(54)【発明の名称】リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極の製造方法及びリチウムイオン二次電池の製造方法
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0025】
以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変型例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル酸〜」とは、「アクリル酸〜」および「メタクリル酸〜」の双方を包括する概念である。また、「〜(メタ)アクリレート」とは、「〜アクリレート」および「〜メタクリレート」の双方を包括する概念である。
【0026】
1.電極用バインダー組成物
本実施の形態に係る電極用バインダー組成物は、蓄電デバイスに使用される電極を作製するためのバインダー組成物であって、重合体(A)と、イソチアゾリン系化合物(B)と、液状媒体(C)と、を含有する。以下、本実施の形態に係る電極用バインダー組成物に含まれる各成分について詳細に説明する。
【0027】
1.1.重合体(A)
本実施の形態に係る電極用バインダー組成物に含まれる重合体(A)は、液状媒体(C)中に粒子として分散されたラテックス状であることが好ましい。電極用バインダー組成物がラテックス状であると、電極活物質と混合して作製される電極用スラリーの安定性が良好となり、また電極用スラリーの集電体への塗布性が良好となるため好ましい。以下、液状媒体(C)中に粒子として分散された重合体(A)のことを「重合体粒子(A)」という。
【0028】
重合体粒子(A)としては、一般に市販されているラテックスを使用してもよい。本実施の形態に係る電極用バインダー組成物が正極を作製するために用いられる場合には、重合体粒子(A)は以下に説明する含フッ素系重合体粒子が好適である。
【0029】
前記含フッ素系重合体粒子は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する。この含フッ素系重合体粒子は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体(Ab)と、を有するポリマーアロイ粒子であることが好ましい。
【0030】
「ポリマーアロイ」とは、「岩波 理化学辞典 第5版.岩波書店」における定義によれば、「2成分以上の高分子の混合あるいは化学結合により得られる多成分系高分子の総称」であって「異種高分子を物理的に混合したポリマーブレンド、異種高分子成分が共有結合で結合したブロックおよびグラフト共重合体、異種高分子が分子間力によって会合した高分子錯体、異種高分子が互いに絡み合ったIPN(Interpenetrating Polymer Network)など」をいう。しかしながら、本願発明の電極用バインダー組成物に含有され得るポリマーアロイ粒子は、「異種高分子成分が共有結合によって結合していないポリマーアロイ」の中でもIPN(相互侵入高分子網目)と称されるものからなる粒子である。
【0031】
含フッ素系重合体粒子がポリマーアロイ粒子である場合、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)は、結晶性樹脂のハードセグメントが凝集して、主鎖にC−H…F−Cのような疑似架橋点を与えているものと考えられる。このためバインダー樹脂として重合体(Aa)を単独で用いると、その耐酸化性は良好であるものの、密着性および柔軟性が不十分となる。一方、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体(Ab)は、密着性および柔軟性には優れるものの、耐酸化性が低いことから、これをバインダー樹脂として単独で正極に使用した場合には、充放電を繰り返すことにより酸化分解して変質するため、良好な充放電特性を得ることができない。
【0032】
しかしながら、重合体(Aa)と重合体(Ab)とを有するポリマーアロイ粒子を使用することにより、耐酸化性と密着性とを同時に発現することができ、より良好な充放電特性を示す正極を製造することができる。なお、ポリマーアロイ粒子が重合体(Aa)と重合体(Ab)とを有する場合、耐酸化性を一層向上させることもできる。
【0033】
以下、前記含フッ素系重合体粒子を構成する各繰り返し単位について説明する。
【0034】
1.1.1.含フッ素エチレン系単量体に由来する繰り返し単位(Ma)
上述したように、本実施の形態で使用する含フッ素系重合体粒子は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する。含フッ素エチレン系単量体としては、例えばフッ素原子を有するオレフィン化合物、フッ素原子を有する(メタ)アクリレート化合物等が挙げられる。フッ素原子を有するオレフィン化合物としては、例えばフッ化ビニリデン、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン、パーフルオロアルキルビニルエーテル等が挙げられる。フッ素原子を有する(メタ)アクリレート化合物としては、例えば下記一般式(3)で表される化合物、(メタ)アクリル酸3[4〔1−トリフルオロメチル−2,2−ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]2−ヒドロキシプロピル等が挙げられる。
【化3】
(一般式(3)中、R
6は水素原子またはメチル基であり、R
7はフッ素原子を含有する炭素数1〜18の炭化水素基である。)
【0035】
上記一般式(3)中のR
7としては、例えば炭素数1〜12のフッ化アルキル基、炭素数6〜16のフッ化アリール基、炭素数7〜18のフッ化アラルキル基等が挙げられるが、これらの中でも炭素数1〜12のフッ化アルキル基であることが好ましい。上記一般式(3)中のR
7の好ましい具体例としては、例えば2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、1,1,1,3,3,3−ヘキサフルオロプロパン−2−イル基、β−(パーフルオロオクチル)エチル基、2,2,3,3−テトラフルオロプロピル基、2,2,3,4,4,4−ヘキサフルオロブチル基、1H,1H,5H−オクタフルオロペンチル基、1H,1H,9H−パーフルオロ−1−ノニル基、1H,1H,11H−パーフルオロウンデシル基、パーフルオロオクチル基等が挙げられる。
【0036】
含フッ素エチレン系単量体としては、これらのうち、フッ素原子を有するオレフィン化合物が好ましく、フッ化ビニリデン、四フッ化エチレンおよび六フッ化プロピレンよりなる群から選ばれる少なくとも1種であることがより好ましい。上記の含フッ素エチレン系単量体は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
【0037】
一般的に含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有するフッ素化重合体成分は、耐酸化性は良好であると考えられており、従来から正極用バインダー組成物に使用されることはあったが、このようなフッ素化重合体成分は密着性に劣っていた。そのため従来技術においては、種々のモディファイによってフッ素化重合体の密着性を向上させようとする検討が行われてきた。しかしながら、例えば重合体鎖に官能基を導入することによって密着性を向上する試みは、重合体の合成条件の精密な制御が必要であり、目的を達成することは困難であった。
【0038】
本願発明においては、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系重合体粒子を使用することにより、耐酸化性を劣化させることなく、密着性を発現することを可能としたものである。さらに、含フッ素系重合体粒子が、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体(Ab)と、を有するポリマーアロイ粒子として使用することにより、より効果的に耐酸化性を劣化させることなく、密着性を発現することができる。
【0039】
含フッ素系重合体粒子がポリマーアロイ粒子である場合、重合体(Aa)は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)のみを有していてもよく、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)以外の、共重合可能な他の不飽和単量体に由来する繰り返し単位を有していてもよい。このような他の不飽和単量体としては、例えば不飽和カルボン酸のアルキルエステル、不飽和カルボン酸のシクロアルキルエステル、親水性単量体、架橋性単量体、α−オレフィン、水酸基を有する化合物(ただし、前記の親水性単量体および架橋性単量体に該当するものを除く。以下同じ。)などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
【0040】
上記不飽和カルボン酸のアルキルエステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルなどを;上記不飽和カルボン酸のシクロアルキルエステルとしては、例えば(メタ)アクリル酸シクロヘキシルなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。
【0041】
上記親水性単量体としては、例えば不飽和カルボン酸、不飽和カルボン酸のヒドロキシアルキルエステル、不飽和カルボン酸の多価アルコールエステル、α,β−不飽和ニトリル化合物、水酸基を有する化合物などを挙げることができる。上記不飽和カルボン酸としては、例えば(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などを;
上記不飽和カルボン酸のヒドロキシアルキルエステルとしては、例えば(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチルなどを;
上記不飽和カルボン酸の多価アルコールエステルとしては、例えば(メタ)アクリル酸エチレングリコールなどを;
