物質)であってよい微量の他の成分等のより少量の他の物質とともに、おもにCO
2(作動流体がおもにCO
2である事例では)を含んでよい。
図1の要素150を参照すること。還元条件下での燃焼器装置220の動作は、
図1の要素175に示されるように、CO
2、H
2O、H
2、CO、NH
3、H
2S、COS、HCl、N
2およびアルゴンを含む考えられる成分の異なるリストがある流出流体流れを生じさせることがある。本書にさらに詳しく説明されるように、燃焼器装置220と関連付けられる燃焼プロセスは、流出流体流れの性質が、還元または酸化のどちらかとなり、どちらの事例も特定の利点を提供できるように制御されてよい。
【0054】
特定の態様では、燃焼器装置220は、たとえば約1300℃と約5000℃との間の範囲で、相対的に高い運転温度で燃料254の相対的に完全な燃焼を提供できる、高効率の蒸散冷却式燃焼器装置として構成されてよい。かかる燃焼器装置220は、いくつかの事例では、1つまたは複数の冷却流体、および/または1つまたは複数の蒸散流体210を実現してよい。燃焼器装置220との関連で、追加の構成要素も実現されてよい。たとえば、空気分離装置はN
2およびO
2を分離するために設けられてよく、燃料噴射器装置は、空気分離装置からO
2を受け取り、そのO
2を、CO
2および/またはH
2O、およびガス、液体、超臨界流体、または高密度CO
2流体中でスラリー化される固形粒状燃料と結合させるために設けられてよい。
【0055】
別の態様では、蒸散冷却式燃焼器装置220は、燃焼器装置220の燃焼室222の中に加圧された燃料流れを噴射するための燃料噴射器を含んでよく、燃料流れは、処理された炭素質燃料254、流体化媒体255(本書に説明されるように、作動流体236を含んでよい)、および酸素242を含んでよい。酸素(濃縮済み)242およびCO
2作動流体236は、均質超臨界混合物として結合できる。存在する酸素の量は、燃料を燃焼し、所望される組成を有する燃焼生成物を生成するために十分であってよい。燃焼器装置220は、燃焼室222を画定する多孔性蒸散部材230の壁を通して燃焼容積に進入する蒸散流体210だけではなく、燃料流れを受け取るための高圧高温燃焼容積としても構成される燃焼室222も含んでよい。蒸散流体210の送り速度は、燃焼器装置出口部分/タービン入口部分の温度を所望される値に制御する、および/または蒸散部材230を、蒸散部材230を形成する材料と互換性がある温度まで冷却するために使用されてよい。蒸散部材230を通して導かれる蒸散流体210は、燃焼室222を画定する蒸散部材230の表面に流体/バッファ層を提供し、流体/バッファ層は、一定の燃料燃焼から生じる灰または液体スラグの粒子が蒸散部材230の露呈されている壁と相互作用するのを妨げてよい。
【0056】
高効率燃焼器態様は、たとえば多様なグレードおよびタイプの石炭、木材、油、燃料油、天然ガス、石炭ベースの燃料ガス、タールサンドからのタール、瀝青、バイオ燃料、バイオマス、藻類、および等級別可燃性固形廃棄物を含むさまざまな燃料源で動作するように構成されてもよい。特に、石炭粉または粒子状固体が使用できる。例示的な石炭燃焼式燃焼器装置220が本書に開示されているが、当業者は、燃焼器装置220で使用される燃料は特定の等級の石炭に制限されないことを理解する。さらに、本書に開示される酸素燃料式の燃焼器装置によって維持される高圧および高温のため、石炭、(タールサンドに由来する瀝青を含む)瀝青、タール、アスファルト、使用済みタイヤ、燃料油、ディーゼル油、ガソリン、ジェット燃料(JP−5、JP−4)、天然ガス、炭化水素性物質のガス化または熱分解に由来するガス、エタノール、固形バイオ燃料および液状バイオ燃料、バイオマス、藻類、ならびに処理済みの固形のごみまたは廃棄物を含むさまざまな燃料タイプが実現されてよい。すべてのかかる燃料は適切に処理されて、十分な速度で、および燃焼室222内部の圧力を超える圧力で燃焼室222の中への噴射を可能にする。