(58)【調査した分野】(Int.Cl.,DB名)
前記コントローラは、前記撮影装置からの信号に少なくとも部分的に基づいて、或る深さで、前記組織内に切開部を作成するようにして、前記レーザ源及び前記光学システムを作動するように構成されることを特徴とする請求項1に記載のシステム。
前記コントローラは、前記組織の前面を横切らないようにして、前記レーザ源及び前記光学システムを作動するように構成されることを特徴とする請求項1に記載のシステム。
前記撮影装置は、前記患者の眼上又は眼の中の異なる位置から散乱特性を測定するように構成された光干渉断層撮影(OCT)装置から成り、前記レーザビームの前記焦点位置のX、Y及びZにおける位置が、前記散乱特性に基づいて決定されることを特徴とする請求項1に記載のシステム。
前記撮影装置が、光干渉断層撮影(OCT)装置から成り、該OCT装置がOCTビームを供給するように構成されたOCT光源を含み、該OCTビームと前記レーザビームとが結合された後に、前記OCTビームが前記レーザビームと同じ経路を沿うように、前記光学システムが、前記OCTビームと前記レーザビームとを、結合するように構成されていることを特徴とする請求項9に記載のシステム。
前記光干渉断層撮影(OCT)装置が、前記患者の眼上又は眼の中の異なる位置から散乱特性を測定するように構成されており、前記レーザビームの前記焦点位置のX、Y及びZ位置が、前記散乱特性に基づいて決定されることを特徴とする請求項11に記載のシステム。
【発明を実施するための形態】
【0011】
本明細書に開示する技術及びシステムは、医療の現在の基準に勝る多くの利点を提供する。具体的には、角膜及び/又はリンバスにおける迅速かつ正確な開口部が、3次元パターン化レーザ切断を用いて形成される。切開部の正確性及び精度は、従来の方法に勝って改善されると同時に、処置の期間と切開部の作成に関連する危険は、両方軽減される。本発明は、解剖学的及び光学特性、並びにフィードバックを利用して、眼の前眼房への外科医のアクセスを可能にする外科的切開部の作成と共に角膜輪部及び角膜減張切開術のような乱視角膜切除術を実施することができる。外科的切開部は、臨床的状況に応じて完全に又は部分的に作ることができる。波面センサ、干渉計、表面観測記録装置、又は他のそのような装置を用いて、乱視又は他の視覚収差を矯正するための処方をもたらすことができる。同様に、これらの同じ装置を用いて、パターン化走査システムの外科的矯正を検証することができ、更に、治療処置中にそれを調節して望ましい成果を生成する。更に、本発明を複数のセッションで用いて乱視矯正の治癒を調整し、かつ創傷治癒過程を通して矯正治療を促進することができる。本発明はまた、画像誘導式切開部アラインメントを提供する。
【0012】
本発明によって提供される外科的手法が存在し、角膜及びリンバスの中及びこれらの周囲の正確な位置に、非常に小さくて幾何学的に正確な開口部及び切開部の形成を可能にする。切開部は、従来の眼科処置に対してより大きな精度又は修正を可能にするだけでなく、新しい処置を可能にする。切開部は、円形形状だけに限定されることなく、治癒をもたらすあらゆる形状とすることができ、又は処置の結果生じる場合がある。これらの切開部は、これらが自然に密封されるか又は自己又は合成組織接着剤、光化学結合剤、又は他のそのような方法で密封することができるように配置することができるであろう。更に、本発明は、最適効果のために切開パターンの自動発生を提供する。
【0013】
本明細書に説明する技術が可能にする別の処置は、切開部又は切開部のパターンの制御された形成を提供する。従来の技術は、機械的切断器具を用いて眼の外側からアクセス可能な区域に限定され、従って、組織の前区から後区まで切開部を作成することができるに過ぎない。反対に、本明細書に説明する制御可能なパターン化レーザ技術を用いて、実際上あらゆる位置に及び実際上あらゆる形状で切開部を作成することができる。切開部の適合は、前部及び後部区画の両方で行うことができる。本発明は、そのような適合する切開を実施するのに独特に適している。