上記架橋性単量体としては、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトールなどを;
上記α,β−不飽和ニトリル化合物としては、例えばアクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデンなどを;
上記水酸基を有する化合物としては、例えばp−ヒドロキシスチレンなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することができる。
【0042】
重合体(Aa)が上記のうちの不飽和カルボン酸に由来する構成単位を有することにより、電極活物質層を製造する際に用いられる電極用スラリーの分散安定性が向上するため、電極活物質や含フッ素系重合体粒子が局所的に偏在しない、均質な電極活物質層を作製することができる。その結果、強度的にも電気的にも均質な電極活物質層となり、局所的に電極活物質層が集電体から剥離したり、電極活物質やバインダーが偏在して電位が局所的に集中することによる電極劣化を効果的に抑制することができる点で好ましい。
【0043】
重合体(Aa)における含フッ素エチレン系単量体に由来する繰り返し単位(Ma)の含有割合は、重合体(Aa)の全質量に対して、好ましくは80質量%以上であり、より好ましくは90質量%以上である。
【0044】
重合体(Aa)がフッ化ビニリデンに由来する繰り返し単位を含有する場合、その含有割合は、好ましくは50〜99質量%であり、より好ましくは80〜98質量%である。重合体(Aa)が四フッ化エチレンに由来する繰り返し単位を含有する場合、その含有割合は、好ましくは1〜50質量%であり、より好ましくは2〜20質量%である。重合体(Aa)が六フッ化プロピレンに由来する繰り返し単位を含有する場合、その含有割合は、好ましくは1〜50質量%であり、より好ましくは2〜20質量%である。
【0045】
重合体(Aa)は、上記の含フッ素エチレン系単量体、および任意的に他の不飽和単量体を、公知の方法に従って乳化重合することにより容易に製造することができる。
【0046】
1.1.2.不飽和カルボン酸エステルに由来する繰り返し単位(Mb)
上述したように、本実施の形態で使用する含フッ素系重合体粒子は、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する。一般的に、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)を有する重合体は、密着性は良好であるが、耐酸化性が不良であると考えられており、従来から正極には使用されなかった。しかしながら、本願発明は、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)と、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)と、を有する含フッ素系重合体粒子を使用することにより、良好な密着性を維持しつつ、十分な耐酸化性を発現することに成功したものである。
【0047】
上記の不飽和カルボン酸エステルは、(メタ)アクリレート化合物であることが好ましい。このような(メタ)アクリレート化合物の具体例としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸プロピレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、テトラ(メタ)アクリル酸ペンタエリスリトール、ヘキサ(メタ)アクリル酸ジペンタエリスリトール、(メタ)アクリル酸アリル、ジ(メタ)アクリル酸エチレンなどを挙げることができ、これらのうちから選択される1種以上であることができる。これらのうち、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルおよび(メタ)アクリル酸2−エチルヘキシルから選択される1種以上であることが好ましく、(メタ)アクリル酸メチルであることが特に好ましい。
【0048】
含フッ素系重合体粒子がポリマーアロイ粒子である場合、重合体(Ab)は、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)のみを有する重合体であってもよく、不飽和カルボン酸エステルに由来する繰り返し単位(Mb)のほかに、共重合可能な他の不飽和単量体に由来する構成単位を有していてもよい。
【0049】
重合体(Ab)における不飽和カルボン酸エステルに由来する繰り返し単位(Mb)の含有割合は、重合体(Ab)の全質量に対して、好ましくは65質量%以上であり、より好ましくは75質量%以上である。
【0050】
上記他の不飽和単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エチルアクリロニトリル、シアン化ビニリデン等のα,β−不飽和ニトリル化合物;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸;1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、2−クロル−1,3−ブタジエン等の共役ジエン化合物;スチレン、α−メチルスチレン、p−メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼン等の芳香族ビニル化合物およびその他の不飽和単量体等を挙げることができ、これらのうちから選択される1種以上であることができる。
【0051】
1.1.3.含フッ素系重合体粒子の調製
含フッ素系重合体粒子は、上記のような構成を採るものである限り、その合成方法は特に限定されないが、例えば公知の乳化重合工程またはこれを適宜に組み合わせることによって、容易に合成することができる。
【0052】
例えば先ず、含フッ素エチレン系単量体に由来する繰り返し単位(Ma)を有する重合体(Aa)を公知の方法によって合成する。次いで、該重合体(Aa)に重合体(Ab)を構成するための単量体を加え、重合体(Aa)を含有する重合体粒子の編み目構造の中に前記単量体を十分吸収させた後、重合体(Aa)の編み目構造の中で吸収させた単量体を重合して重合体(Ab)を合成する方法により、含フッ素系重合体粒子を容易に製造することができる。なお、このような方法によってポリマーアロイ粒子を製造する場合には、重合体(Aa)に、重合体(Ab)の単量体を十分に吸収させることが必須となる。吸収温度が低すぎる場合または吸収時間が短すぎる場合には単なるコアシェル粒子または表
層の一部のみがIPN型の構造である粒子となり、本発明における含フッ素系重合体粒子を得ることができない場合が多い。ただし、吸収温度が高すぎると重合系の圧力が高くなりすぎ、反応系のハンドリングおよび反応制御の面から不利となり、吸収時間を過度に長くしても、さらに有利な結果が得られるわけではない。
【0053】
上記のような観点から、吸収温度は30〜100℃とすることが好ましく、40〜80℃とすることがより好ましく;吸収時間は1〜12時間とすることが好ましく、2〜8時間とすることがより好ましい。このとき、吸収温度が低い場合には吸収時間を長くすることが好ましく、吸収温度が高い場合には短い吸収時間で十分である。吸収温度(℃)と吸収時間(h)を乗じた値が、おおむね120〜300(℃・h)、好ましくは150〜250(℃・h)の範囲となるような条件が適当である。
【0054】
重合体(Aa)の編み目構造の中に重合体(Ab)の単量体を吸収させる操作は、乳化重合に用いられる公知の溶媒中、例えば水中で行うことが好ましい。
【0055】
含フッ素系重合体粒子中の重合体(Aa)の含有量は、含フッ素系重合体粒子100質量部中、1〜60質量部であることが好ましく、5〜55質量部であることがより好ましく、10〜50質量部であることがさらに好ましく、20〜40質量部であることが特に好ましい。含フッ素系重合体粒子が重合体(Aa)を前記範囲で含有することにより、耐酸化性と密着性とのバランスがより良好となる。
【0056】
本発明の含フッ素系重合体粒子の製造、すなわち、重合体(Aa)の重合もしくは得られた重合体(Aa)中に単量体を吸収させた後に行う重合体(Ab)の重合またはこれらの双方は、公知の乳化剤(界面活性剤)、重合開始剤、分子量調整剤などの存在下で行うことができる。
【0057】
乳化剤の具体例としては、例えば高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸・ホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩などのアニオン性界面活性剤;ポリエチレングリコールのアルキルエステル、ポリエチレングリコールのアルキルフェニルエーテル、ポリエチレングリコールのアルキルエーテルなどのノニオン性界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有リン酸エステル、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキルエチレンオキシド付加物などのフッ素系界面活性剤などを挙げることができ、これらのうちから選択される1種以上を使用することができる。
【0058】
重合開始剤の具体例としては、例えば過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの水溶性重合開始剤;クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンカルボニトリル)などの油溶性重合開始剤などを適宜選択して用いることができる。これらのうち、特に過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイドまたはt−ブチルハイドロパーオキサイドを使用することが好ましい。重合開始剤の使用割合は特に制限されないが、単量体組成、重合反応系のpH、他の添加剤などの組み合わせなどを考慮して適宜設定される。
【0059】
分子量調節剤の具体例としては、例えばn−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカ
プタン、n−ステアリルメルカプタンなどのアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィドなどのチウラム化合物;2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノールなどのフェノール化合物;アリルアルコールなどのアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素などのハロゲン化炭化水素化合物;α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミドなどのビニルエーテル化合物などのほか、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート、α−メチルスチレンダイマーなどを挙げることができ、これらのうちから選択される1種以上を使用することができる。
【0060】
1.1.4.重合体粒子(A)の物性
1.1.4.1.テトラヒドロフラン(THF)不溶分
重合体粒子(A)のTHF不溶分は、80%以上であることが好ましく、90%以上であることがより好ましい。THF不溶分は、蓄電デバイスで使用する電解液への不溶分量とほぼ比例すると推測される。このため、THF不溶分が前記範囲であれば、蓄電デバイスを作製して、長期間にわたり充放電を繰り返した場合でも電解液への重合体(A)の溶出を抑制できるため良好であると推測できる。
【0061】
1.1.4.2.転移温度
重合体粒子(A)が含フッ素系重合体粒子である場合、JIS K7121に準拠する示差走査熱量測定(DSC)によって測定したときに、−50〜250℃の温度範囲において吸熱ピークを1つしか有さないものであることが好ましい。この吸熱ピークの温度は、−30〜+30℃の範囲にあることがより好ましい。含フッ素系重合体粒子の有する1つのみの吸熱ピークの温度が−30〜+30℃の範囲にある場合には、該粒子は電極活物質層に対してより良好な柔軟性と粘着性とを付与することができ、従って密着性をより向上させることができる点で好ましい。
【0062】
なお、重合体(Aa)が単独で存在する場合には、一般的に−50〜250℃に吸熱ピーク(融解温度)を有する。また、重合体(Ab)は、一般的に重合体(Aa)とは異なる吸熱ピーク(ガラス転移温度)を有する。このため、粒子中における重合体(Aa)および重合体(Ab)が、例えばコア−シエル構造のように相分離して存在する場合、−50〜250℃において2つの吸熱ピークが観察されるはずである。しかしながら、−50〜250℃における吸熱ピークが1つのみである場合には、重合体(Aa)と重合体(Ab)とが相分離せずに存在していることを示しており、該粒子がポリマーアロイ粒子であると推定することができる。
【0063】
1.1.4.3.数平均粒子径
重合体粒子(A)の数平均粒子径は、50〜400nmの範囲にあることが好ましく、100〜250nmの範囲にあることがより好ましい。重合体粒子(A)の数平均粒子径が前記範囲にあると、電極活物質の表面に重合体粒子(A)が十分に吸着することができるため、電極活物質の移動に伴って重合体粒子(A)も追随して移動することができる。その結果、両者の粒子のうちのどちらかのみが単独でマイグレーションすることを抑制することができるので、電気的特性の劣化を抑制することができる。
【0064】
なお、重合体粒子(A)の数平均粒子径とは、光散乱法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、小さい粒子から粒子を累積したときの粒子数の累積度数が50%となる粒子径(D50)の値である。このような粒度分布測定装置としては、例
えばコールターLS230、LS100、LS13 320(以上、Beckman Coulter.Inc製)や、FPAR−1000(大塚電子株式会社製)などを挙げることができる。これらの粒度分布測定装置は、重合体粒子の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とすることができる。従って、これらの粒度分布測定装置によって測定された粒度分布は、電極用スラリー中に含まれる重合体粒子の分散状態の指標とすることができる。なお、重合体粒子(A)の数平均粒子径は、電極用スラリーを遠心分離して電極活物質を沈降させた後、その上澄み液を上記の粒度分布測定装置によって測定する方法によっても測定することができる。
【0065】
1.2.イソチアゾリン系化合物(B)
本実施の形態に係る電極用バインダー組成物は、イソチアゾリン系化合物(B)を含有する。電極用バインダー組成物中にイソチアゾリン系化合物(B)を添加することにより、イソチアゾリン系化合物(B)が防腐剤として作用して、電極用バインダー組成物を貯蔵した際に、細菌や黴などが増殖して異物が発生することを抑制することができる。さらに、蓄電デバイスの充放電時にバインダーの劣化が抑制されるため、蓄電デバイスの充放電特性の低下を抑制することができる。
【0066】
蓄電デバイスの充放電時にバインダーの劣化が抑制される効果の発現機構は明らかではないが、以下のように考えられる。イソチアゾリン系化合物(B)と重合体粒子との親和性が良好であるために、電解液に電極活物質層が浸された場合でもイソチアゾリン系化合物(B)はバインダーとして機能する重合体に吸着されるなどして保持され、電極活物質層から電解液へほとんど溶出しないと考えられる。イソチアゾリン系化合物(B)が重合体に保持されることで、バインダーとして機能する重合体の電解液による劣化が抑制されるとともに電解液自身の変質も抑制され、その結果、充放電特性が劣化しないと推測される。
【0067】
また、一般的にラテックスのような重合体粒子の分散液へ新たな成分を添加すると、その新たな成分がトリガーとなり凝集が発生しやすい。ところが、イソチアゾリン系化合物(B)は重合体粒子の分散性に与える影響が小さいため、凝集体の発生を抑制することができる。そのため、本願発明の電極用バインダー組成物と電極活物質とを混合して電極用スラリーを作製する際にトリガーとなる成分が存在しないため、重合体粒子や電極活物質の凝集を抑制することができる。したがって、集電体の表面により均質な電極活物質層が形成された電極を作製することができるため、蓄電デバイスの充放電特性が良好になるものと推測される。
【0068】
さらに、電極用バインダー組成物にイソチアゾリン系化合物(B)を添加することにより、電極用スラリーの流動性を向上させることもできると考えられる。電極用スラリーの流動性が向上する結果、より均一な厚みの電極活物質層を形成することができ、高いレートで充放電を行った場合でも電極活物質層の面全体に均一に電圧が印加されるため、安定した充放電特性を発現することができると考えられる。
【0069】
電極用バインダー組成物中のイソチアゾリン系化合物(B)の濃度は、50〜1,500ppmであることが好ましく、50〜1,200ppmであることがより好ましく、50〜1,000ppmであることが特に好ましい。電極用バインダー組成物中のイソチアゾリン系化合物(B)の濃度が前記範囲であると、電極用バインダー組成物の長期間にわたる貯蔵安定性が向上すると共に、これを使用して作製された電極用スラリーをさらに集電体に塗布して作製された電極を備える蓄電デバイスは、良好な充放電特性を示す。
【0070】
なお、成分(B)の濃度が前記範囲未満であると、上述のような効果を十分に発現させることができず、特に長期間貯蔵した際に良好な充放電特性を発現する蓄電デバイスを作
製できない場合がある。成分(B)の濃度が前記範囲を超えると、重合体粒子の表面に多量の成分(B)が吸着してしまい、重合体粒子の結着力が低下して、集電体と電極活物質層との密着性が悪化する場合がある。
【0071】
本実施の形態に係る電極用バインダー組成物に含有されるイソチアゾリン系化合物(B)としては、イソチアゾリン骨格を有する化合物であれば特に制限されないが、具体的には下記一般式(1)で表される化合物や下記一般式(2)で表される化合物が挙げられる。
【0072】
【化4】
上記式(1)中、R
1は水素原子または炭化水素基であり、R
2、R
3はそれぞれ水素原子、ハロゲン原子または炭化水素基を表す。R
1、R
2、R
3が炭化水素基である場合、直鎖あるいは分岐鎖のような鎖状の炭素骨格を有していてもよく、環状の炭素骨格を有していてもよい。また、炭化水素基の炭素数は1〜12であることが好ましく、1〜10であることがより好ましく、1〜8であることが特に好ましい。このような炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、2−エチルヘキシル基等が挙げられる。
【0073】
【化5】
上記式(2)中、R
4は水素原子または炭化水素基であり、R
5はそれぞれ独立に水素原子または有機基を表す。R
4が炭化水素基である場合、上記式(1)で説明した炭化水素基と同様の炭化水素基であることができる。また、R
5が有機基である場合、この有機基にはアルキル基やシクロアルキル基である脂肪族基や芳香族基が含まれるが、脂肪族基であることが好ましい。アルキル基の炭素数は1〜12であることが好ましく、1〜10であることがより好ましく、1〜8であることが特に好ましい。これらのアルキル基およびシクロアルキル基は、ハロゲン原子、アルコキシル基、ジアルキルアミノ基、アシル基、アルコキシカルボニル基等の置換基を有していてもよい。前記脂肪族基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、2−エチルヘキシル基等が挙げられる。上記式(2)中、nは0〜4の整数を表す。
【0074】
本実施の形態に係る電極用バインダー組成物に含有される成分(B)の具体例としては、1,2−ベンゾイソチアゾリン−3−オン、OLE_LINK12−メチル−4,5−トリメチレン−4−イソチアゾリン−3−オンOLE_LINK1、2−メチル−4−イソチアゾリン−3−オン、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、N−n−ブチル−1,2−ベンズイソチアゾリン−3−オン、2−n−オクチル−4−イソチアゾリン−3−
