【実施例】
【0057】
(実施例1:圧縮したUHMWPE物体への染料/色素の拡散)
GUR 1020 UHMWPE粉末を120℃および10MPaの圧力のプレスで圧縮した。プレートから小ブロック(4cm×3cm×5cm)を切り出し、イソプロパノール75mlおよびフクシン(Merck)0.04gを含むグラスに入れた。
図1に予め圧縮したブロックの室温における含浸挙動を時間の関数として示す。着色添加物を含む流体は数秒間で吸収され、1時間以内に物体は均一に着色される。
【0058】
図1に、圧縮したGUR 1020ブロックの赤色イソプロパノール/フクシン溶液への含浸を示す(左:浸漬の数秒後、中:浸漬の30分後、右:浸漬の1時間後)。
【0059】
(比較例1)
焼結したGUR 1020のブロック(4×3×5cm)を、イソプロパノール75mlおよびフクシン(Merck)0.04gを含むグラスに入れた。
図2にブロックの室温における含浸挙動を時間の関数として示す(左:浸漬の数秒後、中:浸漬の30分後、右:浸漬の1時間後)。
【0060】
比較例においては、焼結したブロックには流体が浸透しない。
【0061】
(実施例2:圧縮した小ブロックへの天然添加物/抗酸化剤の含浸)
GUR 1020ブロックを溶融温度未満、120℃で、実験室スケールのプレスで15分間、10MPaで圧縮した。その後、圧縮したブロックを室温まで急速に冷却した。
【0062】
含浸:圧縮した3.8×4×1.5cmのブロックを、添加物としてクルクミンを含む1%w/wアセトン溶液中に室温で含浸した。1時間含浸後、真空オーブン中40℃、24時間でアセトンを蒸発させた。圧縮および含浸したブロックを2片に切断し(
図3)、黄色のクルクミンが均一に分布していることが示された。
【0063】
図3に、圧縮および含浸し、乾燥後2片に切断したブロックを示す(アセトン中1%クルクミン溶液)。
図3(a)および(b)は、両方とも2片に切断した2つの異なるブロックを表す。
【0064】
(実施例3:圧縮した小ブロックへの抗酸化剤-ビタミンEの含浸および焼結)
圧縮は実施例2に記載したように行った。圧縮後、試料をヘキサン-ビタミンE溶液(2.8%w/w)に浸漬し、含浸の間に重量を測定した。圧縮したブロック2個を溶液中に静置し(ブロックの下部のみを浸漬、
図1も参照のこと)、ブロック1個を含浸溶液で完全に覆った(液中)。
【0065】
含浸後、真空オーブン(実施例2を参照のこと)中で一定重量になるまで試料を乾燥し、再び重量を測定して材料中のビタミンE含量を決定した。最後に、圧縮したポリエチレンブロックを温度220℃、圧力5MPaで、型の中で15分間焼結した。最後に試料を室温まで急速に(8分で)冷却した。
【0066】
FTIR測定を行って試料中のビタミンE含量を決定した。焼結したブロックから一定の間隔で小部分を切り出した。これらの小片から厚み約300ミクロン(または60ミクロンの5倍)のマイクロトーム切片を作成した。これらの切片について、Bruker Vertex 70を用い、分解能4cm
-1、全16スキャンでFTIRスペクトルを記録した。
【0067】
ビタミンE濃度のより正確な決定のため、測定したスペクトルを正規化し、純粋なUHMWPEのスペクトルを差し引いた。参照ピークとして2020cm
-1のピークを選択し、その高さ(2100cm
-1および1980cm
-1の高さに対して)を吸光度0.05に正規化した。これは膜厚100ミクロンに対応すると推定される。この正規化スペクトルから、同一の方法で正規化した純粋なUHMWPEのスペクトルを差し引いた。次に1210cm
-1におけるC-OHの吸収(ビタミンEのピーク)の高さ(1188cm
-1および1231cm
-1における高さに対する)を決定した。ビタミンEの濃度は(mol/kg)次式:
A=ε・b・C
A=ピーク吸光度(1210cm
-1ピークの高さ)
ε:UHMWPE中のα-トコフェロール-OHのモル吸光度(kg・cm
-1・mol
-1)
実験的決定値=133kg・cm
-1・mol
-1
b=路長(膜厚)、cm=正規化スペクトルについて0.01cm
C=UHMWPE中のα-トコフェロールの濃度、mol・kg
-1
に従って計算した。
【0068】
図4に、静置した2個のブロックの平均重量変化を含浸時間の関数として示す。当初4時間以内に急速な重量増加があり、その後、重量増加は横ばいとなる。重量増加はヘキサン-ビタミンE溶液の吸収によるものである。
【0069】
図5に、溶媒の蒸発および引き続く焼結の後のブロック中のビタミンEの濃度プロファイルを示す。
図5は、予め圧縮しビタミンE-ヘキサン溶液に含浸した焼結ブロック中のビタミンEの濃度プロファイルを示す。2個のブロックを部分的に流体に浸漬して溶液中に静置し、1個のブロックを流体(内部)に完全に浸漬した。
【0070】