【0014】
更に、これらの切開部を調整して、処置の一部として挿入されているか又は予め挿入された非対称IOLを補完することができる。本発明は、IOL配置の測定及びその後の自動計算、並びにこれらの補完的角膜又はリンバス切開の発生を可能にする。本明細書に説明する制御可能なパターン化レーザ技術は、周囲の組織に対する影響を最小にしながら切開部又は開口部形成を可能にする利用可能な正確なレンズ測定値及び他の寸法情報を有し、及び/又はそれらを利用する。
【0015】
本発明は、超高速(UF)光源4(例えば、フェムト秒レーザ)を含む
図1に示すシステム2のような患者の眼68に光学ビームを投影するか又は走査するシステムによって実施することができる。このシステムを用いて、ビームは、3次元X、Y、Zで患者の眼の中で走査することができる。この実施形態では、UF波長は、1010nmから1100nmで異なる場合があり、かつパルス幅は、100fsから10000fsで異なる場合がある。パルス繰返し周波数も、10kHzから250kHzで異なる場合がある。非ターゲット組織に対する意図しない損傷に関する安全限界は、繰返し数及びパルスエネルギに関する上限を規定すると同時に、閾値エネルギ、処置を完了する時間、及び安定性は、パルスエネルギ及び繰返し数に対して下限を規定する。眼68の中、並びに具体的には水晶体69及び眼の前嚢内の焦点スポットのピーク電力は、光学破壊を生成してプラズマ媒介アブレーション過程を開始するのに十分である。近赤外線波長は、生体組織中の線形光吸収及び散乱がこのスペクトル領域にわたって低下するので好ましい。例示的に、レーザ4は、100kHzの繰返し数及び10マイクロジュール範囲の個々のパルスエネルギで500fsパルスを生成する繰返しパルス式1035nm装置とすることができる。
【0016】
レーザ4は、入力及び出力装置302を通じて制御電子器械300によって制御されて光学ビーム6を作成する。制御電子器械300は、コンピュータ、マイクロコントローラ、その他とすることができる。この例では、全体のシステムは、コントローラ300、及び入力/出力装置IO302を通って移動されたデータによって制御される。グラフィカル・ユーザインタフェースGUI304を用いて、システム作動パラメータ、GUI304上のプロセスユーザ入力(UI)306、及び眼球構造の画像のようなディスプレイ収集情報を設定することができる。
【0017】
発生したUF光ビーム6は、半位相差板8及び直線偏光子10を通過して患者の眼68に向って進む。ビームの偏光状態は、望ましい量の光が、UFビーム6に対して可変減衰器として一緒に作用する半位相差板8及び直線偏光子10を通過するように調節することができる。更に、直線偏光子10の向きは、ビーム結合器34に入射する入射偏光状態を決め、それによってビーム結合器の処理機能を最適化する。
【0018】
UFビームは、シャッター12、絞り14、及びピックオフ装置16を通って進む。システム制御シャッター12は、処置及び安全上の理由に対してレーザのオン/オフ制御を保証する。絞りは、レーザビームに対して外側の有用な直径を設定し、ピックオフは、有用なビームの出力をモニタする。ピックオフ装置16は、部分反射鏡20及び検出器18を含む。パルスエネルギ、平均電力、又は組合せは、検出器18を用いて測定することができる。情報は、減衰のための半位相差板8へのフィードバックのために及びシャッター12が開いているか又は閉じているかを検証するために用いることができる。更に、シャッター12は、冗長状態検出をもたらすように位置センサを有することができる。
【0019】