オン、4,5−ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オン等が挙げられ、これらの1種または2種以上を用いることができる。これらの中でも、2−メチル−4−イソチアゾリン−3−オン、2−n−オクチル−4−イソチアゾリン−3−オン、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、1,2−ベンズイソチアゾリン−3−オンよりなる群から選択される少なくとも1種であることが好ましい。
【0075】
1.3.液状媒体(C)
本実施の形態に係る電極用バインダー組成物は、液状媒体(C)を含有する。液状媒体(C)としては、水を含有する水系媒体であることが好ましい。上記水系媒体には、水以外の非水系媒体を含有させることができる。この非水系媒体としては、例えばアミド化合物、炭化水素、アルコール、ケトン、エステル、アミン化合物、ラクトン、スルホキシド、スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。液状媒体(C)が水と、水以外の非水系媒体を含有する場合、液状媒体(C)の全量100質量%中、90質量%以上が水であることが好ましく、98質量%以上が水であることがさらに好ましい。本実施の形態に係る電極用バインダー組成物は、液状媒体(C)として水系媒体を使用することにより、環境に対して悪影響を及ぼす程度が低くなり、取扱作業者に対する安全性も高くなる。
【0076】
水系媒体中に含まれる非水系媒体の含有割合は、水系媒体100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、実質的に含有しないことが特に好ましい。ここで、「実質的に含有しない」とは、液状媒体として非水系媒体を意図的に添加しないという程度の意味であり、電極用バインダー組成物を作製する際に不可避的に混入する非水系媒体を含んでもよい。
【0077】
1.4.その他の添加剤
本実施の形態に係る電極用バインダー組成物は、必要に応じて前述した成分(A)、成分(B)、成分(C)以外の添加剤を含有することができる。このような添加剤としては、例えば増粘剤が挙げられる。本実施の形態に係る電極用バインダー組成物は、増粘剤を含有することにより、その塗布性や得られる蓄電デバイスの充放電特性等をさらに向上させることができる。
【0078】
このような増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース化合物;上記セルロース化合物のアンモニウム塩またはアルカリ金属塩;ポリ(メタ)アクリル酸、変性ポリ(メタ)アクリル酸などのポリカルボン酸;上記ポリカルボン酸のアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体などのポリビニルアルコール系(共)重合体;(メタ)アクリル酸、マレイン酸およびフマル酸などの不飽和カルボン酸とビニルエステルとの共重合体の鹸化物などの水溶性ポリマーなどを挙げることができる。これらの中でも特に好ましい増粘剤としては、カルボキシメチルセルロースのアルカリ金属塩、ポリ(メタ)アクリル酸のアルカリ金属塩などである。
【0079】
これら増粘剤の市販品としては、例えばCMC1120、CMC1150、CMC2200、CMC2280、CMC2450(以上、ダイセル化学工業株式会社製)等のカルボキシメチルセルロースのアルカリ金属塩を挙げることができる。
【0080】
本実施の形態に係る電極用バインダー組成物が増粘剤を含有する場合、増粘剤の使用割合は、電極用バインダー組成物の全固形分量に対して、5質量%以下であることが好ましく、0.1〜3質量%であることがより好ましい。
【0081】
2.電極用スラリー
前記の如き、前述の電極用バインダー組成物を用いて、本実施の形態に係る電極用スラリーを製造することができる。電極用スラリーとは、これを集電体の表面に塗布した後、乾燥して、集電体表面上に電極活物質層を形成するために用いられる分散液のことをいう。本実施の形態に係る電極用スラリーは、上述の電極用バインダー組成物と、電極活物質と、水と、を含有する。以下、本実施の形態に係る電極用スラリーに含まれる成分についてそれぞれ詳細に説明する。ただし、電極用バインダー組成物については、前述した通りであるから説明を省略する。
【0082】
2.1.電極活物質
本実施の形態に係る電極用スラリーに含まれる電極活物質を構成する材料としては特に制限はなく、目的とする蓄電デバイスの種類により適宜適当な材料を選択することができる。
【0083】
例えば、リチウムイオン二次電池の正極を作製する場合には、リチウム原子含有酸化物であることが好ましい。本明細書における「酸化物」とは、酸素と、酸素よりも電気陰性度の小さい元素と、からなる化合物または塩を意味する概念であり、金属酸化物の他、金属のリン酸塩、硝酸塩、ハロゲンオキソ酸塩、スルホン酸塩等をも包含する概念である。
【0084】
リチウム原子含有酸化物としては、下記一般式(4a)または(4b)で表される複合金属酸化物、および下記一般式(5)で表されかつオリビン型結晶構造を有するリチウム原子含有酸化物が挙げられ、これらよりなる群から選択される1種以上を使用することが好ましい。
Li
1+xM
1yM
2zO
2 ・・・・・(4a)
Li
1+xM
1yM
2zO
4 ・・・・・(4b)
(式(4a)および(4b)中、M
1はCo、NiおよびMnよりなる群から選択される少なくとも1種の金属原子であり;M
2はAlおよびSnよりなる群から選択される少なくとも1種の金属原子であり;Oは酸素原子であり;x、yおよびzは、それぞれ、0.10≧x≧0、4.00≧y≧0.85および2.00≧z≧0の範囲の数である。)
Li
1−xM
3x(XO
4) ・・・・・(5)
(式(5)中、M
3は、Mg、Ti、V、Nb、Ta、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、GeおよびSnよりなる群から選択される金属のイオンの少なくとも1種であり;Xは、Si、S、PおよびVよりなる群から選択される少なくとも1種であり;xは数であり、0<x<1の関係を満たす。)
【0085】
なお、上記一般式(5)におけるxの値は、M
3およびXの価数に応じて、それぞれ上記一般式(5)全体の価数が0価となるように選択される。
【0086】
上記一般式(4a)または(4b)で表される複合金属酸化物としては、例えばLiCoO
2、LiNiO
2、LiNi
yCo
1−yO
2(y=0.01〜0.99)、LiMnO
2、LiMn
2O
4、LiCo
xMn
yNi
zO
2(x+y+z=1)などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらのうち、LiCoO
2、LiMn
2O
4、LiNiO
2およびLiNi
0.33Mn
0.33Co
0.33O
2は電極電位が高く高効率であるため、高電圧および高エネルギー密度を有する蓄電デバイスを得ることができる。Li
1+xM
1yM
2zO
2は、固体内のLi拡散速度が速く、充放電レートに優れる点で特に好ましい。
【0087】
上記一般式(5)で表され、かつオリビン結晶構造を有するリチウム原子含有酸化物は、金属元素M
3の種類によって電極電位が異なる。従って、金属元素Mの種類を選択することにより、電池電圧を任意に設定することができる。オリビン結晶構造を有するリチウム原子含有酸化物の代表的なものとしては、LiFePO
4、LiCoPO
4、Li
0.
90Ti
0.05Nb
0.05Fe
0.30Co
0.30Mn
0.30PO
4などを挙げることができる。これらのうち、特にLiFePO
4は、原料となる鉄化合物の入手が容易であるとともに安価であるため好ましい。また、上記の化合物中のFeイオンをCoイオン、NiイオンまたはMnイオンに置換した化合物も、上記各化合物と同じ結晶構造を有するので、電極活物質として同様の効果を有する。
【0088】
一方、リチウムイオン二次電池の負極を作製する場合には、電極活物質(負極活物質)としては、例えばカーボンを用いることができる。カーボンの具体例としては、フェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料;コークスやピッチを焼成することにより得られる炭素材料;人造グラファイト;天然グラファイト等が挙げられる。
【0089】
電気二重層キャパシタ電極を作製する場合には、電極活物質としては、例えば活性炭、活性炭繊維、シリカ、アルミナ等を用いることができる。また、リチウムイオンキャパシタ電極を作製する場合には、黒鉛、難黒鉛化炭素、ハードカーボン、コークス等の炭素材料や、ポリアセン系有機半導体(PAS)等を用いることができる。
【0090】
電極活物質の数平均粒子径(Db)は、正極では0.4〜10μmの範囲とすることが好ましく、0.5〜7μmの範囲とすることがより好ましい。負極では3〜30μmの範囲とすることが好ましく、5〜25μmの範囲とすることがより好ましい。電極活物質の数平均粒子径(Db)が前記範囲内であると、電極活物質内におけるリチウムの拡散距離が短くなるので、充放電の際のリチウムの脱挿入に伴う抵抗を低減することができ、その結果、充放電特性がより向上する。さらに、電極用スラリーが後述の導電付与剤を含有する場合、電極活物質の数平均粒子径(Db)が前記範囲内であることにより、電極活物質と導電付与剤との接触面積を十分に確保することができることとなり、電極の電子導電性が向上し、電極抵抗がより低下する。
【0091】
ここで、電極活物質の数平均粒子径(Db)とは、レーザー回折法を測定原理とする粒度分布測定装置を用いて粒度分布を測定し、小さい粒子から粒子を累積したときの粒子数の累積度数が50%となる粒子径(D50)の値である。このようなレーザー回折式粒度分布測定装置としては、例えばHORIBA LA−300シリーズ、HORIBA LA−920シリーズ(以上、株式会社堀場製作所製)などを挙げることができる。この粒度分布測定装置は、電極活物質の一次粒子だけを評価対象とするものではなく、一次粒子が凝集して形成された二次粒子をも評価対象とする。従って、この粒度分布測定装置によって得られた数平均粒子径(Db)は、電極用スラリー中に含まれる電極活物質の分散状態の指標とすることができる。なお、電極活物質の平均粒子径(Db)は、電極用スラリーを遠心分離して電極活物質を沈降させた後、その上澄み液を除去し、沈降した電極活物質を上記の方法により測定することによっても測定することができる。
