(58)【調査した分野】(Int.Cl.,DB名)
前記加熱押出ししてフィルム状に製膜した後、加熱カレンダー処理、または加熱カレンダー処理及び延伸することを特徴とする請求項5に記載の光学フィルムの製造方法。
【発明を実施するための形態】
【0022】
本発明の一形態によれば、炭素数1〜5のアシル基で置換されたセルロースナノファイバー及び酸化防止剤を含有する光学フィルムが提供される。
【0023】
本発明者は、上記課題に鑑み鋭意検討を行った結果、炭素数1〜5のアシル基で置換されたセルロースナノファイバー及び酸化防止剤を含有する光学フィルムは、従来のセルロースナノファイバーとマトリクス樹脂(マトリクス材料)を混合したフィルムより、素子の製造工程での熱加工された際にでも、優れた透明性、カール性、寸法安定性を維持でき、製膜時の欠陥も少ない光学フィルム、素子用基板を実現することができることを見出し、本発明を完成するに至った次第である。
【0024】
本発明の詳細なメカニズムは明らかになっていないが、セルロースナノファイバー表面の水酸基の一部がアシル基で置換されることで、結晶性のナノファイバー成分がコアに、非晶性の修飾したセルロースアシレート成分がシェルになったコアシェル形のファイバーになっていると思われる。
【0025】
これらの表面修飾セルロースナノファイバーと酸化防止剤との混合物を加熱押出し法で製膜することにより、表面修飾セルロースナノファイバーの加熱による酸化が酸化防止剤によって抑制され、更にセルロースナノファイバー成分の絡み合いが適度に維持されつつ、酸化抑制された表層の非晶性の樹脂成分(アシル基成分)が溶融して均一に広がることができていると推定される。したがって、セルロースナノファイバーとは異なる樹脂をセルロースナノファイバーと混合する系に比べて、屈折率差が少なく、膜内のナノファイバーの均一性も良好である。そのために、後の素子の製造工程において熱加工された際にでも、透明性、カール性が維持されていると思われる。特に、アシル基がプロピオニル基である場合には、プロピオニル成分の特性で他のアセチル成分より耐熱時も含めた流動性等が良好であるため、透明性、欠陥も少ないものになっていると推定される。
【0026】
以下、本発明の光学フィルムの詳細について説明する。
【0027】
[光学フィルム]
本形態に係る光学フィルムは、セルロースナノファイバー及び酸化防止剤、並びに必要に応じて酸捕捉剤、紫外線吸収剤、可塑剤、マット剤、光学異方性のコントロール剤、帯電防止剤等の添加剤を含んで構成される。
【0028】
〔セルロースナノファイバー〕
本発明で用いられるセルロースナノファイバーとは、セルロース繊維として平均繊維径4〜400nmであるセルロース繊維をいう。好ましくは4〜200nm、より好ましくは4〜100nm、さらに好ましくは4〜50nm、特に好ましくは熱膨張性を低下させる面からは20〜50nmであり、透明性を一層向上させる観点からは4〜20nmの繊維径の繊維である。
【0029】
本発明で用いるセルロース繊維とは、セルロースのミクロフィブリルまたはこの構成繊維をいう。セルロース繊維は、通常、セルロース分子鎖が数十本水素結合で結合した結晶性の繊維(繊維径2〜4nmのものが最小単位;単繊維)の単位がさらに束ねられた形態で繊維の階層構造を形成しており、解繊度合いによってミクロンレベルの繊維径のファイバーを形成しているものもある。 セルロースナノファイバーは、単繊維が、引き揃えられることなく、相互間に入り込むように十分に離隔して存在するものより成ってもよい。この場合、繊維径は単繊維の径となる。あるいは、複数本の単繊維が束状に集合して1本の糸条を構成しているものであってもよく、この場合、繊維径は1本の糸条の径として定義される。
【0030】
繊維(セルロースナノファイバー)の平均繊維径が400nmを超えると、可視光の波長になり透明性が低下することとなるため、本発明で用いる繊維の平均繊維径の上限は400nmであることが好ましい。平均繊維径4nm未満の繊維は製造が困難であるため、本発明で用いる繊維の平均繊維径の下限は4nmであることが好ましい。
【0031】
なお、本発明で用いる繊維(セルロースナノファイバー)は、平均繊維径が4〜400nmの範囲内であれば、繊維中に4〜400nmの範囲外の繊維径のものが含まれていてもよいが、その割合は20質量%以下であることが好ましく、望ましくは、全ての繊維の繊維径が400nm以下、さらには200nm以下、特に100nm以下、とりわけ10nm以下であることが望ましい。
【0032】
なお、繊維(セルロースナノファイバー)の長さについては特に限定されないが、平均長さで100nm以上が好ましい。繊維の平均長さが100nmより短いと、繊維の絡み合いが少なくなり補強効果が低く、熱膨張が大きくなる恐れがある。
【0033】
本発明において、「平均繊維径」、「平均繊維長」の測定は、得られた繊維(セルロースナノファイバー)について透過型電子顕微鏡、H−1700FA型(日立製作所社製)または走査型電子顕微鏡(SEM)を用いて10000倍の倍率で観察した後、得られた画像について無作為に繊維を100本選び、画像処理ソフト(WINROOF)を用いて一本毎の繊維径、及び繊維長を解析し、それらの単純な数平均値として算出される。
【0034】
セルロースナノファイバーは、原料セルロース繊維を解繊処理することにより得られる。本発明に用いられる原料セルロース繊維としては、植物由来のパルプ、木材、コットン、麻、竹、綿、ケナフ、ヘンプ、ジュート、バナナ、ココナッツ、海草等の植物繊維から分離した繊維、海産動物であるホヤが産生する動物繊維から分離した繊維、あるいは酢酸菌より産生させたバクテリアセルロース等が挙げられる。これらの中で、植物繊維から分離した繊維が好ましく用いることができ、より好ましくはパルプ、コットン等の植物繊維から得られる繊維である。
【0035】
原料セルロース繊維の解繊処理の方法としては、含有されるセルロースが繊維状態を保持している限りにおいては、その解繊維処理方法について何ら制限はない。例えば、これらの原料セルロース繊維をホモジナイザーやグラインダー等を用いた機械的な解繊処理や、2,2,6,6−テトラメチルピペリジン−1−オキシルラジカル(TEMPO)等の酸化触媒を用いた化学的な解繊処理が挙げられる。さらに、これらの解繊処理を促進するために酵素を利用する等して微細化したミクロフィブリル状のセルロース繊維としてもよい。
【0036】
これらの原料セルロース繊維は、重合度が一般に1000〜3000(重量平均分子量で数万〜数百万)の範囲であるといわれる、不溶性の天然繊維である。本発明では、これを解繊した結晶性フィブリルの繊維径が重要である為、重合度(分子量)がこの範囲にある不溶性の天然繊維を使用すればよい。
【0037】
本発明において「重量平均分子量」は高速液体クロマトグラフィーを用いて下記の測定条件で測定した値を採用する。
【0038】
溶媒:メチレンクロライド
カラム:Shodex K806、K805,K803G(昭和電工(株)製を3本接続して使用)
カラム温度:25℃
試料濃度:0.1重量%
検知器:RI Model 504(GLサイエンス社製)
ポンプ:L6000(日立製作所(株)製)
流量:1.0ml/min
校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株))製)重量平均分子量1000000〜500の13サンプルによる校正曲線を使用
【0039】
機械的解繊処理の具体例としては、例えば、まず、パルプ等のセルロース繊維を、水を入れた分散容器に0.1〜3質量%となるように投入し、これを高圧ホモジナイザーで解繊処理して、平均繊維径0.1〜10μm程度のミクロフィブリルに解繊されたセルロース繊維の水分散液を得る。次いで、グラインダー等で繰り返し磨砕処理することで、平均繊維径2〜数百nm程度のセルロース繊維を得ることができる。上記磨砕処理に用いられるグラインダーとしては、例えば、ピュアファインミル(栗田機械製作所社製)等が挙げられる。また、別の方法として、セルロース繊維の分散液を一対のノズルから250MPa程度の高圧でそれぞれ噴射させ、その噴射流を互いに高速で衝突させることによってセルロース繊維を粉砕する、高圧式ホモジナイザーを用いる方法が知られている。用いられる装置としては、例えば、三和機械社製の「ホモジナイザー」、スギノマシン(株)製の「アルテマイザーシステム」、等が挙げられる。 化学的解繊処理の具体的な方法としては、例えば、酸化触媒および必要に応じて共酸化剤を使用し、原料セルロース繊維を酸化処理する方法が挙げられる。これにより、ピラノース単位のC6位に存在する一級水酸基がカルボキシルへと酸化され、フィブリル相互の静電反発により化学的に解繊される。なお、酸化反応処理を経ることにより、原料セルロース繊維の分子にはカルボキシル基が導入されるが、部分的に、酸化処理の進行度合いによっては、アルデヒド基が導入される場合もある。したがって、酸化処理後の解繊繊維の水酸基は、アルデヒド基およびカルボキシル基の少なくとも一方で置換されていることになる。
【0040】
酸化触媒としては、N−オキシル化合物が使用できる。例えば、2,6,6−テトラメチルピペリジン−N−オキシル(TEMPO)、4−アセトアミド−TEMPO、4−カルボキシ−TEMPO、4−フォスフォノオキシ−TEMPO、2−アザアダマンタン−N−オキシル、1−メチル−2−アザアダマンタン−N−オキシル、および1,3−ジメチル−2−アザアダマンタン−N−オキシル(DMAO)からなる群から選択される少なくとも1つが、常温での反応速度が良好な点において好ましい。中でも、フィルムの高い透明性と耐熱性を実現するために、2,2,6,6−テトラメチルピペリジン−1−オキシルラジカル(TEMPO)を触媒としてセルロース非晶領域の一級水酸基を酸化してカルボキシルを導入し、フィブリル相互の静電反発を利用して化学的に解繊する方法が好ましい。
【0041】
共酸化剤としては、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、および過有機酸からなる群から選択される少なくとも1つが挙げられる。上記の共酸化剤のうち塩であるものについてはアルカリ金属、マグネシウムおよびアルカリ土類金属からなる群から選択される少なくとも1つの塩が好ましく、中でもアルカリ金属次亜ハロゲン酸塩、例えば、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムがより好ましい。次亜塩素酸ナトリウムのような次亜ハロゲン酸塩を使用する場合、臭化アルカリ金属、例えば臭化ナトリウムの存在下で反応を進めることが反応速度を高めるにおいて特に好ましい。共酸化剤を酸化触媒と共に作用させて酸化反応を進行させた場合には、ピラノース単位から構成される高分子鎖が分子鎖レベルで、しかもC6位の一級水酸基のみが選択的に酸化され、アルデヒドを経由してカルボキシル基にまで酸化されるため好ましい。
【0042】
上記酸化反応は、原料セルロース繊維を溶媒中に分散させて行うのが好ましい。溶媒としては原料セルロース繊維、酸化触媒、および共酸化剤と、酸化反応や取り扱いの条件下で顕著な反応性を示さず、かつ解繊繊維とカルボキシル基導入後の繊維が良好に分散するものであることが必要である。中でも、安価で扱い易いなどの点で水が最も好ましい。この際、溶媒である水に対する原料セルロース繊維の濃度を、0.1質量%以上3質量%以下とすることが好ましい。
【0043】
解繊繊維に、上記酸化触媒、および、必要に応じて共酸化剤を作用させ、カルボキシル基が導入された修飾解繊繊維を得る際の具体的な方法、条件については、特開2008−1728号公報に開示されたものを好適に使用することができる。
【0044】
このようなC6位のカルボキシル基の静電反発に基づく化学的解繊は、機械的解繊に比べて、均一でより小さな繊維径を得ることができる。
【0045】
(セルロースの炭素数1〜5のアシル基置換)