積分FTIRスペクトルおよび重量法から決定したUHMWPE中のビタミンEの重量%を以下に挙げる。
【0071】
【表1】
【0072】
この実施例は、圧縮した物体にビタミンEを含む溶液を浸透させ、引き続いて溶媒(ヘキサン)を蒸発させ、圧縮した材料を最後に焼結することが可能であることを示している。ブロック中のビタミンEの量は、溶液中のビタミンEの種々の濃度を選択することまたは適当な含浸方法を選択することによって調節することができる。
【0073】
本発明の実施形態によれば、圧縮したブロックは2つ以上の含浸工程によって含浸することができる。第2または第3の含浸工程における流体中の添加物は第1の含浸工程と異なっていてもよい。添加物はまた、化学的架橋剤(過酸化ジベンゾイル等)または抗生物質(ゲンタマイシン等)または反応性モノマー(たとえばスチレンまたはメチルメタクリレート)または発泡剤(ポリエチレンの焼結温度より高い沸点を有する溶媒)であってよい。発泡剤は周囲圧力において即ち焼結後には高い沸点を有してよいが、発泡剤は高圧で焼結している間には液体で、焼結後に圧力を解除した際には気体相であってもよい。また、含浸方向が異なる1つまたは複数の含浸工程の例を示す
図6で説明するように、含浸方向は異なってもよい。
【0074】
含浸を圧縮した物体の一部に限定し、それによりブロックに添加物を含む部分と添加物を含まない部分とを作成することもできる。実施例1において、圧縮したブロックを含浸流体から取り出せば(左図)、焼結した生成物は部分的にのみ着色しているであろう。これにより、圧縮した物体にブレンドされた材料とバージン材料との部分がもたらされる。添加物を含む圧縮および含浸した物体を第2工程で溶媒中に入れ、添加物を局所的に抽出して、圧縮した材料中に濃度勾配を作成することもできる。
【0075】
本発明はUHMWPE粉末に限定されず、HDPE、LDPE、LLDPE等の低分子量ポリエチレンの粉末に適用できる。本方法はPMMA、ポリスチレン、ポリプロピレン、PVC、ポリオキシメチレン(POM)、PPSU、PPO、PEEK、ポリアミド(PA6、PA6.6、PA4.6)、他のポリアクリレート(ポリブチルアクリレート等)、PTFE等の他のポリマーにも適用することができる。
【0076】
本方法の利点として以下が挙げられる。粉末が関与する添加物の混合において、圧縮した物体中で作用する毛細管力は緩い粒子間には存在せず、したがって流体添加物について迅速、均一かつ効率的な流体取り込みを得ることは不可能である。固体添加物については、本方法により、最初に添加物を溶解させ、引き続いて含浸することによって添加物をより均一に分布させることが可能になる。もちろん、圧縮した物体にキャリア液体を使用せずに固体添加物を含浸/拡散させることはできない。
【0077】
焼結した物体中への添加物の拡散については、焼結した物体中の粒子は融合しており、迅速で効率的な流体吸収および拡散を可能にする毛細管力は粒子間に作用していない(比較例1を参照のこと)。
【0078】
したがって、物体中へのより遅く、より非効率的な古典的Fick拡散を促進するためには溶融温度に近い高温が必要である。本発明においては、添加物は圧縮した材料中に室温で数分/数時間で含浸されるが、これは焼結したUHMWPE部品を用いた場合には不可能である。
【0079】
(実施例4:抗酸化剤を含浸し、γ線放射で照射したブロックの酸化)
抗酸化剤を含む、γ線照射したブロックの耐酸化性を決定した。実施例3に記載した方法に従って加工したブロック(焼結前にビタミンEで含浸)を通常の空気雰囲気中で、線量14Mrad(±10%)で照射した。照射後の熱処理は実施しなかった。
【0080】
照射したブロックから長さ40mm、直径10mmの円筒状試料をドリルで切り出した。引き続いて、ASTM F 2003に従い、酸素ボンベ中、酸素圧5atm、70℃で14日間、試料を促進老化させた。老化させた成分の酸化インデックスを、ASTM F 2102-06に従い、FTIRによって決定した。この標準による酸化インデックスの測定方法は以下の通りである。マイクロトームにより試料の薄い切片を作成し、試験して酸化インデックスの深さプロファイルを作成する。試料から取り出したマイクロ切片から分解能4cm
-1のFTIRによって赤外スペクトルを測定する。酸化インデックスは、カルボニルピークに付随する1680〜1765cm
-1の領域のピーク強度を1330〜1396cm
-1の間にある参照バンドの強度で割った値として定義される。
【0081】
図7に、ビタミンEを含浸して照射(空気中γ線、14Mrad)した試料の酸化プロファイルを示す。酸化プロファイルは3回の個別の測定の平均である。対照試料として、添加物を含まず、空気中14Mradで照射(照射後の熱処理なし)したUHMWPEを示す。ビタミンEを含浸した材料の最大酸化インデックスは0.02未満であり、この材料の酸化が低減していることが明らかに示されている。