【実施例】
【0093】
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例には限定されない。なお、特に明記しない限り、実施例における部および%は重量基準である。
【0094】
≪GPC分子量測定条件≫
使用カラム:東ソー社製TSKguardcolumn SWXL+TSKge1 G4000SWXL+G3000SWXL+G2000SWXL
溶離液:水10999g、アセトニトリル6001gの混合溶媒に酢酸ナトリウム三水和物115.6gを溶かし、更に30%水酸化ナトリウム水溶液でpH6.0に調整した溶離液溶液を用いる。
打込み量:0.5%溶離液溶液100μL
溶離液流速:0.8mL/min
カラム温度:40℃
標準物質:ポリエチレングリコール、重量平均分子量(Mw)272500、219300、85000、46000、24000、12600、4250、7100、1470。
検量線次数:三次式
検出器:日本Waters社製 410 示差屈折検出器
解析ソフト:日本Waters社製 MILLENNIUM Ver.3.21
【0095】
≪表面張力の測定≫
ポリオキシアルキレン化合物の固形分5重量%水溶液を調整し、20℃に調温後、動的表面張力計(SITA Science line t60(MESSTECHNIK社))を使用して表面張力の測定を行った。Frequency0.5Hzでの測定値を表面張力とした。
【0096】
≪コンクリート物性の評価≫
〔コンクリートに添加する各成分の固形分測定〕
コンクリート物性の評価に使用した水硬性材料用収縮低減剤に用いる各成分の固形分を以下の方法で測定した。
1.アルミ皿を精秤した。
2.精秤したアルミ皿に固形分を測定する成分をのせ、精秤した。
3.窒素雰囲気下130℃に調温した乾燥機に、2.で精秤した成分をアルミ皿ごと1時間入れた。
4.1時間後、アルミ皿および固形分を測定する成分を乾燥機から取り出し、デシケーター内で15分間放冷した。
5.15分後、デシケーターから取り出したアルミ皿および固形分を測定する成分(乾燥後)を精秤した。
6.上記で測定した重量を用いて、以下の式により、固形分を算出した。
固形分(%)={[(上記5の精秤で得られた重量)−(上記1の精秤で得られたアルミ皿の重量)]/[(上記2の精秤で得られた重量)−(上記1の精秤で得られたアルミ皿の重量)]}×100
【0097】
〔フレッシュコンクリートの評価〕
得られたフレッシュコンクリートについて、スランプフロー、スランプ値、空気量を以下の方法により測定した。
スランプフロー:JIS A 1150−2001
スランプ値:JIS A 1101−1998
空気量:JIS A 1128−1998
【0098】
〔気泡間隔係数の測定〕
エアボイドアナライザー(AVA;商品名、ジャーマンインストゥルメンツ社製)にて耐凍結融解性の指標となる気泡間隔係数の測定を行った。予め、グリセリン(試薬(和光純薬製))および水を重量比でグリセリン/水=83/17の割合で混合し、AVA測定用溶液を調製した。
ミキサーから取り出されたフレッシュコンクリートの空気量(空気量=5±1vol%)を測定した後、6mm以上の骨材を取り除き、気泡間隔係数評価用モルタルを専用のシリンジに20ml採取した。測定用カラムに水約2000mlを注入し、カラム壁面に付着した気泡を刷毛で取り除いた後、予め上記で調製したAVA測定用溶液250mlを専用の器具を用いてカラムの底部に注入した。注入後、カラムの水面付近に気泡採取用のペトリ皿を設置し、測定部分に固定した。シリンジに採取したモルタル20mlをカラムの底部に注入した後、モルタルを30秒間撹拌し、液中にモルタルの連行空気を十分に放出させた。放出させた気泡を経時で測定することにより、気泡間隔係数を測定した。
気泡間隔係数の計算に際して、フレッシュコンクリートの空気量以外にコンクリート全体積より6mm以上の骨材の占める体積を除いた値(モルタル容積率)およびペーストの占める体積(ペースト容積率)が必要となる。モルタル容積率およびペースト容積率は下記の式(I)および(II)より算出した。
モルタル容積率(%)=[(V
B+V
W+V
S)/1000]×100 (I)
ペースト容積率(%)=[(V
B+V
W)/1000]×100 (II)
V
B:結合材の体積(=結合材単位量(kg)/結合材の比重)
V
W:水と混和剤の体積(単位水量と同じとする)
V
S:6mm以下の骨材の体積(=細骨材の単位量/細骨材の比重)
【0099】
〔乾燥収縮低減性の評価〕
得られたフレッシュコンクリートをゲージピン付の10×10×40cmの供試体型枠に入れ、2日間20℃にて封緘養生後脱型した。脱型後、さらに5日間静水中で水中養生した後、乾燥収縮低減性の評価を行った。