本発明におけるセルロースナノファイバーは、セルロースの水酸基の水素原子の少なくとも一部が化学修飾によって炭素数1〜5のアシル基で置換されたものである。 セルロースとは、多数のβ−グルコース分子がグリコシド結合により直鎖状に重合したものであり、C2位、C3位、およびC6位に水酸基を有する。よって、一般的に、化学修飾されていないセルロースナノファイバーは、下記化学式(A)を繰り返し単位として含む。
【0047】
本形態に係るセルロースナノファイバーは、上記セルロースナノファイバーのC2位、C3位、およびC6位の少なくとも一つの水酸基がエステル化されている。すなわち、本形態に係るセルロースナノファイバーは、C2位、C3位、およびC6位の少なくとも一つにアシル基を有している。
【0048】
より具体的には、本発明の表面修飾セルロースナノファイバーは、セルロースナノファイバーの表面の水酸基の水素原子がアシル基に置換されていると推定され、結晶性のナノファイバー成分がコアに、非晶性の修飾したセルロースエステル成分(アシル基成分)がシェルになったコアシェル形の断面を有するファイバーになっていると考えられる。
【0049】
炭素数1〜5のアシル基は特に制限されず、ホルミル基、アセチル基、プロピオニル基(プロパノイル基)、イソプロピオニル基、ブタノイル基(ブチリル基)、イソブタノイル基(イソブチリル基)、バレリル基、イソバレリル基、ピバロイル基などが挙げられる。なお、セルロースナノファイバーの水酸基の水素原子は、単一種のアシル基によって置換されていてもよいし、複数のアシル基によって置換されていてもよい。これらのうち、炭素数2〜4のアシル基が好ましく、アセチル基、プロピオニル基、ブタノイル基がより好ましく、プロピオニル基がさらに好ましい。すなわち、さらに好ましい形態において、アシル基はプロピオニル基を含む。特に好ましい形態において、アシル基はプロピオニル基である、すなわち、セルロースナノファイバーの水酸基の水素原子の一部がプロピオニル基のみで置換されている。
【0050】
炭素数1〜5のアシル基への修飾は、公知の方法に従って行うことができる。例えば、酸無水物、アルデヒド、酸ハライド等の修飾剤を用いることが好ましい。
【0051】
(セルロースのプロピオニル基置換)
本発明におけるセルロースナノファイバーは、セルロースの水酸基の水素原子の一部が化学修飾によってプロピオニル基で置換されていることが好ましい。プロピオニル基を有する場合には他のアシル基成分に比べて流動性等が良好であるため、透明性および平滑性が向上しうる。
【0052】
プロピオニル基への修飾は、無水プロピオン酸、プロピオンアルデヒド、プロパイルハライド等の修飾剤を用いることが好ましい。
【0053】
修飾方法は公知の方法に従って行うことができる。例えば、解繊処理したセルロース繊維を水、あるいは適当な溶媒に添加して分散させた後、これに化学修飾剤を添加して適当な反応条件下で反応させればよい。化学修飾する方法はこの場合、化学修飾剤のほかに、必要に応じて反応触媒を添加することができ、例えば、ピリジン、N,N−ジメチルアミノピリジン、トリエチルアミン、ナトリウムメトキシド、ナトリウムエトキシド、水酸化ナトリウム等の塩基性触媒や酢酸、硫酸、過塩素酸等の酸性触媒を用いることができるが、反応速度や重合度の低下を防止するため、ピリジン等の塩基性触媒を用いることが好ましい。反応温度としては、セルロース繊維の黄変や重合度の低下等の変質を抑制し、反応速度を確保する観点で、40〜100℃程度が好ましい。反応時間については用いる修飾剤や処理条件により適宜選定すればよい。
【0054】
本発明におけるセルロースナノファイバーのプロピオニル基の置換度は、0.5〜2.5であることが好ましい。プロピオニル基の置換度が0.5以上であれば、ファイバー表面の樹脂成分(アシル成分)が多くなり、加熱押出し製膜し易くなることに加え、透明性が向上し欠陥が少なくなることから、好ましい。一方、2.5以下であれば、結晶性のコアのナノファイバー部分が多くなることでナノファイバーの絡み合いが多くなり、これにより熱線膨張性が優れるため、好ましい。さらに好ましくは、透明性を一層向上させ、かつ、熱膨張性を一層低下させ、かつ、欠陥の発生を一層防止する点から、該置換度は、0.5〜2.0である。
【0055】
セルロースナノファイバーのプロピオニル基の置換度について説明する。セルロースには、上記化学式(A)に示すように、1グルコース単位の2位、3位、6位に1個ずつ、計3個の水酸基がある。プロピオニル基の置換度とは、平均して1グルコース単位にいくつのプロピオニル基が結合しているかを示す数値である。従って、最大の置換度は3.0であり、この場合には2位、3位および6位の水酸基の水素原子がすべてアシル基で置換されていることを意味する。これらアシル基は、グルコース単位の2位、3位、6位に平均的に置換していてもよいし、分布をもって置換していてもよい。置換度は、ASTM−D817−96に規定の方法により求められる。
【0056】
本発明におけるセルロースナノファイバーの結晶化度は、30〜90%であることが好ましい。結晶化度が30%以上であればナノファイバーの熱線膨張の劣化およびこれに伴うフィルムの熱線膨張の劣化が抑制される。一方、90%以下であれば、修飾によってファイバー表面に導入された非晶成分が十分量存在するため、加熱押出しの製膜性および透明性の低下ならびに欠陥の増加が抑制される。さらに好ましくは、結晶化度は50〜90%である。
【0057】
結晶化度は以下に記載の方法にて算出できる。
【0058】
[結晶化度の算出方法]
X線回折強度は以下の条件で測定し、下記式(1)に基づき結晶化度CrIを算出した。なお、I
8は2θ=8°回折ピーク強度を、I
18は2θ=18°の回折ピーク強度を示す。
【0059】
回折ピーク強度は樹脂により異なるが、各スペクトルのピークの強度からベースラインの強度を差し引くことにより算出することができる。
【0060】
式(1) CrI=(I
8−I
18)/I
8
【0061】
《X線回折強度測定条件》
X線発生装置 :理学電機製RINT TTR2
X線源 :CuKα
出力 :50kV/300mA
1stスリット:0.04mm
2ndスリット:0.03mm
受光スリット:0.1mm
【0062】
〈計数記録装置〉
2θ/θ :連続スキャン
測定範囲 :2θ=2〜45°
サンプリング :0.02°
積算時間 :1.2秒
【0063】
(置換度と結晶化度の異なるセルロースナノファイバーを混合)
本発明におけるセルロースナノファイバーは、プロピオニル基の置換度および結晶化度の異なるものを混合することが好ましい。プロピオニル基の置換度および結晶化度の調整により、本発明の効果である透明性、生産性、熱膨張性が両立されるため、置換度および結晶化度の異なるナノファイバーを混合することで、性能の安定性が向上するので有効である。特にプロピオニル基の置換度が小さく、かつ結晶化度の高いナノファイバーと、プロピオニル基の置換度が大きく、かつ結晶化度の小さいナノファイバーを混合して使用することが好ましい。前者は熱膨張性の低下に有利なファイバーで、後者は透明性、生産性に有利に働くファイバーであり、置換度および結晶化度の異なるものを混合することで、本発明の効果である性能の安定性がより安定するので、好ましい。 本発明におけるセルロースナノファイバーは、本発明の効果を損ねない範囲で、アシル基以外の官能基で置換、修飾することができる。修飾方法は、セルロースナノファイバーの水酸基を、酸、アルコール類、ハロゲン化試薬、酸無水物、イソシアナート類、シランカップリング剤等の修飾剤を用いて化学修飾する等の公知の方法が使用できる。
【0064】
〔酸化防止剤〕
本発明の光学フィルムには、酸化防止剤を添加する必要である。酸化防止剤は表面修飾セルロースナノファイバーの加熱による酸化を抑制するだけでなく、セルロースナノファイバー成分の絡み合いが適度に維持するため、均一性の効果も有している。
【0065】
本発明の光学フィルムは、高透明性、高耐熱性、高生産性(欠陥減少)、低熱膨張性をさらに向上させる目的で、以下に記載する(1)〜(3)の3種の酸化防止剤のうち少なくとも1種以上を添加することが好ましい。より好ましくは(1)〜(3)の3種の酸化防止剤のうち少なくとも2種以上を添加し、さらに好ましくは少なくとも(2)および(3)の酸化防止剤を添加し、特に好ましくは3種全て添加することである。
【0066】
(1)炭素ラジカル捕捉機能を有する酸化防止剤
(2)パーオキシラジカルに対する水素ラジカル供与能を有する一次酸化防止剤
(3)パーオキサイドに対する還元作用を有する二次酸化防止剤の添加剤
【0067】
(炭素ラジカル捕捉機能を有する酸化防止剤)
本発明の光学フィルムは、炭素ラジカル捕捉機能を有する酸化防止剤(以下、炭素ラジカル捕捉剤ともいう)を少なくとも1種以上含有することが好ましい。
【0068】
本発明において「炭素ラジカル捕捉剤」とは、炭素ラジカルが速やかに付加反応しうる基(例えば2重結合、3重結合等の不飽和基)を有し、かつ炭素ラジカル付加後に重合等の後続反応が起こらない安定な生成物を与える化合物を意味する。
【0069】
上記炭素ラジカル捕捉剤としては分子内に速やかに炭素ラジカルと反応する基((メタ)アクリロイル基、アリール基等の不飽和基)およびフェノール系、ラクトン系化合物等のラジカル重合禁止能を有する化合物が有用であり、特に下記一般式(1)または一般式(2)で表わされる化合物が好ましい。
【0071】
一般式(1)において、R
11は水素原子または炭素数1〜10のアルキル基を表し、好ましくは水素原子または炭素数1〜4のアルキル基であり、特に好ましくは水素原子またはメチル基である。
【0072】
R
12およびR
13は、それぞれ独立して炭素数1〜8のアルキル基を表し、直鎖でも、分岐構造または環構造を有してもよい。
【0073】
R
12およびR
13は、好ましくは4級炭素を含む「*−C(CH
3)
2−R’」で表される構造(*は芳香環への連結部位を表し、R’は炭素数1〜5のアルキル基を表す。)である。
【0074】
R
12は、より好ましくはtert−ブチル基、tert−アミル基またはtert−オクチル基である。R
13は、より好ましくはtert−ブチル基、tert−アミル基である。上記一般式(1)で表される化合物として、市販のものでは「SumilizerGM、SumilizerGS」(共に商品名、住友化学(株)製)等が挙げられる。
【0075】
以下に上記一般式(1)で表される化合物の具体例(I−1〜I−18)を例示するが、本発明はこれらに限定されるものではない。
【0080】
前記一般式(2)において、R
22〜R
25はそれぞれ独立して水素原子または置換基を表し、R
22〜R
25で表される置換基としては特に制限はないが、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2−プロペニル基、3−ブテニル基、1−メチル−3−プロペニル基、3−ペンテニル基、1−メチル−3−ブテニル基、4−ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシル基、カルボン酸の塩、ヒドロキシル基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は同様の置換基によってさらに置換されていてもよい。
【0081】
前記一般式(2)において、R
26は水素原子または置換基を表し、R
26で表される置換基は、前記R
22〜R
25で表される置換基と同様な基を挙げることができる。
【0082】
前記一般式(2)において、nは1または2を表す。
【0083】
前記一般式(2)において、nが1であるとき、R
21は置換基を表し、nが2であるとき、R
21は2価の連結基を表す。R
21が置換基を表すとき、置換基としては、前記R
22〜R
25で表される置換基と同様な基を挙げることができる。
【0084】
R
21は2価の連結基を表すとき、2価の連結基として例えば、置換基を有してもよいアルキレン基、置換基を有してもよいアリーレン基、酸素原子、窒素原子、硫黄原子、或いはこれらの連結基の組み合わせを挙げることができる。