【0092】
2.2.その他の成分
上記電極用スラリーは、必要に応じて前述した成分以外の成分を含有することができる。このような成分としては、例えば導電付与剤、非水系媒体、増粘剤等が挙げられる。
【0093】
2.2.1.導電付与剤
上記導電付与剤の具体例としては、リチウムイオン二次電池においてはカーボンなどが;ニッケル水素二次電池においては、正極では酸化コバルトが:負極ではニッケル粉末、酸化コバルト、酸化チタン、カーボンなどが、それぞれ用いられる。上記両電池において、カーボンとしては、グラファイト、活性炭、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレンなどを挙げることができる。これらの中でも、アセチレンブラックまたはファーネスブラックを好ましく使用することができる。導電付与剤の使用
割合は、電極活物質100質量部に対して、好ましくは20質量部以下であり、より好ましくは1〜15質量部であり、特に好ましくは2〜10質量部である。
【0094】
2.2.2.非水系媒体
上記電極用スラリーは、その塗布性を改善する観点から、80〜350℃の標準沸点を有する非水系媒体を含有することができる。このような非水系媒体の具体例としては、例えばN−メチルピロリドン、ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド化合物;トルエン、キシレン、n−ドデカン、テトラリンなどの炭化水素;2−エチル−1−ヘキサノール、1−ノナノール、ラウリルアルコールなどのアルコール;メチルエチルケトン、シクロヘキサノン、ホロン、アセトフェノン、イソホロンなどのケトン;酢酸ベンジル、酪酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチルなどのエステル;o−トルイジン、m−トルイジン、p−トルイジンなどのアミン化合物;γ−ブチロラクトン、δ−ブチロラクトンなどのラクトン;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。これらの中でも、重合体粒子の安定性、電極用スラリーを塗布する際の作業性などの点から、N−メチルピロリドンを使用することが好ましい。
【0095】
2.2.3.増粘剤
上記電極用スラリーは、その塗工性を改善する観点から、増粘剤を含有することができる。増粘剤の具体例としては、上記「1.4.その他の添加剤」に記載した各種化合物が挙げられる。
【0096】
電極用スラリーが増粘剤を含有する場合、増粘剤の使用割合としては、電極用スラリーの全固形分量に対して、好ましくは20質量%以下であり、より好ましくは0.1〜15質量%であり、特に好ましくは0.5〜10質量%である。
【0097】
2.3.電極用スラリーの製造方法
本実施の形態に係る電極用スラリーは、前述の電極用バインダー組成物と、電極活物質と、水と、必要に応じて用いられる添加剤と、を混合することにより製造することができる。これらの混合には公知の手法による攪拌によって行うことができ、例えば攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどを利用することができる。
【0098】
電極用スラリーの調製(各成分の混合操作)は、少なくともその工程の一部を減圧下で行うことが好ましい。これにより、得られる電極活物質層内に大きな気泡が生じることを防止することができる。減圧の程度としては、絶対圧として、5.0×10
4〜5.0×10
5Pa程度とすることが好ましい。
【0099】
電極用スラリーを製造するための混合撹拌としては、スラリー中に電極活物質の凝集体が残らない程度に撹拌し得る混合機と、必要にして十分な分散条件とを選択する必要がある。分散の程度は粒ゲージにより測定可能であるが、少なくとも100μmより大きい凝集物がなくなるように混合分散することが好ましい。このような条件に適合する混合機としては、例えばボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを例示することができる。
【0100】
2.4.電極用スラリーの特徴
前述の電極用バインダー組成物に含まれる重合体粒子(A)の数平均粒子径(Da)と電極活物質の数平均粒子径(Db)との比(Da/Db)は、正極では0.01〜1.0の範囲にあることが好ましく、0.05〜0.5の範囲にあることがより好ましい。負極では、0.002〜0.13の範囲にあることが好ましく、0.003〜0.1の範囲に
あることがより好ましい。このことの技術的な意味は、以下の通りである。
【0101】
電極用スラリーを集電体の表面に塗布した後、形成された塗膜を乾燥する工程において、重合体粒子(A)および電極活物質のうちの少なくとも一方がマイグレーションすることが確認されている。すなわち、粒子が表面張力の作用を受けることによって塗膜の厚み方向に沿って移動するのである。より具体的には、重合体粒子(A)および電極活物質のうちの少なくとも一方が、塗膜面のうちの、集電体と接する面とは反対側、すなわち水が蒸発する気固界面側へと移動する。このようなマイグレーションが起こると、重合体粒子(A)および電極活物質の分布が塗膜の厚み方向で不均一となり、電極特性が悪化する、密着性が損なわれる、などの問題が発生する。例えば、バインダーとして機能する重合体粒子(A)が電極活物質層の気固界面側へとブリード(移行)し、集電体と電極活物質層との界面における重合体粒子(A)の量が相対的に少なくなると、電極活物質層への電解液の浸透が阻害されることにより十分な電気的特性が得られなくなるとともに、集電体と電極活物質層との結着性が不足して剥離してしまう。さらに、重合体粒子(A)がブリードすることにより、電極活物質層表面の平滑性が損なわれてしまう。
【0102】
しかしながら、両粒子の数平均粒子径の比(Da/Db)が前記範囲にあると、前述したような問題の発生を抑制することができ、良好な電気的特性と結着性とが両立した電極を容易に製造できることとなる。比(Da/Db)が前記範囲未満では、粉落ち耐性が不十分となる場合がある。一方、比(Da/Db)が前記範囲を超えると、集電体と電極活物質層との間の結着性が不足する場合がある。
【0103】
本実施の形態に係る電極用スラリーは、その固形分濃度(スラリー中の溶媒以外の成分の合計質量がスラリーの全質量に対して占める割合)が20〜80質量%であることが好ましく、30〜75質量%であることがより好ましい。
【0104】
本実施の形態に係る電極用スラリーは、その曳糸性が30〜80%であることが好ましく、33〜79%であることがより好ましく、35〜78%であることが特に好ましい。曳糸性が前記範囲未満であると、電極用スラリーを集電体上へ塗布する際、レベリング性が不足するため、電極厚みの均一性を得難くなる場合がある。このような厚みが不均一な電極を使用すると、充放電反応の面内分布が発生するため、安定した電池性能の発現が困難となる。一方、曳糸性が前記範囲を超えると、電極用スラリーを集電体上に塗布する際、液ダレが起き易くなり、安定した品質の電極が得られにくい。そこで、曳糸性が前記範囲にあれば、これらの問題の発生を抑制することができ、良好な電気的特性と密着性とを両立させた電極を製造することが容易となるのである。
【0105】
本明細書における「曳糸性」は、以下のようにして測定される。
【0106】
まず、底部に直径5.2mmの開口部を有するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備する。この開口部を閉じた状態で、ザーンカップに電極用スラリー40gを流し込む。その後、開口部を開放すると、開口部から電極用スラリーが流れ出す。ここで、開口部を開放した時をT
0、電極用スラリーの曳糸が終了した時をT
A、電極用スラリーの流出が終了した時をT
Bとした場合に、本明細書における「曳糸性」は下記式(6)から求めることができる。
曳糸性(%)=((T
A−T
0)/(T
B−T
0))×100 ・・・・・(6)
【0107】
3.電極
本実施の形態に係る電極は、集電体と、前記集電体の表面上に前述の電極用スラリーが塗布および乾燥されて形成された層と、を備えるものである。かかる電極は、金属箔などの適宜の集電体の表面に、上述の電極用スラリーを塗布して塗膜を形成し、次いで該塗膜
を乾燥して電極活物質層を形成することにより製造することができる。このようにして製造された電極は、集電体上に、前述の重合体(A)および電極活物質、さらに必要に応じて添加した任意成分を含有する電極活物質層が結着されてなるものである。かかる電極は、集電体と電極活物質層との結着性に優れるとともに、電気的特性の一つである充放電レート特性が良好である。したがって、このような電極は蓄電デバイスの電極として好適である。
【0108】
集電体は、導電性材料からなるものであれば特に制限されない。リチウムイオン二次電池においては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属製の集電体が使用されるが、特に正極にアルミニウムを、負極に銅を用いた場合、前述の電極用バインダーを用いて製造された電極用スラリーの効果が最もよく現れる。ニッケル水素二次電池における集電体としては、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体、金属メッキ樹脂板などが使用される。集電体の形状および厚さは特に制限されないが、厚さ0.001〜0.5mm程度のシート状のものとすることが好ましい。
【0109】
電極用スラリーの集電体への塗布方法についても特に制限はない。塗布は、例えばドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの適宜の方法によることができる。電極用スラリーの塗布量も特に制限されないが、液状媒体(水および任意的に使用される非水媒体の双方を包含する概念である)を除去した後に形成される電極活物質層の厚さが、0.005〜5mmとなる量とすることが好ましく、0.01〜2mmとなる量とすることがより好ましい。電極活物質層の厚さが上記範囲内にあることによって、電極活物質層に効果的に電解液を染み込ませることができる。その結果、電極活物質層中の電極活物質と電解液との充放電に伴う金属イオンの授受が容易に行われるため、電極抵抗をより低下させることができるため好ましい。また、電極活物質層の厚さが上記範囲内にあることで、電極を折り畳んだり、捲回するなどして加工する場合においても、電極活物質層が集電体から剥離することなく密着性が良好で、柔軟性に富む蓄電デバイス用電極が得られる点で好ましい。