乾燥収縮低減性の評価は、JIS A1129−3(モルタル及びコンクリートの長さ変化試験方法 第3部:ダイヤルゲージ方法)に準拠して実施した。
静水中で5日間水中養生後の供試体の表面の水を紙タオルでふき取った後、直ちに供試体の長さを測定し、この時点の長さを基準とした。その後、温度20℃、湿度60%に設定した恒温恒湿室内に保存し、適時測長した。測定した長さから、供試体の収縮量を算出し、下記の式から、長さ変化比を算出した。下記の式に示すように、長さ変化比は、基準コンクリートの収縮量に対する、実施例または比較例の収縮低減剤を含む供試体の収縮量の比を表し、値が小さいほど収縮を低減することができることを示す。
長さ変化比
={(実施例または比較例の低減剤を用いたコンクリートの収縮量)/(基準コンクリートの収縮量)}×100
【0100】
〔耐凍結融解性の評価〕
得られたフレッシュコンクリートを10×10×40cmの供試体型枠に入れ、2日間20℃にて封緘養生後脱型した。脱型後、さらに5日間20℃の静水中で養生した後、耐凍結融解性の評価を行った。
耐凍結融解性の評価は、JIS A1148−2001中のA法に従い、30サイクルごとにJIS A1127−2001に従って、一次共鳴振動数および供試体重量を測定することにより実施した。
この際30サイクルごとの耐凍結融解性は、下記の式(III)で示されるように、凍結融解サイクル開始前(0サイクル)の一次共鳴振動数に対する、各サイクル終了時点での一次共鳴振動数から相対動弾性係数を算出し、評価した。凍結融解のサイクルは、最大300サイクルとし、300サイクル以前に相対動弾性係数が60%以下となった場合には、その時点で評価を終了した。最終的な耐凍結融解性は、下記の式(IV)で示す耐久性指数を算出することにより、評価した。相対動弾性係数および耐久性指数は、いずれも100に近いほど、良好な耐凍結融解性を有することを示す。
300サイクル時点での相対動弾性係数が60%以上の場合を○とし、300サイクル時点での相対動弾性係数が60%未満の場合を×とした。
相対動弾性係数(%)=(f
n2/f
02)×100 (III)
f
n:凍結融解nサイクル後の一次共鳴振動(Hz)
f
0:凍結融解0サイクルの一次共鳴振動(Hz)
耐久性指数=(P×N)/300 (IV)
P:凍結融解Nサイクル時の相対動弾性係数(%)
N:相対動弾性係数(%)が60%以下になった凍結融解サイクル数、または300サイクルのいずれか小さい方
【0101】
≪モルタルによる乾燥収縮低減性の評価および気泡間隔係数の測定≫
〔モルタルの混練〕
所定量の本発明の水硬性材料用収縮低減剤を秤量して水で希釈したもの225g、普通ポルトランドセメント(太平洋セメント社製)450g、セメント強さ試験用標準砂(JIS R5201−1997附属書2の5.1.3に規定:セメント協会)1350gを、ホバート型モルタルミキサー(ホバート社製、型番:N−50)を用い、JIS R5201−1997の方法に従い、モルタルの混練を行った。
また、モルタル空気量が3〜6vol%となるように、必要に応じて消泡剤(アデカノールLG299)を使用して調整した。
【0102】
〔モルタル空気量の測定〕
モルタル空気量の測定は、500mlメスシリンダーを用い、JIS A1174(まだ固まらないポリマーセメントモルタルの単位容積質量試験方法及び空気量の質量による試験方法(質量方法))に準拠して実施した。
【0103】
〔乾燥収縮低減性の評価〕
乾燥収縮低減性評価用のモルタル供試体(4×4×16cm)の作成を、JIS A1129に従って実施した。型枠には予めシリコングリースを塗布して止水すると共に容易に脱型できるようにした。また、供試体の両端にはゲージプラグを装着した。混練して得られたモルタルを流し込んだ型枠を容器に入れ、密閉し、20℃で保管し、初期養生を行った。1日後に脱型し、供試体に付着したシリコングリースを、たわしを用いて水で洗浄し、続いて、20℃の静水中で6日間養生(水中養生)した。JIS A1129に従い、ダイヤルゲージ((株)西日本試験機製)を使用し、静水中で6日間養生した供試体の表面の水を紙タオルで拭き取った後、直ちに測長し、この時点の長さを基準とした。その後、温度20℃、湿度60%に設定した恒温恒湿室内に保存し、適時測長した。この際、長さ変化比は、下記式で示されるように、基準モルタルの収縮量に対する、収縮低減剤添加モルタルの収縮量の比とし、値が小さいほど、収縮を低減できることを示す。なお、収縮低減剤を添加していないモルタルを基準モルタルとした。
長さ変化比
={(収縮低減剤添加モルタルの収縮量)/(基準モルタルの収縮量)}×100