ビームは、ビーム直径、発散、循環性、及び乱視のようなビームパラメータを修正することができるビーム調整ステージ22を通過する。この例示的な例では、ビーム調整ステージ22は、意図するビームサイズ及び平行化を達成するために球形光学器械24及び26から成る2要素ビーム拡大望遠鏡を含む。本明細書には示されていないが、アナモルフィック又は他の光学システムを用いて望ましいビームパラメータを達成することができる。これらのビームパラメータを判断するのに用いる係数は、レーザの出力ビームパラメータ、システムの全体の倍率、及び治療位置における望ましい開口数(NA)を含む。更に、光学システム22を用いて、望ましい位置(例えば、以下に説明する2軸走査装置50間の中心位置)に絞り14を結像することができる。このようにして、絞り14を確実に通過する光の量が、走査システムを確実に通ることが保証される。ピックオフ装置16は、こうして使用可能光の信頼できる測定器である。
【0020】
調整ステージ22を出た後に、ビーム6は、折り畳み鏡28、30、及び32から反射する。これらの鏡は、アラインメント目的のために調節可能にすることができる。ビーム6は、次に、ビーム結合器34に入射する。ビーム結合器34は、UFビーム6を反射する(かつ以下に説明するOCT114及び照準202ビームの両方を透過する)。効率的なビーム結合器作動に対して、入射角は、好ましくは、45度未満に保持され、可能であればビームの偏光が固定される。UFビーム6に対して、直線偏光子10の向きは、固定偏光をもたらす。
【0021】
ビーム結合器34の後に、ビーム6は、z調節又はZ走査装置40へと続く。この例示的な例では、z調節は、2つのレンズ群42及び44(各レンズ群は、1つ又はそれよりも多くのレンズを含む)を有する「ガリレイ」望遠鏡を含む。レンズ群42は、望遠鏡の平行化位置の周りのz軸に沿って移動する。このようにして、患者の眼68のスポットの焦点位置は、図のようにz軸に沿って移動する。一般的に、レンズ42の運動と焦点の運動の間に固定直線関係がある。この場合には、z調節望遠鏡は、約2xビーム拡大率と、レンズ42の移動対焦点の移動の1:1の関係とを有する。代替的に、レンズ群44は、z軸に沿って移動し、z調節及び走査を移動させることができる。z調節は、眼68の治療のためのz走査装置である。それは、システムによって自動的かつ動的に制御することができ、独立であるように又は次に説明するX−Y走査装置と相互作用するように選択することができる。鏡36及び38は、光軸をz調節装置40の軸に整列させるために用いることができる。
【0022】
z軸装置40を通過した後に、ビーム6は、鏡46及び48によってx−y走査装置に向けられる。鏡46及び48は、アラインメント目的のために調節可能にすることができる。X−Y走査は、モータ、検流計、又はあらゆる他の公知の光移動装置を用いて直交方向に回転する制御電子器械300の制御下で、好ましくは、2つの鏡52及び54を用いて走査装置50によって達成される。鏡52及び54は、以下に説明する対物レンズ58及びコンタクトレンズ66の組合せのテレセントリック位置の近くに位置する。これらの鏡52/54を傾斜させることにより、これらがビーム6を反射するようにし、患者の眼68に位置するUF焦点の平面内に横方向変位を引き起こす。対物レンズ58は、図示のように、複合多要素レンズ要素とすることができ、レンズ60、62、及び64によって表すことができる。レンズ58の複雑性は、走査視野サイズ、焦点スポットサイズ、対物レンズ58の近位側及び遠位側の両方に対して利用可能な作動距離、並びに収差制御の量に依存することになる。15mmの直径の入力ビームサイズを有する10mmの視野にわたって10μmのスポットサイズを発生させる焦点距離60mmのf−シータレンズ58は、一例である。代替的に、スキャナ50によるX−Y走査は、入力及び出力装置302を通じて制御電子器械300によって制御することができる1つ又はそれよりも多くの移動可能光学器械(例えば、レンズ、回折格子)を用いることによって達成することができる。
【0023】