【0085】
前記一般式(2)において、nは1が好ましい。
【0086】
次に、本発明における前記一般式(2)で表される化合物の具体例を示すが、本発明は以下の具体例によって限定されるものではない。
【0091】
上記、炭素ラジカル捕捉剤は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.001〜10.0質量部添加することが好ましく、さらに好ましくは0.01〜5.0質量部、特に好ましくは、0.1〜1.0質量部である。
【0092】
(一次酸化防止剤)
本発明の光学フィルムは、パーオキシラジカルに対する水素ラジカル供与能を有する一次酸化防止剤を少なくとも1種以上含有することが好ましい。
【0093】
本発明において「パーオキシラジカルに対する水素ラジカル供与能を有する一次酸化防止剤」とは、パーオキシラジカルによって速やかに引き抜かれる水素原子を分子内に少なくとも1つ以上有する化合物であり、水酸基あるいは1級または2級のアミノ基によって置換された芳香族化合物または立体障害性基を有する複素環化合物であることが好ましく、より好ましくは、オルト位にアルキル基を有するフェノール系化合物あるいはヒンダードアミン系化合物である。
【0094】
(フェノール系化合物)
本発明に好ましく用いられるフェノール化合物は、例えば、米国特許第4,839,405号明細書の第12〜14欄に記載されているもの等の、2,6−ジアルキルフェノール誘導体化合物が含まれる。このような化合物には、下記一般式(3)で表される化合物が含まれる。
【0096】
式中、R
31〜R
36は水素原子または置換基を表す。置換基としては、ハロゲン原子(例えばフッ素原子、塩素原子等)、アルキル基(例えばメチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基等)、シクロアルキル基(例えばシクロペンチル基、シクロヘキシル基等)、アラルキル基(例えばベンジル基、2−フェネチル基等)、アリール基(例えばフェニル基、ナフチル基、p−トリル基、p−クロロフェニル基等)、アルコキシ基(例えばメトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等)、アリールオキシ基(例えばフェノキシ基等)、シアノ基、アシルアミノ基(例えばアセチルアミノ基、プロピオニルアミノ基等)、アルキルチオ基(例えばメチルチオ基、エチルチオ基、ブチルチオ基等)、アリールチオ基(例えばフェニルチオ基等)、スルホニルアミノ基(例えばメタンスルホニルアミノ基、ベンゼンスルホニルアミノ基等)、ウレイド基(例えば3−メチルウレイド基、3,3−ジメチルウレイド基、1,3−ジメチルウレイド基等)、スルファモイルアミノ基(ジメチルスルファモイルアミノ基等)、カルバモイル基(例えばメチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基等)、スルファモイル基(例えばエチルスルファモイル基、ジメチルスルファモイル基等)、アルコキシカルボニル基(例えばメトキシカルボニル基、エトキシカルボニル基等)、アリールオキシカルボニル基(例えばフェノキシカルボニル基等)、スルホニル基(例えばメタンスルホニル基、ブタンスルホニル基、フェニルスルホニル基等)、アシル基(例えばアセチル基、プロピオニル基、ブチロイル基等)、アミノ基(メチルアミノ基、エチルアミノ基、ジメチルアミノ基等)、シアノ基、ヒドロキシ基、ニトロ基、ニトロソ基、アミンオキシド基(例えばピリジン−オキシド基)、イミド基(例えばフタルイミド基等)、ジスルフィド基(例えばベンゼンジスルフィド基、ベンゾチアゾリル−2−ジスルフィド基等)、カルボキシル基、スルホ基、ヘテロ環基(例えば、ピロール基、ピロリジル基、ピラゾリル基、イミダゾリル基、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基等)等が挙げられる。これらの置換基はさらに置換されてもよい。
【0097】
また、R
31は水素原子、R
32、R
36はt−ブチル基である化合物が好ましい。フェノール系化合物の具体例としては、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−アセテート、n−オクタデシル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオ−ドデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチルα−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシルα−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシルα−(4−ヒドロキシ−3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−(n−オクチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(n−オクチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−フェニルアセテート、2−(n−オクタデシルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(2−ヒドロキシエチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ジエチルグリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、2−(n−オクタデシルチオ)エチル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ステアルアミド−N,N−ビス−[エチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、n−ブチルイミノ−N,N−ビス−[エチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−(2−ステアロイルオキシエチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ステアロイルオキシエチルチオ)エチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,2−プロピレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、グリセリン−l−n−オクタデカノエート−2,3−ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、ペンタエリスリトールテトラキス−[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、3,9−ビス−{2−〔3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕−1,1−ジメチルエチル}−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン、1,1,1−トリメチロールエタン−トリス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−ヒドロキシエチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−ステアロイルオキシエチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,6−n−ヘキサンジオール−ビス[(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)が含まれる。上記タイプのフェノール化合物は、例えば、BASFジャパン社から、“Irganox−1076”及び“Irganox−1010”という商品名で市販されている。
【0098】
上記、フェノール化合物は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.001〜10.0質量部添加することが好ましく、さらに好ましくは0.05〜5.0質量部、特に好ましくは、0.1〜2.0質量部である。
【0099】
(ヒンダードアミン系化合物)
本発明に好ましく用いられるヒンダードアミン系化合物としては、下記一般式(4)で表されるヒンダードアミン系化合物が好ましい。
【0101】
式中、R
41〜R
47は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。R
44は水素原子、メチル基、R
47は水素原子、R
42、R
43、R
45、R
46はメチル基が好ましい。ヒンダードアミン系化合物の具体例としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)スクシネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(N−オクトキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(N−ベンジルオキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(N−シクロヘキシルオキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−ブチルマロネート、ビス(1−アクロイル−2,2,6,6−テトラメチル−4−ピペリジル)2,2−ビス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−ブチルマロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)デカンジオエート、2,2,6,6−テトラメチル−4−ピペリジルメタクリレート、4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−1−[2−(3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ)エチル]−2,2,6,6−テトラメチルピペリジン、2−メチル−2−(2,2,6,6−テトラメチル−4−ピペリジル)アミノ−N−(2,2,6,6−テトラメチル−4−ピペリジル)プロピオンアミド、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート等が挙げられる。
【0102】
また、高分子タイプの化合物でもよく、具体例としては、N,N’,N”,N”’−テトラキス−[4,6−ビス−〔ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ〕−トリアジン−2−イル]−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミンと1,3,5−トリアジン−N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ジブチルアミンと1,3,5−トリアジンとN,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、1,6−ヘキサンジアミン−N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)とモルフォリン−2,4,6−トリクロロ−1,3,5−トリアジンとの重縮合物、ポリ[(6−モルフォリノ−s−トリアジン−2,4−ジイル)〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕−ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕]等の、ピペリジン環がトリアジン骨格を介して複数結合した高分子量HALS;コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールと3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンとの混合エステル化物等の、ピペリジン環がエステル結合を介して結合した化合物等が挙げられるが、これらに限定されるものではない。なお、高分子タイプのヒンダードアミン系化合物の数平均分子量(Mn)は500〜10,000である。