長さ変化比と同時に、各材齢において供試体の重量を測定し、下記式により重量減少率を算出した。この重量減少率が大きいほど供試体からの水分の蒸発が大きいことを示す。
重量減少率(%)={(W0−WX)/W0}×100
W0:材齢0日の供試体質量(g)
WX:材齢x日の供試体質量(g)
【0104】
〔フロー値の測定およびフロー値比の評価〕
得られたモルタルについて、JIS R 5201−1997に準じて、フロー値を測定した。
フロー値比は、基準モルタルのモルタルフロー値と実施例または比較例の収縮低減剤を含むモルタルのモルタルフロー値との比であり、以下の式により求められる値である。モルタルフロー値が大きいほど、モルタル粘性への影響が少ないことを示す。なお、収縮低減剤を添加していないモルタルを基準モルタルとした。
フロー値比
={(収縮低減剤添加モルタルのフロー値)/(基準モルタルのフロー値)}×100
【0105】
〔気泡間隔係数の測定〕
所定の空気量(3.0〜6.0vol%)のモルタルを混練した後、エアボイドアナライザー(AVA;商品名、ジャーマンインストゥルメンツ社製)にて耐凍結融解性の指標となる気泡間隔係数の測定を行った。
まず、20℃に調温したAVA測定用溶液250mlと水約2000mlを計量した。次に、カラムに充填した後、モルタル20mlを採取し、カラムの底部に注入した。注入後、モルタルを30秒間攪拌し液中にモルタルの連行空気を十分に液中に放出させた。放出された気泡を経時測定することにより、気泡間隔係数の計算を行った。
気泡間隔係数の計算に際して、空気量以外に全体積より6mm以上の骨材の占める体積を除いた値(モルタル容積率)およびペーストの占める割合(ペースト容積率)が必要となる。ここでは、モルタル容積率を100%とし、ペースト容積率は下記の式により算出した。
ペースト容積率(%)=[(V
C+V
A)/(V
C+V
A+V
IS)]×100
V
C:結合材の体積(=結合材添加量(g)/結合材の比重)
V
A:水と混和剤の体積(添加量と同じとする)
V
IS:細骨材(砂)の体積(=細骨材(砂)添加量(g)/細骨材(砂)の比重)
気泡間隔係数の値が小さいほど、モルタル中に連行された気泡が細かく密に分散(良質の気泡をモルタル中に連行している)ことを示し、耐凍結融解性に優れていることを示す。
【0106】
≪モルタルによる自己収縮ひずみの測定≫
〔モルタルの混練〕
所定量の本発明の水硬性材料用収縮低減剤を秤量して水で希釈したもの213.7g、太平洋セメント社製の普通ポルトランドセメント485.7g、セメント強さ試験用標準砂(JIS R 5201−1997附属書2の5.1.3に規定)1350gを、ホバート型モルタルミキサー(ホバート社製、型番:N−50)を用い、モルタルの混練を行った。モルタルの混練は、全て低速(1速)にて実施した。
また、モルタルフロー値が200±20mm、空気量が±3%となるように、減水剤、消泡剤等を使用して調整した。
より具体的には、普通ポルトランドセメントを5秒間空練り後、15秒間かけて水と水硬性材料用収縮低減剤を投入し、さらに10秒間混練した後に停止させた。30秒間でセメント強さ試験用標準砂を投入し、さらに60秒混練した。混練を停止し、20秒間掻き落しを行った。掻き落し後、さらに120秒間混練した後に停止し、モルタルを取り出した。
【0107】
〔自己収縮ひずみの測定〕
自己収縮ひずみは、ひずみゲージ(型式:KMC−70−120−H4(共和電業))を使用して測定した。
自己収縮ひずみ測定と同時に、貫入抵抗測定による凝結時間の測定を実施し、凝結開始時間を自己収縮ひずみ測定の起点とした。
装置概略は
図1に示した。
容器は、口径×下径×高さ=91×84×127mmのポリプロピレン製の容器を使用した。また、容器内部にシリコングリースを塗り、容器とモルタルの接着がないようにした。モルタル充填後、ポリ塩化ビニリデンシートでふたをし、20±2℃で保管して、自己収縮ひずみの測定を実施した。
得られた自己収縮ひずみの値から下記式を用いて長さ変化比を算出した。
長さ変化比
={(ポリマー添加モルタルの収縮量)/(基準モルタルの収縮量)}×100
凝結時間(凝結始発および終結時間)の測定は、温度20±2℃に設定した部屋で、ASTM C 403/C 403M−99に準じて、貫入抵抗値を測定することにより行った。
混練して得られたモルタルをポリプロピレン製の容器(口径×下径×高さ=91×84×127mm)に2回に分けて詰め、注水から3または4時間目から貫入測定値の測定を開始した。注水から貫入抵抗値が3.5N/mm
2になるまでの経過時間を凝結始発時間、同様に、注水から貫入抵抗値が28.0N/mm
2になるまでの経過時間を凝結終結時間とした。
【0108】
≪製造例A−1≫:共重合体(A−1)の合成