照準及び治療走査パターンは、コントローラ300の制御下でスキャナ50によって自動的に発生させることができる。そのようなパターンは、光の単一スポット、光の複数のスポット、光の連続パターン、光の複数の連続パターン、及び/又はこれらのあらゆる組合せから成るであろう。更に、照準パターンは(以下に説明する照準ビーム202を用いて)、治療パターン(光ビーム6を用いて)と同一である必要はなく、好ましくは、治療光が患者の安全性のために望ましいターゲット区域内だけに送出されることを保証するためにその境界を少なくとも形成する。これは、例えば、意図する治療パターンの輪郭を設ける照準パターンを有することによって行うことができる。このようにして、治療パターンの空間的範囲は、個々のスポット自体の正確な位置ではないにしても、ユーザに知らせることができ、従って、走査が、速度、効率、及び精度に対して最適化される。照準パターンも、ユーザに対してその可視性を更に高めるために点滅として認識されるようにすることができる。
【0024】
いずれかの好ましい眼科用レンズとすることができる任意的なコンタクトレンズ66を用いて、眼の位置を安定化させるのを助けながら光学ビーム6の焦点を患者の眼68に合わせるのに役立たせることができる。光学ビーム6の位置決め及び特徴、及び/又はビーム6が眼68上に形成する走査パターンは、ジョイスティックのような入力装置、又はあらゆる他の好ましいユーザ入力装置(例えば、GUI304)の使用によって更に制御され、患者及び/又は光学システムを位置決めすることができる。
【0025】
UFレーザ4及びコントローラ300を設定して、眼68のターゲット構造の表面を標的にし、かつビーム6が必要に応じて集束されて無意識に非ターゲット組織を損傷しないことを保証することができる。例えば、「光干渉断層撮影法(OCT)」、「Purkinje」画像、「Scheimpflug」画像、又は超音波のような本明細書に説明する画像診断法及び技術を用いて、2D及び3Dパターン形成を含むレーザ集束法に対してより高い正確性をもたらすようにレンズ及び水晶体嚢の位置を求めて厚みを測定することができる。レーザ集束法も、照準ビーム、「光干渉断層撮影法(OCT)」、「Purkinje」画像、「Scheimpflug」画像、超音波、又は他の公知の眼科用又は医用画像診断法及び/又はこれらの組合せの直接観察を含む1つ又はそれよりも多くの方法を用いて達成することができる。
図1の実施形態では、OCT装置100を説明したが、他の様式も本発明の範囲にある。眼のOCT走査は、前及び後水晶体嚢の軸線方向位置、白内障の核の境界、並びに前房の深度に関する情報を提供することになる。この情報は、次に、制御電子器械300内にロードされてその後のレーザ支援外科的処置をプログラムして制御するのに用いられる。この情報はまた、例えば、水晶体嚢を切断するために用いる焦点面の軸線方向上限及び下限、並びに水晶体皮質及と核の区分け、とりわけ水晶体嚢の厚みのような処置に関連する広範なパターンを判断するのに用いることができる。
【0026】
図1のOCT装置100は、ファイバー結合器104によって基準アーム106とサンプルアーム110とに分けられたブロードバンド又は掃引光源102を含む。基準アーム106は、好ましい分散及び経路長補償と共に基準反射を収容するモジュール108を含む。OCT装置100のサンプルアーム110は、残りのUFレーザシステムに対してインタフェースとして機能を果たす出力コネクタ112を有する。基準及びサンプルアーム106、110の両方からの戻り信号は、次に、時間領域の周波数又は単一ポイント検出技術のいずれかを使用する検出装置128に結合器104によって向けられる。
図1では、周波数領域技術は、920nmのOCT波長及び100nmの帯域幅で用いられる。
【0027】