【0103】
これらの中でも、ジブチルアミンと1,3,5−トリアジンとN,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンとの重縮合物、ポリ〔{(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールとの重合物等で、数平均分子量(Mn)が2,000〜5,000のものが好ましい。
【0104】
上記タイプのヒンダードアミン化合物は、例えば、BASFジャパン社から、“Tinuvin144”及び“Tinuvin770”、株式会社ADEKAから“アデカスタブ LA−52”という商品名で市販されている。
【0105】
上記、ヒンダードアミン化合物は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.001〜10.0質量部添加することが好ましく、さらに好ましくは0.05〜5.0質量部、特に好ましくは、0.1〜2.0質量部である。
【0106】
(酸化防止二次剤)
本発明の光学フィルムは、パーオキサイドに対する還元作用を有する二次酸化防止剤を少なくとも1種以上含有することが好ましい。
【0107】
本発明において「パーオキサイドに対する還元作用を有する二次酸化防止剤」とは、パーオキサイドを速やかに還元して水酸基に変換する還元剤を意味する。
【0108】
パーオキサイドに対する還元能を有する二次酸化防止剤としてはリン系化合物、または硫黄系化合物が好ましい。
【0109】
(リン系化合物)
本発明に好ましく用いられるリン系化合物としては、ホスファイト(phosphite)、ホスホナイト(phosphonite)、ホスフィナイト(phosphinite)、または第3級ホスファン(phosphane)からなる群より選ばれるリン系化合物が好ましく、具体的には下記一般式(5−1)、(5−2)、(5−3)、(5−4)、(C−5)で表される部分構造を分子内に有する化合物が好ましい。
【0111】
式中、Ph
1及びPh
1’は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。より好ましくは、Ph
1及びPh
1’はフェニレン基を表し、当該フェニレン基の水素原子はフェニル基、炭素数1〜8のアルキル基、炭素数5〜8のシクロアルキル基、炭素数6〜12のアルキルシクロアルキル基または炭素数7〜12のアラルキル基で置換されていてもよい。Ph
1及びPh
1’は互いに同一でもよく、異なってもよい。Xは単結合、硫黄原子または−CHR−基を表す。Rは水素原子、炭素数1〜8のアルキル基または炭素数5〜8のシクロアルキル基を表す。また、これらは前記一般式(3)のR
31〜R
36で表される置換基と同義の置換基により置換されてもよい。
【0113】
式中、Ph
2及びPh
2’は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。より好ましくは、Ph
2及びPh
2’はフェニル基またはビフェニル基を表し、当該フェニル基またはビフェニル基の水素原子は炭素数1〜8のアルキル基、炭素数5〜8のシクロアルキル基、炭素数6〜12のアルキルシクロアルキル基または炭素数7〜12のアラルキル基で置換されていてもよい。Ph
2及びPh
2’は互いに同一でもよく、異なってもよい。また、これらは前記一般式(3)のR
31〜R
36で表される置換基と同義の置換基により置換されてもよい。
【0115】
式中、Ph
3は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。より好ましくは、Ph
3はフェニル基またはビフェニル基を表し、当該フェニル基またはビフェニル基の水素原子は炭素数1〜8のアルキル基、炭素数5〜8のシクロアルキル基、炭素数6〜12のアルキルシクロアルキル基または炭素数7〜12のアラルキル基で置換されていてもよい。また、これらは前記一般式(3)のR
31〜R
36で表される置換基と同義の置換基により置換されてもよい。
【0117】
式中、Ph
4は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。より好ましくは、Ph
4は炭素数1〜20のアルキル基またはフェニル基を表し、当該アルキル基またはフェニル基は前記一般式(3)のR
31〜R
36で表される置換基と同義の置換基により置換されてもよい。
【0119】
式中、Ph
5、Ph
5’及びPh
5”は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。より好ましくは、Ph
5、Ph
5’及びPh
5”は炭素数1〜20のアルキル基またはフェニル基を表し、当該アルキル基またはフェニル基は前記一般式(3)のR
31〜R
36で表される置換基と同義の置換基により置換されてもよい。
【0120】
リン系化合物の具体例としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、10−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンズ[d,f][1,3,2]ジオキサホスフェピン、トリデシルホスファイト等のモノホスファイト系化合物;4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェニル−ジ−トリデシルホスファイト)、4,4’−イソプロピリデン−ビス(フェニル−ジ−アルキル(C12〜C15)ホスファイト)等のジホスファイト系化合物;トリフェニルホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスホナイト、テトラキス(2,4−ジ−tert−ブチル−5−メチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスホナイト等のホスホナイト系化合物;トリフェニルホスフィナイト、2,6−ジメチルフェニルジフェニルホスフィナイト等のホスフィナイト系化合物;トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン系化合物;等が挙げられる。
【0121】
上記タイプのリン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“アデカスタブ PEP−24G”、“アデカスタブ PEP−36”及び“アデカスタブ 3010”、BASFジャパン社から“IRGAFOS P−EPQ”、堺化学工業株式会社から“GSY−P101”という商品名で市販されている。
【0122】
上記、リン系化合物は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.001〜10.0質量部添加することが好ましく、さらに好ましくは0.05〜5.0質量部、特に好ましくは、0.05〜2.0質量部である。
【0123】
(イオウ系化合物)
本発明に好ましく用いられるイオウ系化合物としては、下記一般式(6)で表されるイオウ系化合物が好ましい。
【0124】
一般式(6) R
61−S−R
62
式中、R
61及びR
62は置換基を表す。置換基としては前記一般式(3)のR
31〜R
36で表される置換基と同義である。
【0125】
イオウ系化合物の具体例としては、ジラウリル−3,3−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3−チオジプロピオネート、ラウリルステアリル−3,3−チオジプロピオネート、ペンタエリスリトール−テトラキス(β−ラウリル−チオ−プロピオネート)、3,9−ビス(2−ドデシルチオエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン等が挙げられる。
【0126】
上記タイプのイオウ系化合物は、例えば、住友化学株式会社から、“Sumilizer TPL−R”及び“Sumilizer TP−D”という商品名で市販されている。
【0127】
上記、イオウ系化合物は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.001〜10.0質量部添加することが好ましく、さらに好ましくは0.05〜5.0質量部、特に好ましくは、0.05〜2.0質量部である。
【0128】
<その他の添加剤>
本発明の光学フィルムにおいては、その他添加剤として酸捕捉剤、紫外線吸収剤、可塑剤、マット剤、光学異方性のコントロール剤、帯電防止剤等の添加剤を併用してもよい。
【0129】
(酸捕捉剤)
加熱押出し製膜が行われるような高温環境下では酸によっても分解が促進されるため、本発明の光学フィルムにおいては安定化剤として酸捕捉剤を含有することが好ましい。本発明において有用な酸捕捉剤としては、酸と反応して酸を不活性化する化合物であれば制限なく用いることができるが、中でも米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物が好ましい。このような酸捕捉剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8〜40モルのエチレンオキシド等の縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテル等、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4’−ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2〜22個の炭素原子の脂肪酸の4〜2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)等)、及び種々のエポキシ化長鎖脂肪酸トリグリセリド等(例えば、エポキシ化大豆油、エポキシ化亜麻仁油等)の組成物によって代表され例示され得るエポキシ化植物油及び他の不飽和天然油(これらはときとしてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12〜22個の炭素原子を含有している)が含まれる。また、市販のエポキシ基含有エポキシド樹脂化合物として、EPON 815C、及び下記一般式(7)の他のエポキシ化エーテルオリゴマー縮合生成物も好ましく用いることができる。
【0131】
式中、nは0〜12の整数である。用いることができるその他の酸捕捉剤としては、特開平5−194788号公報の段落87〜105に記載されているものが含まれる。
【0132】
酸捕捉剤は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.001〜10.0質量部添加することが好ましく、さらに好ましくは0.05〜5.0質量部、特に好ましくは、0.05〜2.0質量部である。
【0133】
なお酸捕捉剤は、樹脂に対して酸掃去剤、酸捕獲剤、酸キャッチャー等と称されることもあるが、本発明においてはこれらの呼称による差異なく用いることができる。
【0134】
(紫外線吸収剤)