温度計、攪拌機、滴下装置、窒素導入管および還流冷却装置を備えたガラス製反応装置に、イオン交換水を14.66重量部、3−メチル−3−ブテン−1−オールにエチレンオキシドを平均50モル付加した不飽和ポリアルキレングリコールエーテル単量体(IPN50)を49.37重量部仕込み、攪拌下反応装置内を窒素置換し、窒素雰囲気下で60℃に昇温した後、2%過酸化水素水溶液2.39重量部を添加し、アクリル酸3.15重量部およびイオン交換水0.79重量部からなる水溶液を3.0時間、並びに3−メルカプトプロピオン酸0.13重量部、L−アスコルビン酸0.06重量部およびイオン交換水15.91重量部からなる水溶液を3.5時間かけて滴下した。その後、1時間引き続いて60℃に温度を維持した後、冷却して重合反応を終了させ、48%水酸化ナトリウム水溶液でpH7.0に調整し、重量平均分子量が37700の共重合体(A−1)の水溶液を得た。
【0109】
≪製造例A−2≫:共重合体(A−2)の合成
温度計、攪拌機、滴下装置、窒素導入管および還流冷却装置を備えたガラス製反応装置に、イオン交換水を42.43重量部、IPN50を49.37重量部仕込み、攪拌下反応装置内を窒素置換し、窒素雰囲気下で60℃に昇温した後、2%過酸化水素水溶液4.12重量部を添加し、アクリル酸3.11重量部、2−ヒドロキシエチルアクリレート5.90重量部およびイオン交換水2.26重量部からなる水溶液を3.0時間、並びに3−メルカプトプロピオン酸0.33重量部、L−アスコルビン酸0.11重量部およびイオン交換水15.91重量部からなる水溶液を3.5時間かけて滴下した。その後、1時間引き続いて60℃に温度を維持した後、冷却して重合反応を終了させ、48%水酸化ナトリウム水溶液でpH7.0に調整し、重量平均分子量が31900の共重合体(A−2)の水溶液を得た。
【0110】
≪製造例A−3≫:共重合体混合物PC−1の合成
製造例A−1で得られた共重合体(A−1)および製造例A−2で得られた共重合体(A−2)を、重量比で、共重合体(A−1)/共重合体(A−2)=30/70の割合で混合し、共重合体混合物PC−1の水溶液を得た。
【0111】
≪実施例A−1〜実施例A−8・比較例A−1〜比較例A−3で用いる各種成分≫
実施例A−1〜実施例A−8・比較例A−1〜比較例A−3で用いるポリオキシアルキレン化合物(A)、減水剤(B)、AE剤(C)および消泡剤(D)を表1に示す。
【0112】
【表1】
【0113】
≪実施例A−1〜実施例A−3、比較例A−1≫
(配合)
表2に示す配合割合で、練り混ぜ量が30Lとなるようそれぞれの材料を計量し、パン型ミキサーを使用して材料を混練した。なお、セメントは、太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製の普通ポルトランドセメント(比重3.16)を均等に混合して用いた。細骨材としては、掛川産陸砂および君津産陸砂を重量比で掛川産陸砂/君津産陸砂=80/20で混合したもの、粗骨材としては、青梅産硬質砂岩をそれぞれ使用した。
【0114】
【表2】
【0115】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入した。さらに、5秒間空練りを行った後、再び回転を止めて、ポリオキシアルキレン化合物(A)および減水剤(B)からなる収縮低減剤、AE剤(C)ならびに消泡剤(D)を含む水を加え、90秒間混練した後、ミキサーからフレッシュコンクリートを取り出した。なお、材料の練り混ぜの際には、市販の空気量調整剤(表1に記載のAE剤(C)および消泡剤(D))および減水剤(B)としてPC−1を使用し、フレッシュコンクリートのスランプフロー=350〜400mm、空気量=5±1%となるように調整した。このときのモルタル容積率は60.4%、ペースト容積率は29.3%であった。配合比を表3に示す。
【0116】
【表3】
【0117】
(評価)
得られた水硬性材料用収縮低減剤を用いたフレッシュコンクリートについて、気泡間隔係数、乾燥収縮低減性、および耐凍結融解性の評価を行った。評価結果を表4に示す。
【0118】
【表4】
【0119】
表4より、ポリオキシアルキレン化合物(A)および減水剤(B)を含む水硬性材料用収縮低減剤を用いた実施例A−1〜実施例A−3では、ポリオキシアルキレン化合物(A)を含まない比較例A−1に比べて、長さ変化比が小さくなった。また、実施例A−1〜実施例A−3では、気泡間隔係数も小さく、良好な耐凍結溶解性を有しており、耐久性に優れていることがわかる。これらの結果から、実施例A−1〜実施例A−3の水硬性材料用収縮低減剤を用いることにより、得られた水硬性材料の収縮を抑制することができ、かつ、優れた耐凍結融解性を有し、耐久性に優れた水硬性材料が得られることがわかる。一方、比較例A−1の水硬性材料用収縮低減剤は、耐凍結融解性の点では優れているが、水硬性材料の収縮を十分に抑制することができなかった。