コネクタ112を出ると、OCTビーム114は、レンズ116を用いて平行化される。平行化ビーム114のサイズは、レンズ116の焦点距離によって決定される。ビーム114のサイズは、眼の焦点における望ましいNAと眼68をもたらすビーム列の倍率とに依存する。一般的には、OCTビーム114は、焦点面のUFビーム6と同じ高さのNAを必要とせず、従って、OCTビーム114は、ビーム結合器34の位置においてUFビーム6よりも直径が小さい。その後の平行化レンズ116は、眼においてOCTビーム114の得られるNAを更に修正する絞り118である。絞り118の直径は、ターゲット組織に入射するOCT光及び戻り信号の強度を最適化するように選択される。能動的又は動的とすることができる偏光制御要素120を用いて、例えば、角膜複屈折の個々の差によって生じる場合がある偏光状態変化を補償する。鏡122及び124は、次に、OCTビーム114をビーム結合器126及び34に向けるのに用いられる。鏡122及び124は、アラインメント目的のために、特にビーム結合器34の後のUFビーム6に対してOCTビーム114の上に重ねるために調節可能にすることができる。同様に、ビーム結合器126を用いて、OCTビーム114を以下に説明する照準ビーム202と結合する。
【0028】
ビーム結合器34の後のUFビーム6と結合した状態で、OCTビーム114は、残りのシステムを通ってUFビーム6と同じ経路を辿る。このようにして、OCTビーム114は、UFビーム6の位置を示す。OCTビーム114は、z走査40及びx−y走査50装置、次に、対物レンズ58、コンタクトレンズ66を通過して眼68に入る。眼の内の構造体からの反射及び散乱は、光学システムを通ってコネクタ112へ、結合器104を通ってOCT検出器128まで元に戻る戻りビームを提供する。これらの戻り反射は、OCT信号を提供し、これらは、次に、UFビーム6の焦点位置のX、Y、Zにおける位置に関してシステムによって解釈される。
【0029】
OCT装置100は、その基準アームとサンプルアームの間の光路長の差を測定する原理に基づいて働く。従って、z調節40を通るOCTの通過は、光路長が、42の移動の関数として変化しないので、OCTシステム100のz範囲を広げない。OCTシステム100は、検出手法に関連している固有のz範囲を有し、かつ周波数領域検出の場合には、それは、具体的には、分光計及び基準アーム106の位置に関連している。
図1で用いるOCTシステム100の場合には、z範囲は、水性環境において約1−2mmである。この範囲を少なくとも4mmまで広げることは、OCTシステム100内の基準アームの経路長の調節を含む。z調節40のz走査を通る基準アーム内のOCTビーム114の通過は、OCT信号強度の最適化を可能にする。これは、OCTシステム100の基準アーム106内の経路を相応に増大させることによって拡大光路長に対応しながら、OCTビーム114の焦点をターゲット構造に合わせることによって達成される。
【0030】
浸漬指数、屈折、並びに有色及び単色の両方の色収差のような影響によるUF焦点装置に対するOCT測定の基本的な相違のために、UFビーム焦点位置に対してOCT信号を分析するのに注意が必要である。X、Y、Zの関数としての較正又は位置合わせ手順は、OCT信号情報をUF焦点位置に適合させるために、かつ絶対寸法量に関連付けるためにも行う必要がある。
【0031】
照準ビームの観察もUFレーザ焦点の指示に関してユーザを助けるのに用いることができる。更に、赤外線OCT及びUFビームの代わりに肉眼で見える照準ビームは、照準ビームが正確に赤外線ビームパラメータを表すならば、アラインメントに役に立つ場合がある。照準サブシステム200は、
図1に示す構成に使用される。照準ビーム202は、633nmの波長におけるヘリウムネオンレーザ作動のような照準ビーム光源201によって発生される。代替的に、630−650nm範囲のレーザダイオードを用いることができる。ヘリウムネオン633nmビームを用いる利点は、例えば、ビーム列の光学品質を測定するために、レーザ不均等経路干渉計(LUPI)として照準経路の使用を可能にすると考えられるその長い干渉長である。
【0032】