【0110】
塗布後の塗膜からの乾燥方法(水および任意的に使用される非水媒体の除去方法)についても特に制限されず、例えば温風、熱風、低湿風による乾燥;真空乾燥;(遠)赤外線、電子線などの照射による乾燥などによることができる。乾燥速度としては、応力集中によって電極活物質層に亀裂が入ったり、電極活物質層が集電体から剥離したりしない程度の速度範囲の中で、できるだけ早く液状媒体が除去できるように適宜に設定することができる。
【0111】
さらに、乾燥後の集電体をプレスすることにより、電極活物質層の密度を高め、空孔率を以下に示す範囲に調整することが好ましい。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。プレスの条件は、使用するプレス機器の種類および電極活物質層の空孔率および密度の所望値によって適宜に設定されるべきである。この条件は、当業者による少しの予備実験により、容易に設定することができるが、例えばロールプレスの場合、ロールプレス機の線圧力は0.1〜10(t/cm)、好ましくは0.5〜5(t/cm)の圧力において、例えばロール温度が20〜100℃において、乾燥後の集電体の送り速度(ロールの回転速度)が1〜80m/min、好ましくは5〜50m/minで行うことができる。
【0112】
プレス後の電極活物質層の密度は、1.5〜5.0g/cm
3とすることが好ましく、1.5〜4.0g/cm
3とすることがより好ましく、1.6〜3.8g/cm
3とすることが特に好ましい。電極活物質が上記一般式(4a)または(4b)で表される複合金
属酸化物である場合には、電極活物質層の密度は2.0〜4.0g/cm
3とすることが好ましく、3.0〜3.5g/cm
3とすることがより好ましい。また、電極活物質が上記一般式(5)で表されかつオリビン型結晶構造を有する化合物である場合には、電極活物質層の密度は1.5〜2.5g/cm
3とすることが好ましく、1.6〜2.4g/cm
3とすることがより好ましく、1.7〜2.2g/cm
3とすることがさらに好ましく、1.8〜2.1g/cm
3とすることが特に好ましい。電極活物質層の密度が前記範囲にあることにより、集電体と電極活物質層との間の結着性が良好となり、粉落ち性に優れ、かつ電気的特性にも優れた電極が得られることとなる。電極活物質層の密度が前記範囲未満であると、電極活物質層中の重合体(A)が十分にバインダーとして機能せず、電極活物質層が凝集剥離するなどして粉落ち性が低下する。また、電極活物質層の密度が前記範囲を超えると、電極活物質層中の重合体(A)のバインダー機能が強すぎて電極活物質同士の接着が強固になり過ぎる。その結果、集電体の柔軟性に電極活物質層が追随することができず、集電体と電極活物質層の界面が剥離する場合があり好ましくない。なお、本発明における「電極活物質層の密度」とは、電極活物質層の嵩密度を示す値であり、以下の測定方法から知ることができる。すなわち、集電体の片面に、面積C(cm
2)、厚みD(μm)の電極活物質層を有する電極において、集電体の質量がA(g)、蓄電デバイス用電極の質量がB(g)である場合、電極活物質層の密度は下記式(7)によって定義される。
電極活物質層の密度(g/cm
3)=(B(g)−A(g))/(C(cm
2)×D(μm)×10
−4) ・・・・・(7)
【0113】
プレス後の電極活物質層の空孔率は、10〜50%であることが好ましく、15〜45%であることがより好ましく、20〜40%であることが特に好ましい。電極活物質層の空孔率が前記範囲にあると、集電体と電極活物質層との間の結着性が良好となり、粉落ち性に優れ、かつ電気的特性にも優れる電極が得られる。また、電極活物質層の空孔率が前記範囲にあると、電極活物質層内部へ電解液を十分に染み込ませることができ、電極活物質表面と電解液が十分に接触することができる。その結果、電極活物質と電解液のリチウムイオンの授受が容易となり、良好な充放電特性が達成できる。なお、本発明における「電極活物質層の空孔率」とは、空孔の体積(電極活物質層の体積から固形分(電極活物質、導電付与剤、結着剤など)が占める体積を除いた量)が電極活物質層全体の体積に占める割合である。すなわち、集電体の片面に、面積C(cm
2)、厚みD(μm)の電極活物質層を有する電極において、電極活物質層の質量がB(g)、水銀圧入法により測定された細孔容積がV(cm
3/g)である場合、下記式(8)によって定義される値である。
電極活物質層の空孔率(%)=((V[cm
3/g]×B[g])/(C[cm
2]×D[μm]×10
−4))×100 ・・・・・(8)
【0114】
細孔容積は、例えば水銀ポロシメーターを用いた水銀圧入法などにより測定することができる。水銀ポロシメーターとしては、例えばQuantachrome社製の品名「PoreMaster」、株式会社島津製作所製の品名「オートポアIV」などを用いることができる。
【0115】
4.蓄電デバイス
本実施の形態に係る蓄電デバイスは、上述の電極を備えるものであり、さらに電解液を含有し、セパレータなどの部品を用いて、常法に従って製造することができる。具体的な製造方法としては、例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、適宜の形状であることができる。
【0116】
電解液は、液状でもゲル状でもよく、電極活物質の種類に応じて、蓄電デバイスに用いられる公知の電解液の中から電池としての機能を効果的に発現するものを選択すればよい。電解液は、電解質を適当な溶媒に溶解した溶液であることができる。
【0117】
上記電解質としては、リチウムイオン二次電池では、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO
4、LiBF
4、LiPF
6、LiCF
3CO
2、LiAsF
6、LiSbF
6、LiB
10Cl
10、LiAlCl
4、LiCl、LiBr、LiB(C
2H
5)
4、LiCF
3SO
3、LiCH
3SO
3、LiC
4F
9SO
3、Li(CF
3SO
2)
2N、低級脂肪酸カルボン酸リチウムなどを例示することができる。ニッケル水素二次電池では、例えば従来公知の濃度が5モル/リットル以上の水酸化カリウム水溶液を使用することができる。
【0118】
上記電解質を溶解するための溶媒は、特に制限されるものではないが、その具体例として、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート化合物;γ−ブチルラクトンなどのラクトン化合物;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル化合物;ジメチルスルホキシドなどのスルホキシド化合物などを挙げることができ、これらのうちから選択される1種以上を使用することができる。電解液中の電解質の濃度としては、好ましくは0.5〜3.0モル/Lであり、より好ましくは0.7〜2.0モル/Lである。
【0119】
5.実施例
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
【0120】
5.1.実施例1
5.1.1.重合体粒子(A)の作製
電磁式撹拌機を備えた内容積約6Lのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5Lおよび乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、単量体であるフッ化ビニリデン(VDF(登録商標))70%および六フッ化プロピレン(HFP)30%からなる混合ガスを、内圧が20kg/cm
2に達するまで仕込んだ。重合開始剤としてジイソプロピルパーオキシジカーボネートを20%含有するフロン113溶液25gを窒素ガスを使用して圧入し、重合を開始した。重合中は内圧が20kg/cm
2に維持されるようVDF60.2%およびHFP39.8%からなる混合ガスを逐次圧入して、圧力を20kg/cm
2に維持した。また、重合が進行するに従って重合速度が低下するため、3時間経過後に、先と同じ重合開始剤溶液の同量を窒素ガスを使用して圧入し、さらに3時間反応を継続した。その後、反応液を冷却すると同時に撹拌を停止し、未反応の単量体を放出した後に反応を停止することにより、重合体(Aa)の微粒子を40%含有する水系分散体を得た。得られた重合体(Aa)につき、
19F−NMRにより分析した結果、各単量体の質量組成比はVDF/HFP=21/4であった。
【0121】
容量7Lのセパラブルフラスコの内部を十分に窒素置換した後、上記の工程で得られた重合体(Aa)の微粒子を含有する水系分散体1,600g(重合体(Aa)換算で25質量部に相当)、乳化剤「アデカリアソープSR1025」(商品名、株式会社ADEKA製)0.5質量部、メタクリル酸メチル(MMA)30質量部、アクリル酸2−エチルヘキシル(EHA)40質量部およびメタクリル酸(MAA)5質量部ならびに水130質量部を順次仕込み、70℃で3時間攪拌し、重合体(Aa)に単量体を吸収させた。次
いで油溶性重合開始剤であるアゾビスイソブチロニトリル0.5質量部を含有するテトラヒドロフラン溶液20mLを添加し、75℃に昇温して3時間反応を行い、さらに85℃で2時間反応を行った。その後、冷却した後に反応を停止し、2.5N水酸化ナトリウム水溶液でpH7に調節することにより、重合体粒子(A)を40%含有する水系分散体を得た。
【0122】
得られた水系分散体の約10gを直径8cmのテフロン(登録商標)シャーレへ秤り取り、120℃で1時間乾燥して成膜した。得られた膜(重合体)のうちの1gをテトラヒドロフラン(THF)400mL中に浸積して50℃で3時間振とうした。次いで、THF相を300メッシュの金網で濾過して不溶分を分離した後、溶解分のTHFを蒸発除去して得た残存物の重量(Y(g))を測定した値から、下記式(9)によってTHF不溶分を求めたところ、上記重合体粒子のTHF不溶分は85%であった。