かかる燃料は、周囲温度で、または昇温(たとえば、約38℃と約425℃の間)で適切な流動性および粘性のある液体、スラリー、ゲル、またはペーストの形をとってよい。あらゆる固形燃料物質は研削されるまたは細かく切断されるまたはそれ以外の場合処理されて、適宜に、粒径を削減する。適当な形を達成して、高圧ポンピングのための流量要件を満たすために、必要に応じて流体化媒体またはスラリー化媒体を添加することができる。言うまでもなく、流体化媒体は、燃料の形(つまり、液体または気体)に応じて必要とされないことがある。同様に、循環される作動流体が、いくつかの態様で流体化媒体として使用されることもある。
【0057】
いくつかの態様では、燃焼室222は、約1,300℃と約5,000℃との間の燃焼温度を持続するように構成される。燃焼室222は、燃料流れ(および作動流体236)が、燃焼が発生する圧力よりも大きい圧力で燃焼室222の中に噴射、またはそれ以外の場合、導入できるようにさらに構成されてよい。石炭微粒子が炭素質燃料である場合、石炭粒子は、注入可能なスラリーを形成するために液状CO
2または水を、研削した固形燃料と混合することによって形成される、超臨界のCO
2流体または水の中でスラリー化できる。かかる事例では、液体CO
2は、たとえば約450kg/m
3と約1100kg/m
3との間の範囲の密度を有することがあり、固形燃料の質量部分は約25%と約95%との間(たとえば、約25重量%と約55重量%との間)の範囲となることがある。任意選択で、石炭を燃焼して燃焼生成物の所望される組成を生じさせるほど十分に、多量のO
2を石炭/CO
2スラリーと混合することができる。任意選択で、そのO
2は燃焼室222の中に別に噴射できる。燃焼器装置220は、燃焼室230を画定する蒸散部材230を少なくとも部分的に取り囲む圧力抑制部材338を含んでよく、断熱部材339が圧力抑制部材338と蒸散部材230との間に配置できる。いくつかの事例では、水循環ジャケット337を画定するジャケット付き水冷システム等の除熱装置350が、圧力抑制部材338と(つまり、燃焼器装置220の「外郭」を形成する圧力抑制部材338の外部に)係合してよい。燃焼器装置220の蒸散部材230に関連して実現される蒸散流体210は、たとえば、少量のH
2Oおよび/またはN
2もしくはアルゴン等の不活性ガスと混合されるCO
2である場合がある。蒸散部材230は、たとえば、多孔性金属、セラミック、複合材料マトリックス、層状マニホールド、任意の他の適当な構造、またはその組合せを含んでよい。いくつかの態様では、燃焼室222内部の燃焼は、後にそれに関する膨張のためにタービン等の電力生産装置に導かれてよい高圧、高温の流出流体流れを生じさせることがある。
【0058】
図1に示されている装置態様に関して、燃焼器装置220は、約355バールの圧力で酸素242を受け取るように構成されてよい。さらに、粒子状固体燃料(たとえば、微粉炭)254、および流動化流体(たとえば、液体CO
2)255も約355バールの圧力で受け取られてよい。同様に、作動流体(例えば、加熱され、高圧で、おそらくリサイクルされたCO
2流体)236も約355バールの圧力、および約835℃の温度で提供されてよい。ただし、本開示の態様に従って、燃料混合物(燃料、流動化流体、酸素、および作動流体)は、約40バールと約500バールとの間の圧力で燃焼室222の入口部分222Aで受け取られてよい。本書に開示されるように、燃焼器装置220の態様によって実現される相対的に高い圧力は、それによって生じるエネルギーを、最小容積で相対的に高強度に集中させ、基本的に相対的に高いエネルギー密度を生じさせる機能を果たしてよい。相対的に高いエネルギー密度は、より低い圧力でよりもさらに効率的にこのエネルギーの下流処理を実行できるようにし、よって技術に実行可能性の要因を与える。したがって、本開示の態様は、既存の発電所よりも大きな桁で(つまり、10倍から100倍で)エネルギー密度を提供してよい。より高いエネルギー密度はプロセスの効率を高めるが、設備の規模および質量、ひいては設備のコストを削減することによって、熱エネルギーから電気へのエネルギー変換を実現するために必要とされる設備のコストも削減する。