照準ビーム光源が照準ビーム202を発生させた状態で、照準ビーム202は、レンズ204を用いて平行化される。平行化ビームのサイズは、レンズ204の焦点距離によって決定される。照準ビーム202のサイズは、眼の焦点における望ましいNAと眼68をもたらすビーム列の倍率とに依存する。一般的には、照準ビーム202は、焦点面のUFビーム6と同じNAに近い必要があり、従って、照準ビーム202は、ビーム結合器34位置においてUFビームに類似の直径から成る。照準ビームは、眼のターゲット組織へのシステムアラインメント中にUFビーム6の代わりをするようになっているために、照準経路の多くは、上述のようなUF経路に似ている。照準ビーム202は、半位相差板206及び直線偏光子208を通って進む。照準ビーム202の偏光状態は、望ましい量の光が偏光子208を通過するように調節することができる。要素206及び208は、従って、照準ビーム202に対して可変減衰器として作用する。更に、偏光子208の向きは、ビーム結合器126及び34に入射する入射偏光状態を決め、それによって偏光状態を固定してビーム結合器の処理機能の最適化を可能にする。勿論、固体レーザが照準ビーム光源200として用いられる場合、駆動電流は、屈折力を調節するために変えることができる。
【0033】
照準ビーム202は、シャッター210及び絞り212を通って進む。システム制御シャッター210は、照準ビーム202のオン/オフ制御を提供する。絞り212は、照準ビーム202に対して外側の有用な直径を設定して適切に調節することができる。眼において照準ビーム202の出力を測定する較正処置を用いて、偏光子206の制御を通じて照準ビーム202の減衰を設定することができる。
【0034】
照準ビーム202は、次に、ビーム調整装置214を通過する。ビーム直径、発散、循環性、及び乱視のようなビームパラメータは、1つ又はそれよりも多くの公知のビーム調節光学器械を用いて修正することができる。光ファイバーから現れる照準ビーム202の場合には、ビーム調整装置214は、意図するビームサイズ及び平行化を達成するために2つの光学器械216及び218を有するビーム拡大望遠鏡を単に含むことができる。平行化の程度のような照準ビームパラメータを判断するために用いる最終因子は、眼68の位置においてUFビーム6及び照準ビーム202を適合させるために必要なものに依存する。色差は、ビーム調整装置214の適切な調節によって考慮することができる。更に、光学システム214を用いて、絞り14の共役位置のような望ましい位置に絞り212を結像する。
【0035】
照準ビーム202は、次に、ビーム結合器34の後のUFビーム6へのアラインメント位置合わせのために調節可能であることが好ましい折り畳み鏡222及び220から反射する。照準ビーム202は、次に、照準ビーム202がOCTビーム114と結合されるビーム結合器126に入射する。ビーム結合器126は、照準ビーム202を反射してOCTビーム114を透過し、これは、両波長範囲においてビーム結合機能の効率的作動を可能にする。代替的に、ビーム結合器126の透過及び反射機能は、逆にして、構成を反転することができる。ビーム結合器126の後で、OCTビーム114と共に照準ビーム202は、ビーム結合器34によってUFビーム6と結合される。
【0036】
眼68上又は内にターゲット組織を結像するための装置は、撮像システム71として
図1に概略的に示されている。撮像システムは、ターゲット組織の画像を作成するためのカメラ74及び照明光源86を含む。撮像システム71は、所定構造の周り又はその内部を中心にしたパターンを提供するために、システムコントローラ300によって用いることができる画像を収集する。観察のための照明光源86は、一般的には、ブロードバンド及びインコヒーレントである。例えば、光源86は、図示のように複数のLEDを含むことができる。観察光源86の波長は、好ましくは、700nmから750nmの範囲内であるが、UFビーム6及び照準ビーム202に対して観察光をビーム経路と結合するビーム結合器56(ビーム結合器56は、OCT及びUF波長を透過しながら観察波長を反射する)によって達成されるいずれかのものとすることができる。ビーム結合器56は、照準ビーム202が、ビームカメラ74で見ることができるように、部分的に照準波長を透過することができる。光源86の前の光学偏光要素84は、直線偏光子、4分の1位相差板、半位相差板、又はあらゆる組合せとすることができ、かつ信号を最適化するのに用いられる。近赤外線波長によって発生するような疑似色画像も許容可能である。