本発明の光学フィルムにおいては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、かつ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ない紫外線吸収剤を含有することが好ましい。本発明に用いられる紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、中でも、ベンゾフェノン系化合物、着色の少ないベンゾトリアゾール系化合物、トリアジン系化合物が好ましい。また、特開平10−182621号、同8−337574号公報記載の紫外線吸収剤、特開平6−148430号、特開2003−113317号公報記載の高分子紫外線吸収剤を用いてもよい。
【0135】
ベンゾトリアゾール系紫外線吸収剤の具体例として、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−(2−オクチルオキシカルボニルエチル)−フェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(1−メチル−1−フェニルエチル)−5’−(1,1,3,3−テトラメチルブチル)−フェニル)ベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。
【0136】
また、市販品として、チヌビン(TINUVIN)171、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928、チヌビン(TINUVIN)360(いずれもBASFジャパン社製)、LA31(株式会社ADEKA社製)、RUVA−100(大塚化学製)が挙げられる。
【0137】
ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。
【0138】
上記、紫外線吸収剤は、1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、通常0.1〜5質量部添加することが好ましく、さらに好ましくは0.2〜3質量部であり、特に好ましくは0.5〜2質量部である。
【0139】
またベンゾトリアゾール構造やトリアジン構造が、ポリマーの一部、または、規則的にポリマーへペンダントされていてもよく、可塑剤、酸化防止剤、酸掃去剤等の他の添加剤の分子構造の一部に導入されていてもよい。
【0140】
従来公知の紫外線吸収性ポリマーとしては、特に限定されないが、例えば、RUVA−93(大塚化学製)を単独重合させたポリマー及びRUVA−93と他のモノマーとを共重合させたポリマー等が挙げられる。具体的には、RUVA−93とメチルメタクリレートを3:7の比(質量比)で共重合させたPUVA−30M、5:5の比(質量比)で共重合させたPUVA−50M等が挙げられる。さらに、特開2003−113317号公報に記載のポリマー等が挙げられる。
【0141】
(可塑剤)
本発明の光学フィルムにおいては、フィルム中に少なくとも1種の可塑剤を添加してもよい。
【0142】
可塑剤とは、一般的には高分子中に添加することによって脆弱性を改良したり、柔軟性を付与したりする効果のある添加剤である。例えば、本発明における好ましい態様の樹脂の場合、単独での溶融温度よりも溶融温度を低下させるため、また同じ加熱温度において樹脂単独よりも可塑剤を含むフィルム構成材料の溶融粘度を低下させるために、可塑剤を添加する。また、セルロースエステル(セルロースナノファイバー)の親水性を改善し、光学フィルムの透湿度改善するためにも添加されるため透湿防止剤としての機能を有する。
【0143】
ここで、フィルム構成材料の溶融温度とは、当該材料が加熱され流動性が発現された状態の温度を意味する。本発明に係るセルロースナノファイバーを含むフィルム構成材料を溶融流動させるためには、少なくともガラス転移温度よりも高い温度に加熱する必要がある。ガラス転移温度以上においては、熱量の吸収により弾性率或いは粘度が低下し、流動性が発現される。しかし本発明に係る樹脂では高温下では溶融と同時に熱分解によってセルロースエステル(セルロースナノファイバー)の分子量の低下が発生し、得られるフィルムの力学特性等に悪影響を及ぼすことがあるため、なるべく低い温度で樹脂を溶融させる必要がある。フィルム構成材料の溶融温度を低下させるためには、本発明に係る樹脂のガラス転移温度よりも低い融点またはガラス転移温度をもつ可塑剤を添加することで達成することができる。
【0144】
上記、可塑剤は1種単独でまたは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、0.1〜20質量%添加することが好ましく、さらに好ましくは0.2〜10質量部である。
【0145】
本発明においては、多価アルコールと1価のカルボン酸とからなるエステル系可塑剤、多価カルボン酸と1価のアルコールからなるエステル系可塑剤が好ましい。
【0146】
(多価アルコールエステル系可塑剤)
エステル系可塑剤の原料である多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、グリセリン、ジグリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジペンタエリスリトール、キシリトール等を挙げることができる。特に、エチレングリコール、グリセリン、トリメチロールプロパンが好ましい。
【0147】
多価アルコールエステル系の一つであるエチレングリコールエステル系の可塑剤としては、具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4−メチルベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。さらにエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
【0148】
多価アルコールエステル系の一つであるグリセリンエステル系の可塑剤としては、具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン4−メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン3−メチルベンゾエート等のジグリセリンアリールエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。さらにグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造がポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
【0149】
その他の多価アルコールエステル系の可塑剤としては、具体的には特開2003−12823号公報の段落30〜33記載の多価アルコールエステル系可塑剤、特開2006−188663号公報の段落64〜74記載の多価アルコールエステル系可塑剤が挙げられる。
【0150】
これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。さらに多価アルコール部も置換されていてもよく、多価アルコールの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
【0151】
上記多価アルコールと1価のカルボン酸からなるエステル系可塑剤の中では、アルキル多価アルコールアリールエステルが好ましく、具体的には上記のエチレングリコールジベンゾエート、グリセリントリベンゾエート、ジグリセリンテトラベンゾエート、ペンタエリスリトールテトラベンゾエート、トリメチロールプロパントリベンゾエート、特開2003−12823号公報の段落31記載例示化合物16、特開2006−188663号公報の段落71記載例示化合物48が挙げられる。
【0152】
(多価カルボン酸エステル系可塑剤)
多価カルボン酸エステル系の一つであるジカルボン酸エステル系の可塑剤としては、具体的には、ジドデシルマロネート、ジオクチルアジペート、ジブチルセバケート等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ4−メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル−1,4−シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン−2,3−ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル−1,2−シクロブタンジカルボキシレート、ジシクロプロピル−1,2−シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル−1,1−シクロプロピルジカルボキシレート、ジ2−ナフチル−1,4−シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ4−メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基はさらに置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。さらにフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。
【0153】
またフタル酸エステルの部分構造が、ポリマーの一部、または規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
【0154】
その他の多価カルボン酸エステル系の可塑剤としては、具体的にはトリドデシルトリカルバレート、トリブチル−meso−ブタン−1,2,3,4−テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル−2−ヒドロキシ−1,2,3−プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル2−ヒドロキシ−1,2,3−プロパントリカルボキシレート、テトラ3−メチルフェニルテトラヒドロフラン−2,3,4,5−テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル−1,2,3,4−シクロブタンテトラカルボキシレート、テトラブチル−1,2,3,4−シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル−1,2,3,4−シクロブタンテトラカルボキシレート、トリシクロヘキシル−1,3,5−シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル−1,3,5−シクロヘキシルトリカルボキシレート、ヘキサ4−メチルフェニル−1,2,3,4,5,6−シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン−1,2,4−トリカルボキシレート、テトラオクチルベンゼン−1,2,4,5−テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン−1,3,5−トリカルボキシレート、テトラシクロヘキシルベンゼン−1,2,3,5−テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン−1,3,5−テトラカルボキシレート、ヘキサ4−メチルフェニルベンゼン−1,2,3,4,5,6−ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また1置換でもよく、これらの置換基はさらに置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。さらにフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造がポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
【0155】
上記多価カルボン酸と1価のアルコールからなるエステル系可塑剤の中では、アルキルジカルボン酸アルキルエステルが好ましく、具体的には上記のジオクチルアジペートが挙げられる。