【0120】
≪実施例A−4〜実施例A−8、比較例A−2〜比較例A−3≫
(配合)
表5に示す配合割合で、練り混ぜ量が30Lとなるようそれぞれの材料を計量し、パン型ミキサーを使用して材料を混練した。なお、セメントは、太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製の普通ポルトランドセメント(比重3.16)を均等に混合して用いた。細骨材としては、掛川産陸砂および君津産陸砂を重量比で掛川産陸砂/君津産陸砂=80/20で混合したもの、粗骨材としては、青梅産硬質砂岩をそれぞれ使用した。
【0121】
【表5】
【0122】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入した。さらに、5秒間空練りを行った後、再び回転を止めて、ポリオキシアルキレン化合物(A)および減水剤(B)からなる収縮低減剤、AE剤(C)ならびに消泡剤(D)を含む水を加え、90秒間混練した後、ミキサーからフレッシュコンクリートを取り出した。なお、材料の練り混ぜの際には、市販の空気量調整剤(表1に記載のAE剤(C)および消泡剤(D))および減水剤(B)としてポゾリスNo.70を使用し、フレッシュコンクリートのスランプ値=16±2cm、空気量=5±1%となるように調整した。このときのモルタル容積率は59.9%、ペースト容積率は27.1%であった。配合比を表6に示す。
【0123】
【表6】
【0124】
(評価)
得られた水硬性材料用収縮低減剤を用いたフレッシュコンクリートについて、気泡間隔係数、乾燥収縮低減性、および耐凍結融解性の評価を行った。評価結果を表7に示す。
【0125】
【表7】
【0126】
表7より、実施例A−1〜実施例A−3と同様に、ポリオキシアルキレン化合物(A)および減水剤(B)を含む水硬性材料用収縮低減剤を用いた実施例A−4〜実施例A−8は、長さ変化比が小さく、また、気泡間隔係数が小さく、良好な耐凍結溶解性を有しており、耐久性に優れていることがわかる。これらの結果から、実施例A−4〜実施例A−8の水硬性材料用収縮低減剤を用いることでも、得られた水硬性材料の収縮を抑制することができ、かつ、優れた耐凍結融解性を有し、耐久性の優れた水硬性材料が得られることがわかる。一方、比較例A−2の水硬性材料用収縮低減剤は、ポリオキシアルキレン化合物(A)を含んでいないため、耐凍結融解性の点では優れているが、水硬性材料の収縮を十分に抑制することができなかった。また、比較例A−3の水硬性材料用収縮低減剤は、乾燥収縮性は優れていたが、気泡間隔係数が350μmを超えており、耐凍結融解性が低く、耐久性が著しく劣っていた。
【0127】
≪実施例B−1≫
ポリオキシアルキレン化合物(A)としてポリエチレングリコール(商品名:ポリエチレングリコール4000、和光純薬工業(株)製、m=91、分子量=4000)、AE剤(C)としてポリオキシエチレンアルキルエーテル硫酸塩であるアデカホープYES25(ADEKA社製)、消泡剤(D)としてポリオキシアルキレンアルキルエーテルであるアデカノールLG299(ADEKA社製)を、表8に示す配合割合で混合し、水硬性材料用収縮低減剤を得た。
【0128】
(配合)
以下に示すコンクリート配合割合により、練り混ぜ量が30Lとなるようにそれぞれの材料を計量し、強制2軸練りミキサーを使用して材料の混練を実施した。なお、セメントは太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製普通ポルトランドセメント(比重3.16)を均等に混合して使用した。この際、細骨材には掛川産陸砂および君津産陸砂、粗骨材には青梅硬質砂岩をそれぞれ使用した。また、コンクリートの空気量=5.0±0.5%となるように調整した。
<コンクリート配合割合>
単位セメント量:301kg/m
3
単位水量 :160kg/m
3
単位細骨材量 :824kg/m
3
単位粗骨材量 :1002kg/m
3
(水/セメント比(W/C):53.1%、細骨材率(s/a):46.0%)
【0129】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入した。さらに、5秒間空練りを行った後、再び回転を止めて、水硬性材料用収縮低減剤、および、減水剤(B)としてポゾリスNo.70(BASFポゾリス(株)製)をセメントに対して固形分換算で0.17%加え、90秒間混練した後、ミキサーからコンクリートを取り出した。
【0130】
(評価)
取り出したコンクリート(フレッシュコンクリート)についての評価結果を表9に示した。