THF不溶分(%)=((1−Y)/1)×100 ・・・・・(9)
【0123】
さらに、得られた微粒子を示差走査熱量計(DSC)によって測定したところ、単一のガラス転移温度Tgが−5℃に一つだけ観測された。2種類の重合体を用いているにもかかわらず、得られた重合体粒子(A)は一つのTgしか示さないため、重合体粒子(A)はポリマーアロイ粒子であると推測できる。
【0124】
5.1.2.電極用バインダー組成物の調製
上記で得られた重合体粒子(A)を含有する水系分散体1,000gに、2−メチル−4−イソチアゾリン−3−オンを1%含有する水懸濁液を31g仕込み、300rpmで撹拌することにより、電極用バインダー組成物の調製を行った。なお、以下の実施例、比較例において、成分(B)が水不溶性の場合、超音波により水溶液に分散させた状態の分散液を添加して電極用バインダー組成物の調製を行った。
【0125】
得られた電極用バインダー組成物について、動的光散乱法を測定原理とする粒度分布測定装置(大塚電子株式会社製、形式「FPAR−1000」)を用いて粒度分布を測定し、その粒度分布から最頻粒径を求めたところ、数平均粒子径は330nmであった。
【0126】
なお、電極用バインダー組成物における成分(B)の含有量は、以下の手順で電極用バインダー組成物を分析することにより確認することもできる。すなわち、得られた電極用バインダー組成物を2.0g秤量し、硫酸アルミニウム水溶液を加えて凝集させる。次に凝集させた重合体成分をろ過し、高速液体クロマトグラフィー装置(カラム:Waters社製、μBondasphere 5μ C18−100Å(内径:3.9mm、長さ:150mm)、移動相:蒸留水を用いて調製した0.01M酢酸アンモニウム2Lにトリフルオロ酢酸を加え、pHを4.0に調整後、高速液体クロマトグラフィー用アセトニトリル500mLを加え混合したもの、流量:0.6mL/分)を使用して定量した結果、2−メチル−4−イソチアゾリン−3−オンの含有量は300ppmであることが確認できた。
【0127】
5.1.3.電極用バインダー組成物の貯蔵安定性評価
一般的に電極用バインダー組成物は、蓄電デバイスを作製する工場において、使用に備えて大量に貯蔵される。そして、大量に貯蔵された電極用バインダー組成物は、必要に応じて順次消費される。電極用バインダー組成物の貯蔵中に細菌などが繁殖すると、この電極用バインダー組成物を用いて作製された電極用スラリーでは凝集が発生しやすくなり、それがクラック耐性や蓄電デバイスの充放電特性を悪化させることがあるため好ましくない。
【0128】
また、電極用バインダー組成物の貯蔵環境は、コストの観点から温度管理を厳密に行う
ことができず、このため気温の変化により0℃近くの環境に晒される場合も多い。このため、下記の凍結温度の評価において、0℃で凍結することは許容できず、凍結温度が−0.5℃以下であることが要求される。したがって、凍結温度が−0.5℃以下である場合、電極用バインダー組成物の安定性が高く、良好であると判断できる。
【0129】
さらに、電極用バインダー組成物の貯蔵は長期(数ヶ月〜数年程度)にわたることもある。このため、長期間貯蔵した電極用バインダー組成物を使用した場合であっても、得られる電極の充放電特性等の性能が一定となる必要がある。したがって、下記「5.1.6.蓄電デバイスの製造および評価」において長期間貯蔵後のバインダー組成物を用いて作製された電極が、調製直後のバインダー組成物を用いて作製された電極と遜色ない充放電特性を示す場合には長期貯蔵安定性が良好と判断することができる。
【0130】
<腐敗性試験>
上記で調製した電極用バインダー組成物100gに、菌液5gを加え、35℃で2週間保存し、その後さらに菌液5gを添加し、35℃で2ヶ月間保存した。この電極用バインダー組成物の菌数を市販の「イージーカルト(EASICULT)TTC」(Orion
Diagnostica社製:フィンランド)を用い、28℃で48時間恒温器内で培養した後、発生した菌のコロニーの密度を対照表と比較して求めた。なお「5.1.1.重合体粒子(A)の作製」の項で作製した重合体粒子(A)を40%含有する水系分散体へ、指標菌としてcomamonas acidovoransを添加して腐敗させ、菌数が10
7個/mlとなった水系分散体を菌液として使用した。
【0131】
ここで、貯蔵安定性に優れた電極用バインダー組成物は菌数が少ない。菌数は0個/mlであることが望ましいが、電極を製造する場合には、菌数が10
4個/mlまでならば許容でき、菌数が10
3個/ml未満であればさらに安定して良好な電極を製造することができる。しかしながら、菌数が10
4個/mlより大きくなると、菌によって発生する異物が多くなり、均質な電極の製造が不可能となり、電極の生産性が低下する。このことから、菌数の閾値として10
4個/mlまでが良好な範囲であると考えられる。評価基準は以下の通りであり、評価結果を表1に併せて示した。
○:菌数が10
3個/ml未満
△:菌数が10
3個/ml以上10
4個/ml未満
×:菌数が10
4個/ml以上
【0132】
<凍結温度評価>
上記で調製した電極用バインダー組成物をポリビンに1000g充填し、その後−10℃の冷凍庫に保管し、凍結が開始する温度(凍結温度)を測定した。その結果、電極用バインダー組成物の凍結温度は−0.6℃であった。凍結温度評価の結果を表1に併せて示した。
【0133】
5.1.4.電極用スラリーの調製および評価
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に増粘剤(商品名「CMC1120」、ダイセル化学工業株式会社製)1質量部(固形分換算)、市販のリン酸鉄リチウム(LiFePO
4)をめのう乳鉢で粉砕し、ふるいを用いて分級することにより得られた粒子径(D50値)が0.5μmである電極活物質100質量部、アセチレンブラック5質量部および水68質量部を投入し、60rpmで1時間攪拌を行った。次いで、上記「5.1.2.電極用バインダー組成物の調製」で得られた電極用バインダー組成物を、該組成物中に含有される重合体粒子が1質量部となるように加え、さらに1時間攪拌してペーストを得た。得られたペーストに水を加えて固形分濃度を50%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間、1,800rpmで5分間、
さらに真空下(約5.0×10
3Pa)において1,800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。
【0134】
<曳糸性の測定>
得られた電極用スラリーの曳糸性を、以下のようにして測定した。
【0135】
先ず、容器の底辺に直径5.2mmの開口部が存在するザーンカップ(太佑機材株式会社製、ザーンビスコシティーカップNo.5)を準備した。このザーンカップの開口部を閉じた状態で、上記で調製した電極用スラリーを40g流し込んだ。開口部を開放するとスラリーが流れ出した。このとき、開口部を開放した瞬間の時間をT
0とし、スラリーが流れ出る際に糸を曳くようにして流出し続けた時間を目視で測定し、この時間をT
Aとした。さらに、糸を曳かなくなってからも測定を継続し、電極用スラリーが流れ出なくなるまでの時間T
Bを測定した。測定した各値T
0、T
AおよびT
Bを下記式(6)に代入して曳糸性を求めた。
曳糸性(%)=((T
A−T
0)/(T
B−T
0))×100 ・・・・・(6)
【0136】
電極用スラリーの曳糸性が30〜80%である場合に良好と判断できる。曳糸性の測定結果を表1に併せて示した。
【0137】
5.1.5.電極の製造および評価
厚み30μmのアルミニウム箔からなる集電体の表面に、上記で調製した電極用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜(電極活物質層)の密度が表1に記載の値になるようにロールプレス機によりプレス加工することにより、電極(正極)を得た。
【0138】
<ピール強度の測定>
得られた電極から、幅2cm×長さ12cmの試験片を切り出し、この試験片の電極活物質層側の表面を、両面テープを用いてアルミ板に貼り付けた。一方、試験片の集電体の表面に、幅18mmテープ(ニチバン株式会社製、商品名「セロテープ(登録商標)」、JIS Z1522に規定)を貼り付けた。この幅18mmテープを90°方向に50mm/minの速度で2cm剥離したときの力(mN/2cm)を6回測定し、その平均値を密着強度(ピール強度、mN/2cm)として算出した。なお、ピール強度の値が大きいほど、集電体と電極活物質層との密着強度が高く、集電体から電極活物質層が剥離し難いと評価することができるが、ピール強度の値が20mN/2cm以上である場合には良好であると判断できる。ピール強度の測定結果を表1に併せて示した。
【0139】
<クラック率の測定>
得られた電極を、幅2cm×長さ10cmの極板に切り出し、幅方向に直径2mmの丸棒に沿って正極板を折り曲げ回数100回にて繰り返し折り曲げ試験を行った。丸棒に沿った部分のクラックの大きさを目視により観察し計測し、クラック率を測定した。クラック率は、下記式(10)によって定義した。
クラック率(%)=(クラックの入った長さ[mm]÷極板全体の長さ[mm])×100 ・・・・・(10)
【0140】
ここで、柔軟性や密着性に優れた電極板はクラック率が低い。クラック率は0%であることが望ましいが、セパレータを介して渦巻き状に捲回して極板群を製造する場合には、クラック率が20%までなら許容される。しかしながら、クラック率が20%より大きくなると、電極が切れ易くなり極板群の製造が不可能となり、極板群の生産性が低下する。このことから、クラック率の閾値として20%までが良好な範囲であると考えられる。クラック率の測定結果を表1に併せて示した。
【0141】
5.1.6.蓄電デバイスの製造および評価
<対極(負極)の製造>
二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P−03」)に、ポリフッ化ビニリデン(PVDF)4質量部(固形分換算)、負極活物質としてグラファイト100質量部(固形分換算)、N−メチルピロリドン(NMP)80質量部を投入し、60rpmで1時間撹拌を行った。その後、さらにNMP20質量部を投入した後、撹拌脱泡機(株式会社シンキー製、製品名「あわとり練太郎」)を使用して、200rpmで2分間、次いで1,800rpmで5分間、さらに真空下において1,800rpmで1.5分間撹拌・混合することにより、対極(負極)用スラリーを調製した。