【0156】
(その他の可塑剤)
本発明に用いられるその他の可塑剤としては、燐酸エステル系可塑剤、炭水化物エステル系可塑剤、ポリマー可塑剤等が挙げられる。
【0157】
燐酸エステル系可塑剤としては、具体的には、トリアセチルホスフェート、トリブチルホスフェート等の燐酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等の燐酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト−ビフェニルホスフェート等の燐酸アリールエステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
【0158】
また、エチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等の燐酸エステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、さらに置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
【0159】
さらに燐酸エステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、燐酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。
【0160】
次に、炭水化物エステル系可塑剤について説明する。炭水化物とは、糖類がピラノースまたはフラノース(6員環または5員環)の形態で存在する単糖類、二糖類または三糖類を意味する。炭水化物の非限定的例としては、グルコース、サッカロース、ラクトース、セロビオース、マンノース、キシロース、リボース、ガラクトース、アラビノース、フルクトース、ソルボース、セロトリオース及びラフィノース等が挙げられる。炭水化物エステルとは、炭水化物の水酸基とカルボン酸が脱水縮合してエステル化合物を形成したものを指し、詳しくは、炭水化物の脂肪族カルボン酸エステル、或いは芳香族カルボン酸エステルを意味する。脂肪族カルボン酸として、例えば酢酸、プロピオン酸等を挙げることができ、芳香族カルボン酸として、例えば安息香酸、トルイル酸、アニス酸等を挙げることができる。炭水化物は、その種類に応じた水酸基の数を有するが、水酸基の一部とカルボン酸が反応してエステル化合物を形成しても、水酸基の全部とカルボン酸が反応してエステル化合物を形成してもよい。本発明においては、水酸基の全部とカルボン酸が反応してエステル化合物を形成するのが好ましい。
【0161】
炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタアセテート、サッカロースオクタベンゾエートがより好ましく、サッカロースオクタベンゾエートが特に好ましい。
【0162】
これらの化合物の一例を下記に挙げるが、本発明はこれらに限定されるものではない。
【0163】
モノペットSB :第一工業製薬社製
モノペットSOA:第一工業製薬社製
ポリマー可塑剤としては、具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル、メタクリル酸メチルとメタクリル酸−2−ヒドロキシエチルとの共重合体(例えば、共重合比1:99〜99:1の間の任意の比率)等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は1000〜500000程度が好ましく、特に好ましくは、5000〜200000である。1000以上であれば揮発性の問題を抑制でき、500000以下であれば可塑剤の機能を発揮でき、光学フィルムの機械的性質が向上しうる。これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。
【0164】
(マット剤)
本発明に係る光学フィルムは、滑り性や光学的、機械的機能を付与するためにマット剤を添加することができる。マット剤としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。
【0165】
マット剤の形状は、球状、棒状、針状、層状、平板状等の形状のものが好ましく用いられる。マット剤としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の金属の酸化物、リン酸塩、ケイ酸塩、炭酸塩等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘイズを低くできるので好ましい。さらに、これらの微粒子は有機物により表面処理されていることが、フィルムのヘイズを低下できるため好ましい。
【0166】
表面処理は、ハロシラン類、アルコキシシラン類、シラザン、シロキサン等で行うことが好ましい。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。また、微粒子の一次粒子の平均粒径は0.01〜1.0μmの範囲である。好ましい微粒子の一次粒子の平均粒径は5〜50nmが好ましく、さらに好ましくは、7〜14nmである。これらの微粒子は、光学フィルム表面に0.01〜1.0μmの凹凸を生成させるために好ましく用いられる。
【0167】
二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600、NAX50等、日本触媒(株)製のKE−P10、KE−P30、KE−P100、KE−P150等を挙げることができ、好ましくはアエロジル200V、R972V、NAX50、KE−P30、KE−P100である。これらの微粒子は2種以上併用してもよい。
【0168】
2種以上併用する場合、任意の割合で混合して使用することができる。平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9〜99.9:0.1の範囲で使用できる。
【0169】
これらのマット剤の添加方法は混練する等によって行うことが好ましい。また、別の形態として予め溶媒に分散したマット剤とセルロースナノファイバー及び酸化防止剤及び/または可塑剤及び/または紫外線吸収剤を混合分散させた後、溶媒を揮発または沈殿させた固形物を得て、これを溶融物の製造過程で用いることが、マット剤が樹脂中で均一に分散できる観点から好ましい。
【0170】
上記マット剤は、フィルムの機械的、電気的、光学的特性改善のために添加することもできる。
【0171】
なお、これらの微粒子を添加するほど、得られるフィルムの滑り性は向上するが、添加するほどヘイズが上昇するため、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、光学フィルムを形成するセルロースナノファイバーの総質量に対し、0.001〜5質量部添加することが好ましく、より好ましくは0.005〜1質量部であり、さらに好ましくは0.01〜0.5質量部である。
【0172】
(光学異方性のコントロール剤)
光学異方性をコントロールするためのリターデーション上昇剤が、場合により添加される。これらは、光学フィルムのリターデーションを調整するため、少なくとも二つの芳香族環を有する芳香族化合物をリターデーション上昇剤として使用することが好ましい。芳香族化合物は、光学フィルムを形成する樹脂の総質量に対し、0.01〜20質量部の範囲で使用する。そして、0.05〜15質量部の範囲で使用することが好ましく、0.1〜10質量部の範囲で使用することがさらに好ましい。二種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は、一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性ヘテロ環は、一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が含まれる。これらについては、特開2004−109410号、特開2003−344655号、特開2000−275434号、特開2000−111914号、特開平12−275434号公報などに詳細が記載されている。
【0173】
〔光学フィルムの製造方法〕
(加熱押出し法)
本発明の光学フィルムは、一般的に加熱押出し法と呼ばれる、セルロースナノファイバーの組成物を高温で加熱し、加圧ダイ等から押出して、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に流延し製膜する方法で製造することができる。すなわち、本発明の一形態によれば、炭素数1〜5のアシル基で置換されたセルロースナノファイバー及び酸化防止剤を加熱押出ししてフィルム状に製膜することを特徴とする光学フィルムの製造方法が提供される。
【0174】
具体的には、本発明におけるセルロースナノファイバー、酸化防止剤及びその他必要により添加される添加剤を含む組成物を熱風乾燥または真空乾燥した後、加熱し、T型ダイよりフィルム状に押出して、静電印加法等により冷却ドラムに密着させ、冷却固化させ、未延伸フィルムを得る。すなわち、本形態に係る製造方法は、(1)セルロースナノファイバー組成物の調製工程、(2)加熱押出し工程、(3)冷却工程を含む。さらに、(3)冷却工程後、必要に応じて、(4)延伸工程を有してもよい。以下、各工程について説明する。
【0175】
(1)セルロースナノファイバー組成物の調製
まず、セルロースナノファイバー、酸化防止剤、及び必要に応じて添加される添加剤を含むセルロースナノファイバー組成物を調製する。本発明において、セルロースナノファイバーと、酸化防止剤と、その他必要により添加される添加剤とは、加熱する前に混合しておくことが好ましい。混合は、混合機等により行ってもよく、また、セルロースナノファイバー調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミキサー、リボンミキサー、伸長流動分散機等の一般的な混合機を用いることができる。 さらに、セルロースナノファイバー組成物は溶融前に、熱風乾燥または真空乾燥することが好ましい。
【0176】
(2)加熱押出し
上記で得たセルロースナノファイバー組成物を、押出し機を用いて加熱して製膜する。この際、上記のようにセルロースナノファイバー組成物を混合した後に、その混合物であるセルロースナノファイバー組成物を、押出し機を用いて直接加熱して製膜するようにしてもよいが、一旦、フィルム組成物をペレット化した後、該ペレットを押出し機で加熱して製膜するようにしてもよい。また、セルロースナノファイバー組成物が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが軟化する温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機に投入して製膜することも可能である。セルロースナノファイバー組成物に熱分解しやすい材料が含まれる場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。
【0177】
押出し機は、市場で入手可能な種々の押出し機を使用可能であるが、混練押出し機が好ましく、単軸押出し機でも2軸押出し機でもよい。セルロースナノファイバー組成物からペレットを作製せずに、直接製膜を行う場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。フィルム構成材料として、一旦、ペレットやおこし状の半溶融物を使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。
【0178】
押出し機内及び押出した後の冷却工程は、窒素ガス等の不活性ガスで置換するか、あるいは減圧することにより、酸素の濃度を下げることが好ましい。
【0179】