【0131】
≪実施例B−2≫
ポリオキシアルキレン化合物(A)としてポリエチレングリコール(商品名:XG1000、日本触媒社製、m=227、分子量=10000)、AE剤(C)としてポリオキシエチレンアルキルエーテル硫酸塩であるアデカホープYES25(ADEKA社製)、消泡剤(D)としてポリオキシアルキレンアルキルエーテルであるアデカノールLG299(ADEKA社製)を、表8に示す配合割合で混合し、水硬性材料用収縮低減剤を得た。
【0132】
(配合)
以下に示すコンクリート配合割合により、練り混ぜ量が30Lとなるようにそれぞれの材料を計量し、パン型強制練りミキサーを使用して材料の混練を実施した。なお、セメントは太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製普通ポルトランドセメント(比重3.16)を均等に混合して使用した。この際、細骨材には掛川産陸砂および君津産陸砂、粗骨材には青梅硬質砂岩をそれぞれ使用した。また、コンクリートの空気量=5.0±0.5%となるように調整した。
<コンクリート配合割合>
単位セメント量:350kg/m
3
単位水量 :175kg/m
3
単位細骨材量 :841kg/m
3
単位粗骨材量 :905kg/m
3
(水/セメント比(W/C):50.0%、細骨材率(s/a):49.0%)
【0133】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入し、さらに、5秒間空練りを行った後、再び回転を止めて、水硬性材料用収縮低減剤、および、減水剤(B)としてレオビルドSP8LS(BASFポゾリス(株)製)をセメントに対して固形分換算で0.065%加え、90秒間混練した後、ミキサーからコンクリートを取り出した。
【0134】
(評価)
取り出したコンクリート(フレッシュコンクリート)についての評価結果を表9に示した。
【0135】
≪比較例B−1≫
ポリオキシアルキレン化合物(A)としてポリエチレングリコール(商品名:PEG2000、和光純薬工業(株)製、m=45、分子量=2000)、AE剤(C)としてポリオキシエチレンアルキルエーテル硫酸塩であるアデカホープYES25(ADEKA社製)、消泡剤(D)としてポリオキシアルキレンアルキルエーテルであるアデカノールLG299(ADEKA社製)を、表8に示す配合割合で混合し、水硬性材料用収縮低減剤を得た。
【0136】
(配合)
以下に示すコンクリート配合割合により、練り混ぜ量が30Lとなるようにそれぞれの材料を計量し、パン型強制練りミキサーを使用して材料の混練を実施した。なお、セメントは太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製普通ポルトランドセメント(比重3.16)を均等に混合して使用した。この際、細骨材には掛川産陸砂および君津産陸砂、粗骨材には青梅硬質砂岩をそれぞれ使用した。また、コンクリートの空気量=5.0±0.5%となるように調整した。
<コンクリート配合割合>
単位セメント量:350kg/m
3
単位水量 :175kg/m
3
単位細骨材量 :841kg/m
3
単位粗骨材量 :905kg/m
3
(水/セメント比(W/C):50.0%、細骨材率(s/a):49.0%)
【0137】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入し、さらに5秒間空練りを行った後再び回転を止めて、水硬性材料用収縮低減剤、および、減水剤(B)としてポゾリスNo.70(BASFポゾリス(株)製)をセメントに対して固形分換算で0.17%加え、90秒間混練した後、ミキサーからコンクリートを取り出した。
【0138】
(評価)
取り出したコンクリート(フレッシュコンクリート)についての評価結果を表9に示した。
【0139】
≪比較例B−2≫
【0140】
ポリオキシアルキレン化合物(A)としてブタノールのエチレンオキシド3モル付加物(Bu(EO)3、商品名:トリエチレングリコールモノ−n−ブチルエーテル、和光純薬工業(株)製)、AE剤(C)としてポリオキシエチレンアルキルエーテル硫酸塩であるアデカホープYES25(ADEKA社製)、消泡剤(D)としてポリオキシアルキレンアルキルエーテルであるアデカノールLG299(ADEKA社製)を、表8に示す配合割合で混合し、水硬性材料用収縮低減剤を得た。
【0141】
(配合)
【0142】
以下に示すコンクリート配合割合により、練り混ぜ量が30Lとなるようにそれぞれの材料を計量し、強制2軸練りミキサーを使用して材料の混練を実施した。
【0143】