【0059】
実現時、CO
2三重点圧力とCO
2臨界圧力との間の任意の圧力で液体であるCO
2流動化流体255は、微粉炭燃料254と混合され、質量または他の質量分率で、約55%のCO
2および約45%の微粉炭の割合の混合物を形成し、したがって結果として生じるスラリーは適当なポンプによって(流体スラリーとして)約355バールの有名な圧力で燃焼室222に注入できる。いくつかの態様では、CO
2および微粉炭は、ポンピングの前に、約13バールの圧力で混合されてよい。O
2流れ242はリサイクルCO
2作動流体流れ236と混合され、その組合せは次いで微粉炭/CO
2スラリーと混合され、単一の流体混合物を形成する。O
2対石炭の割合は、余分なO
2の追加1%で石炭を完全に燃焼するほど十分になるように選択されてよい。別の態様では、O
2の量は、石炭の一部が実質的に完全に酸化でき、一方、別の部分は部分的にだけ酸化され、還元中であり、なんらかのH
2+CO+CH
4を含む流体混合物を生じさせるように選択することができる。かかるようにして、燃焼生成物の二段階膨張が、必要に応じてまたは所望されるように、第1段階と第2段階との間のなんらかのO
2注入および再加熱で実現されてよい。さらに、燃料(石炭)は第1の段階(つまり、約400℃と約1000℃の間の温度での第1燃焼室)で部分的にのみ酸化されるので、第1の段階を出る炭素質燃料内のあらゆる不燃性要素は燃焼生成物内部で固形微粒子として形成される。たとえば、渦フィルタおよび/またはキャンドルフィルタによる固形微粒子の濾過時、炭素質燃料は、次いで、約1300℃と約3500℃との間の最終燃焼生成物温度を生じさせるために第2の段階(つまり、第2の燃焼室)で実質的に完全に酸化されてよい。
【0060】
追加の態様で、燃焼温度は約1300℃と約5000℃の間の範囲となることがあるが、燃料混合物を介して燃焼室222内に存在するCO
2の量は、約2400℃の燃焼温度(断熱またはそれ以外)を達成するために十分となるように選択される。O
2+石炭スラリー+加熱されたリサイクルCO
2の燃料混合物は、一態様では、その燃料混合物の自動点火温度未満の結果として生じる温度で提供される。示されている条件を達成するために、たとえば固体石炭を微粉炭機で研削することによって、固形炭素質燃料(たとえば、石炭)は、好ましくは約50ミクロンと約200ミクロンとの間の平均粒径で提供される。かかる研削プロセスは、約50ミクロン未満の粒子の最小質量分量を提供するように構成されるミルで実行されてよい。このようにして、液化されて、燃焼プロセスで液体スラグ液滴を形成するどのような不燃性要素も、直径が約10ミクロンを超えてよい。いくつかの態様では、約400℃の温度のCO
2+O
2+微粉炭スラリーを含む燃料混合物は、約355バールの圧力で燃焼室222に導かれてよく、燃焼室222内部での燃焼時の正味圧力は約354バールであってよい。燃焼室222内部の温度は、約1300℃と約5000℃との間となり、いくつかの好ましい態様では、単一の燃焼段階だけが実現される。
【0061】
燃焼器装置220の一例では、本書に開示されるように、正味500MWの電力システムが、以下の条件で、約58%の効率(低位発熱量ベース)でCH
4燃料で動作するように構成されてよい。
燃焼圧力:350atm
燃料入力:862MW
燃料流量:毎秒17.2kg
酸素流量:毎秒69.5kg
【0062】
CH
4およびO
2は、毎秒155kgのCO
2作動流体と混合され、燃焼されて、2400℃の断熱温度でCO
2、H
2O、およびいくらかの過剰なO