押出し機内の温度は、フィルム構成材料(セルロースナノファイバー組成物)の粘度や吐出量、製造するシートの厚み等によって好ましい条件が異なるが、一般的には、フィルムのガラス転移温度Tgに対して、Tg以上、Tg+100℃以下、好ましくはTg+10℃以上、Tg+90℃以下である。
【0180】
本発明においては、セルロースナノファイバーのアシル基(特に、プロピオニル基)で修飾された部分のTgが目安となる。ただ高温になるとセルロースナノファイバーの熱分解も懸念されるので、具体的には、加熱押出し時の温度は、150〜300℃であることが好ましく、特に180〜270℃の範囲であることが好ましい。さらに200〜250℃の範囲であることが好ましい。押出し時の粘度は、10〜100000P(1〜10000Pa・s)、好ましくは100〜10000P(10〜1000Pa・s)である。また、押出し機内でのフィルム構成材料(セルロースナノファイバー組成物)の滞留時間は短い方が好ましく、好ましくは5分以内、より好ましくは3分以内、さらに好ましくは2分以内である。滞留時間は、押出し機1の種類、押出す条件にも左右されるが、組成物の供給量やL/D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが可能である。
【0181】
(3)冷却
上記押出し機でフィルム状に押出して、静電印加法等により冷却ドラムに密着させ、冷却固化させ、未延伸フィルムを得る。冷却ドラムの温度は50〜150℃に維持されていることが好ましく、より好ましくは90〜150℃に維持される。
【0182】
(4)延伸工程
本発明に用いられる光学フィルムは、前記組成物を加熱押出ししてフィルム上に製膜した後、少なくとも一方向に延伸することができる。延伸することでフィルムのリターデーションを調整することができるため、光学フィルムとしての価値が向上するので好ましい。
【0183】
延伸方法としては、前述の冷却ドラムから剥離され、得られた未延伸フィルムを複数のロール群及び/または赤外線ヒーター等の加熱装置を介してセルロースナノファイバーのプロピオニル基で修飾された部分のガラス転移温度(Tg)−50℃からTg+100℃の範囲内に加熱し、フィルム搬送方向(長手方向ともいう)に、一段または多段縦延伸することが好ましい。次に、上記のようにして得られた延伸されたアシル基(特に、プロピロイル基)含有セルロースを、フィルム搬送方向に直交する方向(幅手方向ともいう)に延伸することも好ましい。フィルムを幅手方向に延伸するには、テンター装置を用いることが好ましい。
【0184】
フィルム搬送方向またはフィルム搬送方向に直交する方向に延伸する場合は、2.5倍以下の倍率で延伸することが好ましく、より好ましくは1.1〜2.0倍の範囲である。
2.5倍以下であれば、ナノファイバー周辺の空隙発生を防止でき、透明性の劣化を抑制できる。
【0185】
また、延伸に引き続き熱加工することもできる。熱加工は、Tg−100℃〜Tg+50℃の範囲内で通常0.5〜300秒間搬送しながら行うことが好ましい。
【0186】
フィルムを加熱(熱加工)させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。フィルムの加熱は段階的に高くしていくことが好ましい。
【0187】
熱加工されたフィルムは通常Tg以下まで冷却され、フィルム両端のクリップ把持部分をカットし巻き取られる。また冷却は、最終熱加工温度からTgまでを、毎秒100℃以下の冷却速度で徐冷することが好ましい。 冷却する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながらこれらの処理を行うことがフィルムの寸法安定性向上の点で好ましい。尚、冷却速度は、最終熱加工温度をT1、フィルムが最終熱加工温度からTgに達するまでの時間をtとしたとき、(T1−Tg)/tで求めた値である。
【0188】
(5)カレンダー処理
本発明に用いられる光学フィルムは、前記セルロースナノファイバー組成物を加熱押出ししてフィルム上に製膜した後、加熱カレンダー処理することができる。なお、加熱カレンダー処理に加えて延伸処理を行ってもよく、製膜後、延伸処理およびカレンダー処理の両方を行う場合、その順序は特に制限されず、どちらを先に行ってもよい。加熱カレンダー処理により、セルロースナノファイバーの修飾した樹脂成分(アシル基成分)をフィルム中に拡散させることができ、これにより、透明性、生産性、熱膨張、平滑性が向上する。
【0189】
加熱カレンダー処理としては、単一プレスロールによる通常のカレンダー装置の他に、これらが多段式に設置された構造をもつスーパーカレンダー装置を用いてもよい。これらの装置、およびカレンダー処理時におけるロール両側それぞれの材質(材質硬度)や線圧を目的に応じて選定することができる。
【0190】
(多層化)
また本発明の光学フィルムは、共流延法によって多層構成とした光学フィルムも好ましく用いることができる。多層構成にすることで、製造工程の熱加工での反りや歪み等を調整したり、透明性や熱膨張性を調整したりできるので、有効である。例えば、プロピオニル基の置換度が小さく結晶化度の高いファイバーをセンターに配置し、プロピオニル基の置換度が大きく結晶化度の小さいファイバーを両面に配置した構成とすることにより、熱加工での反りや歪み等を改善できる。共流延法によって多層構成にする場合の膜厚構成は、便宜調整することができる。
【0191】
(シート化、プロピオニル基置換、加熱カレンダー処理法)
本発明に係る光学フィルムは、セルロースナノファイバー、酸化防止剤、及び必要に応じて添加される添加剤の混合物をシート化し、そのシート状態で、セルロースの水酸基の水素原子の一部をアシル基(好ましくは、プロピオニル基)で置換した後に、加熱カレンダー処理で透明フィルム化する方法で製造することもできる。
【0192】
セルロースナノファイバー、酸化防止剤、及び必要に応じて添加される添加剤の混合物をシート化する方法としては、一般的なシート形成方法により得ることができる。例えばセルロースナノファイバー、酸化防止剤、及び必要に応じて添加される添加剤の混合物をそのまま濾過してシート化する方法や、セルロースナノファイバーの分散媒を流延した後、分散媒を除去して、セルロースナノファイバーを含んで構成されるシートを得る方法等が挙げられる。
【0193】
本発明で好ましい態様の一つとしては、セルロースナノファイバー、酸化防止剤、及び必要に応じて添加される添加剤を含む分散液を調製した後、得られた分散液を濾紙、メンブレンフィルターまたは抄網等に流延し、分散媒等のその他成分を濾別および/または乾燥させ、シートを得る方法である。なお、前記濾別乾燥工程においては、作業効率を高めるため減圧下、加圧下で行っても構わない。また、連続的に形成する場合には、製紙業界で使用される抄紙機を用いて薄層シートを連続的に形成する方法も含まれる。
【0194】
次にシートを構成するセルロースナノファイバーをプロピオニル基で置換(修飾)する。具体的な方法として、例えば、先述の修飾剤をシートに含浸して修飾することができる。その場合、シートが水分を含んでいると、修飾反応が遅くなる傾向があるので、シートに修飾剤を含浸する前に、乾燥または有機溶剤等で水分を除去しておくことが好ましい。さらに修飾したシートは、修飾前と同様に、乾燥または有機溶剤等で水分、さらには未反応の修飾剤や不純物を除去することが好ましい。上記により、次工程の加熱カレンダー処理で透明性、生産性が確保できる。
【0195】
続いて、上記で得た修飾セルロースナノファイバーシートを、加熱カレンダー処理で透明化、平滑化することができる。なお、延伸処理を行う場合、延伸処理およびカレンダー処理の順序は特に制限されず、どちらを先に行ってもよい。
【0196】
(光学フィルムの物性)
本発明における光学フィルムは、全光線透過率が好ましくは85%以上、特に90%以上の高透明性材料であることが好ましい。85%未満では、本発明の展開できる用途への使用が困難になる場合があり、特に画像が乱れたり、鮮鋭性が劣化したりするので、好ましくない。また上記数値は製造工程での熱加工後でも必要である。
【0197】
同様にして光学フィルムのヘイズ値は好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、一層好ましくは1%以下、特に好ましくは0.5%以下であることが好ましい。また着色性の指標としては黄色度(イエローインデックス、YI)を用いることができ、好ましくは3.0以下、より好ましくは1.0以下である。黄色度はJIS−K7103に基づいて測定することができる。
【0198】
本発明の光学フィルムは、20〜200℃における線熱膨張係数が、好ましくは15ppm/K以下であり、より好ましくは10ppm/K以下であり、さらに好ましくは5ppm/K以下である。15ppm/Kより大きいと、素子を形成する導電膜やバリヤー膜等の無機膜、さらにガラスとの線熱膨張係数との違いから、製造工程での熱加工等により、膜が割れて機能を発揮できなくなったり、フィルムにたわみや歪みが発生したり、素子用部品として結像性能や屈折率が狂う等の問題が発生したりする場合があり好ましくない。
【0199】
本発明の光学フィルムの膜厚は、特に限定はされないが10〜200μmが好ましく用いられる。特に膜厚は50〜150μmであることが特に好ましい。さらに好ましくは75〜125μmである。
【0200】
〔素子用基板、有機素子〕
本発明の光学フィルムは、透明性、生産性(欠陥)、耐熱性、カール性、低熱膨張に優れていることから、素子用の透明基板(素子用基板)として使用することができる。特に、液晶や有機素子用基板に適用でき、有機素子としては、有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する)、有機光電変換素子等が挙げられる。
【0201】
本発明の光学フィルムを素子用の透明基板として使用する場合には、必要に応じて、光学フィルム上に、透明導電膜、ハードコート層を設置することができる。
【0202】
(透明導電膜)
本発明の素子用基板に用いることができる透明導電膜は特に限定なく、素子構成により選択することができる。例えば、透明電極として用いる場合、好ましくは380〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO
2、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて使用することもできる。
【0203】
(ハードコート層)
本発明の素子用基板に用いることができるハードコートは特に限定なく、素子構成により選択することができる。本発明においてハードコート層を設置することで、光学フィルムに硬度、平滑性、透明性、耐熱性が付与することができる。本発明に適用可能なハードコート層を構成するハードコート樹脂としては、硬化によって透明な樹脂組成物を形成するものであれば、特に制限なく使用でき、例えば、シリコン樹脂、エポキシ樹脂、ビニルエステル樹脂、アクリル系樹脂、アリルエステル系樹脂等が挙げられる。特に好ましくは、できる点でアクリル系樹脂を用いることができる。硬化方法は光、熱いずれも可能であるが、生産性の点から光、特にUV光に硬化が好ましい。
【実施例】
【0204】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0205】
〔セルロースナノファイバーの作製〕
(製造例1)
針葉樹から得られた亜硫酸漂白パルプ(セルロース繊維)を純水に0.1質量%となるように添加し、石臼式粉砕機(ピュアファインミルKMG1−10;栗田機械製作所社製)を用いて50回、磨砕処理(回転数:1500回転/分)してセルロース繊維を解繊した。この水分散液を濾過後、純水で洗浄し、70℃で乾燥させてセルロースナノファイバーAを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径32nmに解繊されており、ミクロフィブリル化していることを確認した。
【0206】