なお、セメントは太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製普通ポルトランドセメント(比重3.16)を均等に混合して使用した。この際、細骨材には掛川産陸砂および君津産陸砂、粗骨材には青梅硬質砂岩をそれぞれ使用した。また、コンクリートの空気量=5.0±2.0%となるように調整した。
【0144】
<コンクリート配合割合>
単位セメント量:301kg/m
3
単位水量 :160kg/m
3
単位細骨材量 :824kg/m
3
単位粗骨材量 :1002kg/m
3
(水/セメント比(W/C):53.1%、細骨材率(s/a):46.0%)
【0145】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入し、さらに、5秒間空練りを行った後、再び回転を止めて、水硬性材料用収縮低減剤、および、減水剤(B)としてレオビルドSP8LS(BASFポゾリス(株)製)をセメントに対して固形分換算で0.065%加え、90秒間混練した後、ミキサーからコンクリートを取り出した。
【0146】
(評価)
取り出したコンクリート(フレッシュコンクリート)についての評価結果を表9に示した。
【0147】
【表8】
【0148】
【表9】
【0149】
表9を見ると、本発明の水硬性材料用収縮低減剤を用いた実施例B−1、実施例B−2においては、優れた収縮低減機能を示すとともに、優れた耐凍結融解性を示すことが判る。一方、比較例B−
1においては、収縮低減機能が実施例B−1、実施例B−2に比べて劣るとともに、耐凍結融解性も非常に劣っていることが判る。また、比較例B−2においては、耐凍結融解性が実施例B−1、実施例B−2に比べて非常に劣っていることが判る。
【0150】
≪実施例C−1〜実施例C−3、参考例C−1〜参考例C−2≫
実施例C−1〜実施例C−3、参考例C−1〜参考例C−2で用いたポリオキシアルキレン化合物(A)、ポリオキシアルキルエーテル(E)、消泡剤(D)としてのポリオキシアルキレンアルキルエーテルを表10に、それぞれの添加量、ならびにポリオキシアルキレン化合物(A)とポリオキシアルキルエーテル(E)との配合比を表11に示す。また、得られた水硬性材料用収縮低減剤を用いたモルタルについて、気泡間隔係数、乾燥収縮低減性、および耐凍結融解性の評価を行った結果を表12に示す。このときのペースト容積率は41.8%であった。
【0151】
【表10】
【0152】
【表11】
*ポリオキシアルキレン化合物(A)、ポリオキシアルキルエーテル(E)、消泡剤(D)の添加量は固形分換算の値
【0153】
【表12】
【0154】
表12を見ると、本発明の水硬性材料用収縮低減剤を用いた実施例C−1〜実施例C−3においては、優れた収縮低減機能を示すとともに、気泡間隔係数が小さく、耐凍結融解性に優れることを示しており、ポリオキシアルキレン化合物(A)とポリオキシアルキルエーテル(E)を併用することにより、これらが相乗的に向上していることがわかる。また、参考例C−1のポリオキシアルキレン化合物(A)のみ用いた場合と比べてフロー値比が高く、モルタル粘性が良好に維持されている。
【0155】
一方、ポリオキシアルキレン化合物(A)のみを含む水硬性材料用収縮低減剤を用いた参考例C−1は、気泡間隔係数が小さく、耐凍結融解性には優れるものの、十分な収縮低減性能が得られないことがわかる。さらに、実施例C−1〜実施例C−3に比べ、フロー値比が小さくなり、モルタルの粘度が増大した。
【0156】
また、ポリオキシアルキルエーテル(E)のみを含む水硬性材料用収縮低減剤を用いた参考例C−2は、導入される気泡の質があまり良くはなく、その結果、気泡間隔係数が大きくなり、十分な耐凍結融解性を得ることができなくなることがわかる。
【0157】
≪製造例D−1≫:共重合体(D−1)の合成
温度計、攪拌機、滴下装置、窒素導入管および還流冷却装置を備えたガラス製反応装置に、イオン交換水を14.66重量部、3−メチル−3−ブテン−1−オールにエチレンオキシドを平均50モル付加した不飽和ポリアルキレングリコールエーテル単量体(IPN50)を49.37重量部仕込み、攪拌下反応装置内を窒素置換し、窒素雰囲気下で60℃に昇温した後、2%過酸化水素水溶液2.39重量部を添加し、アクリル酸3.15重量部およびイオン交換水0.79重量部からなる水溶液を3.0時間、並びに3−メルカプトプロピオン酸0.13重量部、L−アスコルビン酸0.06重量部およびイオン交換水15.91重量部からなる水溶液を3.5時間かけて滴下した。その後、1時間引き続いて60℃に温度を維持した後、冷却して重合反応を終了させ、48%水酸化ナトリウム水溶液でpH7.0に調整し、重量平均分子量が37700の共重合体(D−1)の水溶液を得た。