2を含む流出流体流れを生じさせる。燃焼室は、約1mの内径および約5mの長さを有してよい。約600℃の温度での毎秒395kgのCO
2の流れは、厚さ約2.5cmであってよい蒸散部材に向かって導かれ、蒸散部材を通って導かれる。このCO
2は、蒸散部材に対する燃焼室内部の燃焼の放射から生じ、蒸散部材を通って伝導される熱で対流によって加熱される。
【0063】
燃焼室を画定するその内面の回りで、蒸散部材表面温度は約1000℃であってよい。一方、毎秒636.7kgの流出流体流れは約1350℃の温度であってよい。かかる事例では、燃焼生成物の燃焼および希釈のための平均滞留時間は約1.25秒である。さらに、蒸散部材を通って燃焼室に進入する蒸散流体の放射状に内向きの平均速度は、毎秒約0.15mである。
【0064】
石炭燃料式の燃焼器装置の例を補正すると、燃焼室内での燃焼生成物の燃焼および希釈のための平均滞留時間が約2.0秒であり、燃焼室長さが約8m、内径が1mである構成が生じる。したがって、希釈(蒸散)流体としてCO
2を用いるシステムの正味効率は、約54%(低位発熱量ベース)である。かかる事例では、蒸散流体の放射状に内向きの速度は、毎秒約0.07mであってよい。かかる条件下で、
図5は、そこから1mmの距離から蒸散部材に向かって毎秒約50mで放射状に外向きに突出する直径50ミクロンの液体スラグ粒子の概略軌跡を示す。示されるように、粒子は蒸散部材を通る蒸散流体流れによって流出流体流量流れの中に戻される前に蒸散部材から最小0.19mmに到達するだろう。かかる事例では、蒸散部材を通る蒸散流体流量は、蒸散部材と、燃焼プロセスから生じる液体スラグ粒子との間の相互作用を効果的に緩衝する。
【0065】
開示された燃焼器装置の態様は、当業者によって理解されるように、関連付けられた方法を使用して適当な電力生産システムで実現されてよい。たとえば、かかる電力生産システムは、燃料(および任意選択で流動化媒体)、オキシダント、およびCO
2作動流体を提供するための1つまたは複数の噴射器、燃料混合物を燃焼するための少なくとも1つの燃焼段階を有する本書に開示されるような蒸散冷却式燃焼器装置を含んでよく、流出流体流れを提供する。蒸散装置(たとえば、
図6の要素500を参照)は、流出流体流れ(燃焼生成物および作動流体)を受け取り、流出流体流れに反応して、それに関連するエネルギーを運動エネルギーに変換するように構成されてよく、変換装置は、たとえば入口および出口を有する電力生産タービンであってよく、電力は、流出流体流れが膨張するにつれて生産される。さらに詳細には、タービンは、入口と出口との間の所望される圧力比で流出流体流れを維持するように構成されてよい。ジェネレータ装置(たとえば、
図6の要素550を参照)も、タービンの運動エネルギーを電気に変換するために設けられてよい。つまり、流出流体流れは、高圧からより低い圧力に膨張されてよく、次いで電力に変換できる軸動力を生じさせる。熱交換器は、タービン出口からの流出流体流れを冷却するため、および燃焼器装置に進入するCO
2作動流体を加熱するために設けられてよい。1つまたは複数の装置が、回収または処分のために、熱交換器を離れる流出流体流れを純粋なCO
2および1つまたは複数の追加の成分に分離するために設けられてもよい。かかるシステムも、精製されたCO
2を圧縮するための、および残りの部分が熱交換器によって加熱される作動流体としてリサイクルされる一方、流出流体流れから分離されたCO
2の少なくとも一部を加圧パイプラインの中に送達するための1つまたは複数の装置を含んでよい。ただし、当業者は、本開示が流出流体流れの直接的な実現を含むが、いくつかの事例では、相対的に高温の流出流体流れが間接的に実現されてよいことを理解する。すなわち、流出流体流れは熱交換器に導かれてよく、それに関連付けられる熱エネルギーは、第2の作動流体流れを加熱するために使用され、加熱された第2の流体作動流れは、次いで変換装置(たとえば、タービン)に導かれて発電する。さらに、当業者は、他の多くのかかる装置が本開示の範囲内にあってよいことを理解する。