【0142】
銅箔からなる集電体の表面に、上記で調製した対極(負極)用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜の密度が1.5g/cm
3となるようにロールプレス機を使用してプレス加工することにより、対極(負極)を得た。
【0143】
<リチウムイオン電池セルの組立て>
露点が−80℃以下となるようAr置換されたグローブボックス内で、上記で製造した電極(負極)を直径15.95mmに打ち抜き成型したものを、2極式コインセル(宝泉株式会社製、商品名「HSフラットセル」)上に載置した。次いで、直径24mmに打ち抜いたポリプロピレン製多孔膜からなるセパレータ(セルガード株式会社製、商品名「セルガード#2400」)を載置し、さらに、空気が入らないように電解液を500μL注入した後、上記で製造した正極を直径16.16mmに打ち抜き成型したものを載置し、前記2極式コインセルの外装ボディーをネジで閉めて封止することにより、リチウムイオン電池セル(蓄電デバイス)を組み立てた。ここで使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1(質量比)の溶媒に、LiPF
6を1モル/Lの濃度で溶解した溶液である。
【0144】
<充放電レート特性の評価>
上記で製造した蓄電デバイスにつき、定電流(0.2C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として、0.2Cでの充電容量を測定した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。
【0145】
次に、同じセルにつき、定電流(3C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)として3Cでの充電容量を測定した。次いで、定電流(3C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、3Cでの放電容量を測定した。
【0146】
上記の測定値を用いて、0.2Cでの充電容量に対する3Cでの充電容量の割合(百分率%)を計算することにより充電レート(%)を、0.2Cでの放電容量に対する3Cでの放電容量の割合(百分率%)を計算することにより放電レート(%)を、それぞれ算出した。充電レートおよび放電レートの双方がいずれもが80%以上のとき、充放電レート特性は良好であると評価することができる。測定された充電レートおよび放電レートの値を、表1にそれぞれ示した。
【0147】
<長期貯蔵後の充放電レート特性の評価>
上記「5.1.2.電極用バインダー組成物の調製」で得られた電極用バインダー組成物をポリビンに1000g充填し、2℃に設定した冷蔵庫で5ヶ月間貯蔵した。この貯蔵後の電極用バインダー組成物を使用して電極を作製し、上記の<充放電レート特性の評価>と同様にして長期貯蔵後の充放電レート特性の評価を行った。測定された充電レートおよび放電レートの値を、表1にそれぞれ示した。
【0148】
なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、10Cとは0.1時間かけて放電完了となる電流値のことをいう。
【0149】
5.2.実施例2〜
5および比較例1
〜3
上記実施例1の「5.1.1.重合体粒子(A)の作製」において、単量体の組成と乳
化剤量を適宜に変更したほかは実施例1と同様にして、表1に示す組成の重合体粒子(A)を含有する水系分散体を調製し、該水系分散体の固形分濃度に応じて水を減圧除去または追加することにより、固形分濃度40%の水系分散体を得た。なお、実施例2〜
5および比較例1
〜3で得られた微粒子を示差走査熱量計(DSC)によって測定したところ、単一のガラス転移温度Tgが表1に記載の温度で一つだけ観測された。2種類の重合体を用いているにもかかわらず、得られた重合体粒子(A)は一つのTgしか示さないため、重合体粒子(A)はポリマーアロイ粒子であると推測できる。
【0150】
次いで、実施例1の「5.1.2.電極用バインダー組成物の調製」において、成分(A)及び成分(B)の添加量を表1の種類、添加量とした以外は、実施例1と同様に電極用バインダー組成物を調製した。得られた電極用バインダー組成物を、実施例1の「5.1.3.電極用バインダー組成物の貯蔵安定性評価」と同様に評価した。その結果を表1に併せて示した。
【0151】
さらに、実施例1の「5.1.4.電極用スラリーの調製および評価」、「5.1.5.電極の製造および評価」、「5.1.6.蓄電デバイスの製造および評価」と同様にして電極用スラリー、電極、蓄電デバイスを作製し、評価を行った。その結果を表1に併せて示した。
【0152】
5.3.
比較例4
5.3.1.重合体粒子(A)の作製
容量7リットルのセパラブルフラスコに、水150質量部およびドデシルベンゼンスルホン酸ナトリウム0.2質量部を仕込み、セパラブルフラスコの内部を十分に窒素置換した。一方、別の容器に、水60質量部、乳化剤としてエーテルサルフェート型乳化剤(商品名「アデカリアソープSR1025」、株式会社ADEKA製)を固形分換算で0.8質量部ならびに単量体として2,2,2−トリフルオロエチルメタクリレート(TFEMA)20質量部、アクリロニトリル(AN)10質量部、メチルメタクリレート(MMA)25質量部、2−エチルヘキシルアクリレート(EHA)40質量部およびアクリル酸(AA)5質量部を加え、十分に攪拌して上記単量体の混合物を含有する単量体乳化液を調製した。その後、上記セパラブルフラスコの内部の昇温を開始し、当該セパラブルフラスコの内部の温度が60℃に到達した時点で、重合開始剤として過硫酸アンモニウム0.5質量部を加えた。そして、セパラブルフラスコの内部の温度が70℃に到達した時点で、上記で調製した単量体乳化液の添加を開始し、セパラブルフラスコの内部の温度を70℃に維持したまま単量体乳化液を3時間かけてゆっくりと添加した。その後、セパラブルフラスコの内部の温度を85℃に昇温し、この温度を3時間維持して重合反応を行った。3時間後、セパラブルフラスコを冷却して反応を停止した後、アンモニウム水を加えてpHを7.6に調整することにより、重合体粒子(A)を30%含有する水系分散体を得た。
【0153】
上記で得られた水系分散体について、実施例1と同様にして評価したところ、数平均粒子径は110nmであった。また、ガラス転移温度は8℃に一つだけ観測された。上記で得られた水系分散体を使用したこと以外は、実施例1と同様にして電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスを作製して評価した。
【0154】
5.4.
比較例5〜6
各単量体の種類および仕込み量(部)をそれぞれ表1に記載の通りとしたほかは上記
比較例4と同様にして、表1に記載の数平均粒子径を有する重合体粒子(A)を含有する水系分散体をそれぞれ得た。このようにして得られた水系分散体を使用したこと以外は、実施例1と同様にして電極用バインダー組成物、電極用スラリー、電極および蓄電デバイスを作製して評価した。
【0155】
5.5.評価結果
実施例1〜
5および比較例1
〜6に係る電極用バインダー組成、ならびに上記の評価結果を表1に併せて示した。
【0157】
表1における各成分の略称は、それぞれ以下の意味である。
・VDF:フッ化ビニリデン
・HFP:六フッ化プロピレン
・TFEMA:メタクリル酸2,2,2−トリフルオロエチル
・TFEA:アクリル酸2,2,2−トリフルオロエチル
・HFIPA:アクリル酸1,1,1,3,3,3−ヘキサフルオロイソプロピル
・MMA:メタクリル酸メチル
・EHA:アクリル酸2−エチルヘキシル
・MAA:メタクリル酸
・AA :アクリル酸
・DVB:ジビニルベンゼン
・TMPTMA:トリメタクリル酸トリメチロールプロパン
・AN :アクリロニトリル
【0158】
上記表1から明らかなように、実施例1〜
5に示した本発明に係る電極用バインダー組成物は、貯蔵安定性が良好であり、さらに本発明に係る電極用バインダー組成物を用いて調製された電極用スラリーは、集電体と電極活物質層との間の結着性が良好であるためクラック率が低く、密着性に優れる電極を与えた。また、これらの電極を備える蓄電デバイス(リチウムイオン二次電池)は、充放電レート特性が良好であった。さらに、2℃に設定した冷蔵庫で5ヶ月間貯蔵した実施例1〜
5に係る電極用バインダー組成物を使用して作製された電極を備える蓄電デバイス(リチウムイオン二次電池)は、調製直後の電極用バインダー組成物を使用した場合と比較してほぼ遜色のない充放電レート特性が得られた。
【0159】
一方、比較例1に示したバインダー組成物では、貯蔵安定性に優れないため、電極用スラリーにおいて凝集が発生した結果、電極のクラック耐性が悪化したものと考えられる。さらに、比較例1に示したバインダー組成物では、長期間の貯蔵安定性にも優れないため、長期貯蔵後のバインダー組成物により作製された電極を備える蓄電デバイス(リチウムイオン二次電池)は、調製直後の電極用バインダー組成物を使用した場合と比較して充放電レート特性が不良となることが判明した。
【0160】
なお、上述のとおり、実施例1〜
5および比較例1
〜3で使用した重合体粒子(A)がポリマーアロイ粒子であることは、DSCチャートから推定した。
【0161】
図1は、実施例3において得られた重合体粒子(A)のDSCチャートである。実施例3では、重合体(Aa)の微粒子へさらに単量体を添加し、多段的に重合しているため、少なくとも二種類の重合体を含有する重合体粒子であると考えられる。しかしながら、
図1から明らかなようにそれら二種類の重合体に由来する二種類のTgは確認できず、一つのTgのみ観察される。これは実施例3のように作製した重合体粒子がポリマーアロイの状態であることを示している。
【0162】
本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。