【0158】
≪参考例D−1〜参考例D−15で用いる各種成分≫
参考例D−1〜参考例D−15で用いるポリオキシアルキレン化合物(A)、減水剤(B)、AE剤(C)および消泡剤(D)、pH調整剤を表13に示す。また、参考例D−1〜参考例D−15で用いるポリオキシアルキレン化合物(A)の5重量%水溶液(固形分換算)の表面張力を表14に示す。
【0159】
【表13】
【0160】
【表14】
【0161】
≪参考例D−1〜参考例D−15で用いるpH調整剤/ポリオキシアルキレン化合物(A)組成物≫
参考例D−1〜参考例D−15で用いるpH調整剤/ポリオキシアルキレン化合物(A)組成物を表15に示す。
【0162】
【表15】
【0163】
≪参考例D−1〜参考例D−5≫
pH調整剤/ポリオキシアルキレン化合物組成物(P−2)〜(P−5)およびポリオキシアルキレン化合物(A−6)をセメントに対して2%添加したモルタルでの自己収縮ひずみの測定結果を表16に示す。表面張力が33mN/mのポリオキシアルキレン化合物(A−6)では消泡剤(D)による空気量調整が困難であり、10%以上の空気量であったため、自己収縮ひずみの測定が出来なかった。pH調整剤/ポリオキシアルキレン化合物組成物(P−2)〜(P−5)では材齢7日時点での長さ変化比は77〜82であり、良好な自己収縮低減性を示した。これらのことから、pH調整剤/ポリオキシアルキレン化合物組成物(P−2)〜(P−5)は空気量の調整が容易で、自己収縮低減性に優れていることが判る。
【0164】
【表16】
【0165】
≪参考例D−6〜参考例D−8≫
pH調整剤/ポリオキシアルキレン化合物組成物(P−4)〜(P−5)をセメントに対して固形分換算で2重量%添加したモルタルの混和剤配合および材齢28日の収縮低減性、質量減少率を表17に示す。それぞれ74、72の長さ変化比を示しており、これらのpH調整剤/ポリオキシアルキレン化合物組成物が良好な乾燥収縮低減機能を有していることが判る。また、参考例D−8に対して質量減少率も低くなっていることから、これらのpH調整剤/ポリオキシアルキレン化合物組成物を添加することによりモルタル供試体からの水分の蒸発が抑制されていることが判る。これらの結果から、pH調整剤/ポリオキシアルキレン化合物組成物(P−4)〜(P−5)は供試体からの水分蒸発および収縮を低減する効果に優れていることが判る。
【0166】
【表17】
【0167】
≪参考例D−9〜参考例D−15≫
(配合)
表18に示す配合割合で、練り混ぜ量が30Lとなるようそれぞれの材料を計量し、パン型ミキサーを使用して材料を混練した。なお、セメントは、太平洋セメント社、住友大阪セメント社、および宇部三菱セメント社製の普通ポルトランドセメント(比重3.16)を均等に混合して用いた。細骨材としては、掛川産陸砂および君津産陸砂を重量比で掛川産陸砂/君津産陸砂=80/20で混合したもの、粗骨材としては、青梅産硬質砂岩をそれぞれ使用した。
【0168】
【表18】
【0169】
(材料の練り混ぜ)
粗骨材および使用する半量の細骨材をミキサーに投入し、5秒間空練り後、回転を止め、セメントおよび残りの細骨材を投入した。さらに、5秒間空練りを行った後、再び回転を止めて、ポリオキシアルキレン化合物(A)、減水剤(B)、AE剤(C)、消泡剤(D)、pH調整剤などを含む水を加え、90秒間混練した後、ミキサーからフレッシュコンクリートを取り出した。なお、材料の練り混ぜの際には、フレッシュコンクリートのスランプ値=15±1.5cm、空気量=5±1%となるように、減水剤(B)、AE剤(C)、消泡剤(D)などの添加量を調整した。
【0170】
(評価)
pH調整剤/ポリオキシアルキレン化合物組成物(P−1)〜(P−5)をコンクリートに使用したときのコンクリートの物性、収縮低減性(長さ変化)および耐凍結融解性(耐久性指数)の混和剤配合および評価結果を表19および表20にそれぞれ示す。いずれのpH調整剤/ポリオキシアルキレン化合物組成物においてもセメントに対して固形分換算で2〜4質量%添加することにより乾燥材齢8週において46〜77の長さ変化を示すことから、モルタルと同様、コンクリートにおいても収縮低減性に優れていることが判る。5%水溶液の表面張力が66.8であるA−1を使用したpH調整剤/ポリオキシアルキレン化合物組成物(P−1)を含む参考例D−15では耐久性指数が13であることから、このコンクリートでは耐凍結融解性が著しく低下していることが判る。それ以外の参考例D−9〜参考例D−14においてはいずれも70以上の耐久性指数を示しており、AE剤(C)や消泡剤(D)によって連行空気を調整することにより、高い耐凍結融解性を達成できることが判る。
【0171】
【表19】
【0172】
【表20】