【0066】
本開示の特定の態様では、炭素質燃料の組成は、不燃性要素(つまり、汚染物質)がその中に含まれ、燃焼プロセスに続く燃焼生成物/流出流体流れに存在したままになるほどである。上述は、炭素質燃料が石炭等の固体である場合であってよい。それらの態様では、流出流体流れがそこに直接的に送られる場合、流出流体流れの直接的な実現は、以後の変換装置(タービン)上でのかかる不燃性要素の蓄積、または以後の変換装置(タービン)に対する他の損傷を生じさせることがある。当業者は、液体またはガス(つまり、天然ガス)等の炭素質燃料の他の形を実現するときにかかる不燃性要素が必ずしも存在しないことがあることも理解する。したがって、固体炭素質燃料源および流出流量流れと変換装置との間の直接的な相互作用を実現する態様では、パワーシステム(燃焼器装置および変換装置)は、燃焼器装置と変換装置との間に置かれる分離機装置をさらに含んでよい。かかる事例では、分離機装置は、燃焼生成物/流出流体流れが変換装置に導かれる前に、それによって受け取られた燃焼生成物/流出流体流れから液化不燃性要素を実質的に除去するように構成されてよい。さらに、分離機装置を実現する態様では、開示される蒸散物質は、分離機装置の上流と下流の両方で導入されてよい。さらに詳細には、蒸散物質は、最初に、不燃性要素の液化温度を超えて分離機装置に進入する蒸散物質および燃焼生成物の混合物を調整するために、蒸散部材を介して、および分離機装置の上流で燃焼室の中に導入されてよい。分離機装置の後で、蒸散物質送達装置(たとえば、
図6の要素475を参照)は、約400℃と約3500℃との間の温度で変換装置に進入する、蒸散物質および燃焼生成物の混合物を調整するために、分離機装置を出て、実質的に液化不燃性要素がそこから除去された燃焼生成物に蒸散物質を送達するように構成される。
【0067】
上述されたように、燃焼器装置の態様は、固体炭素質燃料中の不燃性要素を燃焼プロセスの間に液化させる燃焼温度を達成する能力を含んでよい。かかる事例では、たとえば、
図4に示されるサイクロン分離器のような分離機装置340等の不燃性要素を除去するための設備が適用されてよい。一般に、本開示によって実現されるかかるサイクロン分離器の態様は、燃焼生成物/流出流体流れ、およびそれと関連付けられた液化不燃性要素を受け取るように構成される入口遠心分離器装置100A、および液化不燃性要素がそこから実質的に除去された燃焼生成物/流出流体流れを排出するように構成される出口遠心分離機装置100Bを含む、複数の直列に配列される遠心分離器装置100を含んでよい。各遠心分離機装置100は、複数の遠心分離器要素、つまり中心コレクタパイプ2の回りで並列に動作可能に配列されるサイクロン1を含み、それぞれの遠心分離要素/サイクロン2は、燃焼生成物/流出流体流れから液化不燃性要素の少なくとも一部を除去し、液化不燃性要素の除去された部分をサンプ20に導くように構成される。かかる分離機装置340は、昇温で動作するように構成されてよく、したがって遠心分離機装置およびサンプを収容するように構成される圧力抑制ハウジング125をさらに含んでよい。かかる態様に従って、圧力抑制ハウジング125は、やはり燃焼装置220を取り囲む圧力抑制部材338の延長部であってよい、または圧力抑制ハウジング125は、燃焼器装置220と関連付けられる圧力抑制部材338を係合できる別個の部材であってよい。どちらの事例でも、流出流体流れを介して分離機装置340によって経験される昇温温度のため、圧力抑制ハウジング125は、それから熱を除去するためにそれと動作可能に係合される、その上に循環される液体を有する(不図示)伝熱ジャケット等の熱分散システムを含んでもよい。いくつかの態様では、熱回収装置(不図示)は、伝熱ジャケットと動作可能に係合してよく、熱回収装置は、伝熱ジャケット内で循環される液体を受け取り、その液体から熱エネルギーを回収するように構成されてよい。