【0037】
光源86からの照明光は、UF及び照準ビーム6、202と同じ対物レンズ58及びコンタクトレンズ66を用いて眼に向って下方に向けられる。眼68の様々な構造体から反射して散乱した光は、同じレンズ58及び66によって収集されてビーム結合器56に向けて後方に向けられる。そこで、戻り光は、ビーム結合器及び鏡82を通じて観察経路内の後方、並びにカメラ74の方向に向けられる。カメラ74は、例えば、これに限定されるものではないが、適切な大きさにされたフォーマットのあらゆるシリコンベース検出器アレイとすることができる。ビデオレンズ76は、カメラの検出器アレイ上に画像を形成すると同時に、光学器械80及び78は、偏光制御及び波長フィルタリングをそれぞれ提供する。絞り又は虹彩81は、画像NAの制御、従って、焦点深度及び被写界深度を提供する。小さな絞りは、患者ドッキング手順を助ける大きな被写界深度の利点をもたらす。代替的に、照明及びカメラ経路は、切り換えることができる。更に、照準光源200は、直接見ることはできないが撮像システム71を用いて取り込んで表示することができる赤外線を放出するように作ることができる。
【0038】
粗調節位置合わせは、コンタクトレンズ66が角膜と接触状態になる時に、ターゲット構造体がシステムのX、Y走査の取り込み範囲にあるように、通常は必要である。従って、ドッキング手順が好ましく、これは、好ましくは、システムが接触条件(すなわち、患者の眼68とコンタクトレンズ66の間の接触)に近づく時に患者の運動を考慮に入れる。観察システム71は、コンタクトレンズ66が眼68と接触する前に、患者の眼68及び他の顕著な特徴を見ることができるほど焦点深度が十分大きいように構成される。
【0039】
好ましくは、運動制御システム70は、全体の制御システム2に組み込まれて、患者、システム2、又はその要素、又はその両方を移動させて、コンタクトレンズ66と眼68の間に正確かつ信頼できる接触を達成することができる。更に、真空吸引サブシステム及びフランジは、システム2に組み込むことができて、眼68を安定化させるのに用いることができる。コンタクトレンズ66を通じたシステム2への眼68のアラインメントは、撮像システム71の出力をモニタしながら達成することができ、IO302を通じて制御電子器械300によって電子的に撮像システム71によって生成された画像を分析することによって手動で又は自動的に実施することができる。力及び/又は圧力センサフィードバックも、接触を識別すると同時に真空サブシステムを開始するのに用いることができる。
【0040】
代替のビーム結合構成は、
図2の代替的な実施形態に示されている。例えば、
図1の受動的ビーム結合器34は、
図2の能動的結合器140と交換することができる。能動的ビーム結合器34は、図示のように検流走査鏡のような移動又は動的制御要素とすることができる。能動的結合器140は、UFビーム6又は結合照準のいずれか及びOCTビーム202、114をスキャナ50及び最後には眼68に1つずつ向けるために、その角度の向きを変化させる。能動的結合技術の利点は、それが、受動的ビーム結合器を用いて同様の波長範囲又は偏光状態を有するビームを結合させる難しさを回避することである。この機能は、能動的ビーム結合器140の位置許容誤差による時間的に同時のビーム、並びに場合によっては低い精度及び正確性を有する機能に対するトレードオフである。
【0041】
別の代替的な実施形態が
図3に示されており、それは、
図1のそれと類似しているが、OCT100に対して代替の手法を利用する。