さらに、無水プロピオン酸/ピリジン(モル比1/1)溶液500質量部に、セルロースナノファイバーAの10質量部を添加して分散させ、室温で1時間攪拌した。次に分散したセルロースナノファイバーを濾過し、500質量部の水で3回水洗した後、200質量部のエタノールで2回洗浄した。さらに、500質量部の水で2回水洗を行った後、70℃にて乾燥させ、プロピオニル基で置換したセルロースナノファイバーBを得た。
【0207】
得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またプロピオニル基の置換度は0.5、結晶化度は89%であった。プロピオニル基の置換度は、ASTM−D817−96に規定の方法により求めた。結晶化度は先述のX線回折法により求めた。
【0208】
(製造例2)
セルロースナノファイバーAと無水プロピオン酸/ピリジン(モル比1/1)溶液の撹拌時間を3時間に変更した以外は、製造例1を同様にして、プロピオニル基で置換したセルロースナノファイバーCを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またプロピオニル基の置換度は1.2、結晶化度は81%であった。
【0209】
(製造例3)
セルロースナノファイバーAと無水プロピオン酸/ピリジン(モル比1/1)溶液の撹拌時間を6時間に変更した以外は、製造例1を同様にして、プロピオニル基で置換したセルロースナノファイバーDを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またプロピオニル基の置換度は2.0、結晶化度は56%であった。
【0210】
(製造例4)
セルロースナノファイバーAと無水プロピオン酸/ピリジン(モル比1/1)溶液の撹拌時間を12時間に変更した以外は、製造例1を同様にして、プロピオニル基で置換したセルロースナノファイバーEを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またプロピオニル基の置換度は3.0、結晶化度は34%であった。
【0211】
(製造例5)
乾燥質量で1g相当分のセルロースナノファイバーA、0.0125gのTEMPO(2,2,6,6−テトラメチルピペリジン−N−オキシル)および0.125gの臭化ナトリウムを水100mlに分散させた後、13質量%次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムの量が2.5mmolとなるように次亜塩素酸ナトリウムを加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10.5に保った。pHに変化が見られなくなった時点で反応終了と見なした。反応物をガラスフィルターにてろ過した後、十分な量の水による水洗およびろ過を5回繰り返し、さらに超音波分散機にて1時間処理をした。これを70℃で乾燥させてセルロースナノファイバーFを得た。走査型電子顕微鏡観察の結果、平均繊維径4nmであった。
【0212】
セルロースナノファイバーAをセルロースナノファイバーFに変更したこと以外は、製造例1と同様にして、セルロースナノファイバーの水酸基の水素原子をプロピオニル基で置換したセルロースナノファイバーGを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は4nmに保たれていた。またプロピオニル基の置換度は0.6、結晶化度は88%であった。
【0213】
(製造例6)
セルロースナノファイバーAをセルロースナノファイバーFに変更したこと以外は、製造例2と同様にして、セルロースナノファイバーの水酸基の水素原子をプロピオニル基で置換したセルロースナノファイバーHを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は4nmに保たれていた。またプロピオニル基の置換度は1.4、結晶化度は79%であった。
【0214】
(製造例7)
セルロースナノファイバーAをセルロースナノファイバーFに変更し多こと以外は、製造例3と同様にして、セルロースナノファイバーの水酸基の水素原子をプロピオニル基で置換したセルロースナノファイバーIを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は4nmに保たれていた。またプロピオニル基の置換度は2.2、結晶化度は52%であった。
【0215】
(製造例8)
セルロースナノファイバーAをセルロースナノファイバーFに変更したこと以外は、製造例4と同様にして、セルロースナノファイバーの水酸基の水素原子をプロピオニル基で置換したセルロースナノファイバーJを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は4nmに保たれていた。またプロピオニル基の置換度は2.9、結晶化度は31%であった。
【0216】
(製造例9)
70℃で乾燥前のセルロースナノファイバーAの水分散液500質量部に35質量%塩酸水溶液10質量部を加え、均一になるまで攪拌をした後、温度を10℃に調節した。そのときの混合液のpHは0.5であった。次いで、10℃に保持された混合液を攪拌しながらプロピオンアルデヒド7.0質量部を温度10〜15℃に調節しながら連続的に添加混合した。添加開始約15分後に攪拌を停止した。その後反応系を60℃に昇温し、1時間保持した。反応終了後、40℃まで冷却し、1モル%の水酸化ナトリウム水溶液を添加して前記混合液をpH9に調整した。ろ過により洗浄・脱水を実施した。70℃で乾燥させて、プロピオニル基で置換したセルロースナノファイバーKを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またプロピオニル基の置換度は1.0、結晶化度は84%であった。
【0217】
(製造例10)
無水プロピオン酸を無水酢酸に変更した以外は、製造例2と同様にして、アセチル基で置換したセルロースナノファイバーLを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またアセチル基の置換度は1.0、結晶化度は82%であった。
【0218】
(製造例11)
無水プロピオン酸を無水ブタン酸に変更した以外は、製造例2と同様にして、アセチル基で置換したセルロースナノファイバーMを得た。得られたセルロースナノファイバーは走査型電子顕微鏡観察結果より、平均繊維径は32nmに保たれていた。またブタノイル基の置換度は0.9、結晶化度は84%であった。
【0219】
製造例1〜11で作製したセルロースナノファイバーについて、製造方法と、置換度、結晶化度及び平均繊維径を表1に示す。
【0220】
【表1】
【0221】
〔光学フィルムの作製〕
(光学フィルムNo.1〜22の作製)
〈加熱押出し製膜方法〉
表1に示すセルロースナノファイバー100質量部を、(株)松井製作所製除湿熱風式乾燥機により熱風温度150℃、露点−36℃で乾燥した後、可塑剤P−1:8質量部、表2、3に示す酸化防止剤A−1:1質量部、酸化防止剤A−2:0.5質量部と一緒にV型タンブラーで30分間混合した。なお、複数種類のセルロースナノファイバーを混合する場合(表2の光学フィルムNo.18〜21、表3の光学フィルムNo.22)には、表2および表3に示す比率(質量比)で混合したセルロースナノファイバーを用いた。
【0222】
次いで、テクノベル(株)製二軸押出し機に120kg/hrで供給した。スクリューデザインはニーディングディスクを少なめにして、混練発熱を抑えるようにした。バレルの温度設定は200℃から250℃で、先端近傍にはベント口を設け、揮発分を除去した。押出し機下流にフィルター、ギヤポンプ、フィルターを配置し、コートハンガー型Tダイから押出し、120℃に温調した2本のクロムメッキ鏡面ロールの間に落として引取り、3本ロール間を通し、エッヂをスリットした後ワインダーに巻き取った。巻き取ったフィルムの厚みが125μmになるように押出し量と引取りロールの回転速度を調整した。
【0223】
可塑剤P−1:トリメチロールプロパントリベンゾエート
一次酸化防止剤A−1:IRGANOX−1010(BASFジャパン社製)
二次酸化防止剤A−2:スミライザーGP(住友化学(株))
(カレンダー処理)
得られたフィルムを、由利ロール社製ロールプレス装置を使用して、カレンダー処理を施した。上部下部ともに金属ロールで、ロール温度として200℃に設定して、線圧0.5トンで2m/minの走行速度でカレンダー処理を行った。
【0224】
(延伸処理)
得られたフィルムを予熱後ロール速度差によりフィルム搬送方向に延伸(長手延伸)、次いでテンター式延伸機に導き、フィルム搬送方向に直交する方向に延伸(幅手延伸)した。延伸倍率は長手延伸1.5倍、幅手延伸1.5倍とした。
【0225】
(光学フィルムNo.23〜24の作製)
ダイから溶融したポリマーをフィードブロックを用いた同時押出し法により、光学フィルムNo.23を得た。すなわち、セルロースナノファイバーD/セルロースナノファイバーB/セルロースナノファイバーDとなるように積層し、各層の質量比に応じた流量比で光学フィルムNo.1〜22の場合と同じ総送液量としてダイに展開して押出しを実施することによって、下層から上層に向かってセルロースナノファイバーD、セルロースナノファイバーB、およびセルロースナノファイバーDの3層構造を有するセルロースナノファイバーD/B/Dによるフィルム(各層の質量比=15:70:15)を作製した。
【0226】
得られたフィルムについて、上記と同様の延伸処理を施すことにより、光学フィルムNo.23を得た。
【0227】
また、セルロースナノファイバーD/B/Dに代えてセルロースナノファイバーJ/G/Jの層構成としたこと以外は光学フィルムNo.23の場合と同様にして、光学フィルムNo.24を得た。
【0228】
(光学フィルムNo.25の作製)
セルロースナノファイバーA:80質量部、マトリックス樹脂としてのセルロースアセテートプロピオネート(CAP):20質量部、可塑剤P−1:8質量部、一次酸化防止剤A−1:1質量部、二次酸化防止剤A−2:0.5質量部を混合したこと以外は、光学フィルムNo.1と同様にして、光学フィルムNo.25を得た。
【0229】
〔光学フィルムの評価〕
得られた光学フィルムについて、以下の評価を行った。
【0230】
(1)線膨張係数
光学フィルムについて、20〜200℃の範囲内で温度を変化させ、線膨張係数(単位:ppm/K)を測定した。測定装置としてSII(セイコーインスツルメンツ)社EXSTAR6000 TMA/SS6100を用いた。
【0231】
(2)透明性(ヘイズ値の測定〉
光学フィルムをヘイズメーター(日本電色工業社製、NDH2000)を用いてヘイズ値(%)を測定し、これを透明性の尺度とした。
【0232】
(3)生産性(欠陥)
光学フィルムを、2枚の偏光板を直行(クロスニコル)状態にしたものの間に設置して、所定面積あたりの欠陥の個数(個/mm
2)を、偏光顕微鏡(オリンパス株式会社製のBX51)を用いて測定した。
【0233】
◎:欠陥の個数が0.3個/mm
2未満である
○:欠陥の個数が0.3個/mm
2以上0.6個/mm
2未満である
△:欠陥の個数が0.6個/mm
2以上2.0個/mm
2以下である
×:欠陥の個数が2.0個/mm
2を超える
(4)カール
光学フィルムを10cm×10cmの大きさに切り出し、各端部の浮き上がり量(単位:cm)を測定。四点の平均値をカール値とした。
【0234】
(5)耐熱性
光学フィルムを200℃のオーブン中で60分加熱処理を施した。その後、処理を施した光学フィルムについて、上記と同様の方法で、透明性、カール評価を行い、耐熱性の目安とした。
【0235】
評価の結果を表2、3に示す。
【0236】
【表2】
【0237】
【表3】
【0238】
表に示した結果から明らかなように、本発明の光学フィルムは、比較例に比べ、製膜時の欠陥も少なく、透明性、熱膨張性に優れ、かつ製造工程での熱加工がされた際にでも、透明性、カール性が良好であることが分かる。