【0068】
さらに詳細には、
図4に示される(スラグ除去)分離機装置340は、そこから流出流体流れ/燃焼生成物を受け入れるためにその出口部分222Bの回りに燃焼器装置220と直列で配置されるように構成される。液体スラグ(不燃性要素)液滴がその中にある燃焼器装置220からの蒸散冷却式流出流体流れは、円錐レデューサー10を介して入口遠心分離器装置100Aの中心コレクタ設備2Aに進入するように導かれる。一態様では、(当業者は、かかる分離器装置が、必要に応じてまたは所望されるように、1つ、2つ、3つまたは4つ以上の遠心分離器装置を含んでよいことを理解するが)分離器装置340は、3つの遠心分離器装置100A、100B、100Cを含んでよい。この事例では、直列で動作可能に配列される3つの遠心分離器装置100A、100B、100Cは、3段階サイクロン分離装置を提供する。各遠心分離器装置は、たとえば、対応する中心コレクタパイプ2の外周の回りに配列される複数の遠心分離器要素(サイクロン1)を含む。入口遠心分離器装置100Aおよび中間遠心分離機装置100Cの中心コレクタ設備2Aおよび中心コレクタパイプ2は、それぞれその出口端部で密封される。それらの事例では、流出流体流れは、それぞれの遠心分離器装置100の遠心分離器要素(サイクロン1)のそれぞれに対応する分岐チャネル11の中に導かれる。分岐チャネル11は、それぞれのサイクロン1の入口端部を係合して、(たとえば、サイクロン1に進入する流出流体流に、渦巻き流れでサイクロン1の壁と相互作用させる)その接線方向入口を形成するように構成される。各サイクロン1からの出口チャネル3は、次いでそれぞれの遠心分離器装置100の中心コレクタパイプ2の入口部分の中に経路を定められる。出口遠心分離器装置100Bで、(実質的にそこから分離された不燃性要素を有する)出口流体流れは、出口遠心分離機装置100Bの中心コレクタパイプから、コレクタパイプ12および出口ノズル5を介して導かれ、したがって「清潔な」流出流体流れは、次いで、蒸散装置と関連付けられるプロセス等の以後のプロセスに導くことができる。したがって、例示的な3段階サイクロン分離装置は、流出流体流れ中で、質量でたとえば5ppmまでのスラグの除去を可能にする。
【0069】
分離器装置340の各段階で、分離された液体スラグは、サンプ20に向かって伸長する出口管4を介してサイクロン1のそれぞれから導かれる。分離された液体スラグは、次いで、そこからの成分の除去および/または回収のために、サンプ20および圧力抑制ハウジング125から伸長する出口ノズルまたは管14の中に導かれる。スラグの除去を達成する上で、液体スラグは、水冷部6を通して、またはそれ以外の場合高圧の冷水接続を有する部分を通して導かれてよく、水との相互作用が液体スラグを凝固させる、および/または粒状化させる。凝固したスラグおよび水の混合物は、次いで、容器(収集設備)7内で、適当な弁9を通して除去できるスラグ/水流体混合物に分離されてよい。一方、任意の残りのガスは、別個の線路8を介して除去されてよい。
【0070】
分離器装置340は、相対的に高温の流出流体流れとともに(つまり、不燃性要素を相対的に低い粘度の液体の形で維持するために十分な温度で)実現されるので、いくつかの事例では、燃焼生成物/流出流体流れおよびそれと関連付けられる液化不燃性要素の内の1つに露呈される分離機装置340の表面が、高温抵抗、高耐食性、および低熱伝導率の内の少なくとも1つを有するように構成される材料から成ることが望ましいことがある。かかる例はいかなる形でも制限的であることが意図されていないが、かかる材料の例は、酸化ジルコニウムおよび酸化アルミニウムを含んでよい。したがって、一定の態様では、分離器装置340は、燃焼生成物/流出流体流れから液化不燃性要素を実質的に除去し、少なくともサンプ20からのその除去まで低粘性液体の形で不燃性要素を維持するように構成される。
【0071】
したがって、本書に開示されるように、固体炭素質燃料の事例でのスラグ分離は、いくつかの事例では、保守および検査のためにシステムから容易に抽出され得る単一の装置(分離器装置340)内で達成されてよい。ただし、かかる態様は、
図6に示されるような追加の優位点を提供してよく、それによってシステムは特定の燃料源の可用性に関して、動作中の「フレックス燃料」手法を実現するように容易に構成され得る。たとえば、単一装置の分離機装置340は、燃焼器装置220が燃料源として固体炭素質燃料を使用したときに、燃焼器装置220と変換装置(タービン)500との間でシステムに設置されてよい。万一液体または気体の炭素質燃料源に変更することが望ましい場合、分離機装置340は、燃焼器装置220からの流出流体流れが、変換装置500に直接的に誘導できるように、システムから取り外されてよい(つまり、上述されたように必要でない場合がある)。したがって、万一燃料可溶性が後に固体炭素質燃料源を決定づける場合には、システムも分離器装置340を実現するために容易に戻されてよい。
【0072】
前記説明および関連図面に教示の利点が提示されている本書に述べられる本開示の多くの変更形態および他の態様が、本開示が関する当業者に思い浮かぶだろう。たとえば、いくつかの態様では、燃焼室222内部で蒸散流体のらせん状の流れを提供するためには、内側蒸散部材332へのおよび内側蒸散部材332を通る燃焼室222の中への蒸散物質/流体210の総流量の一部しか必要ではないことがある。1つの事例では、たとえば、燃焼室222に進入する蒸散流体210の総質量流量の最高約90%が、固形または液状の粒子または汚染物質が燃焼室222を画定する内側蒸散部材332の壁に衝突するのを妨げるために十分な燃焼室222の中への蒸散流体210の放射状の流れを維持しつつ、らせん状の流れを提供するまたは誘発するために実現されてよい。
【0073】
さらに、いくつかの態様では、燃焼器装置220は、たとえば固形燃料(つまり、石炭)スラリーを使用する部分的な酸化装置として構成、配置されてよい。かかる事例では、部分酸化燃焼器装置200は、たとえば約1600℃までの運転温度、または他の事例では、約1400℃と約1500℃との間の範囲内の運転温度を有するように構成されてよく、燃料中の炭素バーンアウトは約2%未満、および好ましくは1%未満でなければならない。これらの事例では、相対的により低い運転温度が、相対的に高い炭素変換率および使用可能熱を促進しながら、その燃焼を最小限に抑えることによってH
2およびCOの生成を容易にする。
【0074】
他の態様では、燃焼器装置220は、たとえば生成物ガスの解離を容易にするのに十分な断熱火炎温度または他の温度と関連付けられてよい、約5000℃以上の相対的に高い流出温度で動作するように構成されてよい。たとえば、CO
2は約1600℃を著しく上回って解離する。
【0075】
さらに他の態様では、バーナー装置300は、炭素質燃料、およびその上流の拡散CO
2成分の事前混合がないように構成され、配置されてよい。さらに、O
2も、たとえばノズルの別のセットを通して、または噴射ノズル(複数の場合がある)を取り囲む同心環状リングを用いてバーナー先端で導入されてよい。かかる事例では、拡散火炎は、高H
2含有率の炭素質燃料の場合に達成可能である場合がある。バーナー装置300で非常に高温を達成するために、燃料、酸素および/またはあらゆる希釈剤の予熱が必要とされることもある。
【0076】
したがって、本開示が、開示されている特定の態様に制限されていないこと、および変形形態および他の態様が添付特許請求の範囲の範囲内に含まれることが意図されることが理解されるべきである。本書では特定の用語が利用されているが、それらは一般的かつ説明的な意味だけで使用されており、制限のために使用されていない。