図3では、OCT101は、基準アーム106が基準アーム132に置換されていることを除いて
図1のOCT100と同じである。この自由空間OCT基準アーム132は、レンズ116の後にビームスプリッタ130含むことによって達成される。基準ビーム132は、次に、偏光制御要素134を通って、次に、基準戻りモジュール136上に進む。基準戻りモジュール136は、適切な分散、並びに経路長調節及び補償要素を含んで、サンプル信号との干渉に対して適切な基準信号を発生させる。OCT101のサンプルアームは、ここで、ビームスプリッタ130の後に生じる。この自由空間構成の潜在的利点は、基準及びサンプルアームの別々の偏光制御及び維持を含む。OCT101のファイバーベースのビームスプリッタ104も、ファイバーベースの循環機と置換することができる。代替的に、OCT検出器128及びビームスプリッタ130の両方は、基準アーム136とは対照的に互いに移動することができる。
【0042】
図4は、OCTビーム114及びUFビーム6を結合するための別の代替的な実施形態を示している。
図4では、OCT156は(これは、OCT100又は101の構成のいずれかを含むことができる)、そのOCTビーム154がビーム結合器152を用いてz走査40の後にUFビーム6に連結されるように構成される。このようにして、OCTビーム154は、z調節を使用しないようにされる。これは、OCT156が、場合によってはより容易にビームに折り畳まれることを可能にして、より安定な作動のために経路長を短縮する。このOCT構成は、
図1に対して示したように最適信号戻り強度を犠牲にしている。米国特許第5、748、898号、米国特許第5、748、352号、米国特許第5、459、570号、米国特許第6、111、645号、及び米国特許第6、053、613号(これらは、本明細書において引用により組み込まれている)に説明したように、時間及び周波数領域手法、単一及び二重ビーム法、掃引源、その他を含むOCT干渉計の構成に対する多くの可能性が存在する。
【0043】
本発明は、典型的に「白内障切開」と呼ばれるレンズ除去器具へのアクセスを可能にする切開部の作成に備えるものである。これは、
図5A及び5Bに示す患者の眼68に対する白内障切開部402として示される。これらの図では、白内障切開部402は、眼68に対して作られて、瞳孔404が拡張している間に角膜406を通して水晶体412へのアクセスを可能にする。切開部402は、角膜406に示されているが、代替的に、リンバス408又は強膜410に配置することができる。切開部は、調節可能な正確な寸法(半径及び範囲の両方)、半径方向の向き及び深度で作ることができる。完全な切断は、例えば、周囲への眼の開口が、例えば、眼内炎の更に別の危険を及ぼすような消毒されていない現場など全ての状況下で望ましいとは限らない場合がある。この場合には、本発明は、部分的にのみ角膜406、リンバス408、及び/又は強膜410を浸透する白内障切開部を提供することができる。システム2の常駐撮像装置も、切開を計画するための入力を提供することができる。例えば、撮像システム71及び/又はOCT100は、角膜輪部境界を特定して所定の深度でそれに従うように切開を誘導することができる。更に、外科医は、多くの場合、コールドスチール技術を使用する時にリンバス410に対して正しい位置で切開を開始すること、並びに最後に角膜406及び強膜410の両方に浸透する切開を回避するのにナイフを真っ直ぐに保つことが困難である。そのような傾斜した切開は、眼内炎の引き裂かれたエッジ及び著しく高い危険を有する可能性が高いことが分かっている。
【0044】
本発明は、統合OCTシステム100を利用して、角膜406に対してリンバス408及び強膜410をこれらの間の大きな光散乱の差によって識別することができる。これらは、OCT装置100を用いて直接結像することができ、かつ透明(角膜406)から散乱(強膜410)への遷移の位置(リンバス408)は、システム2のCPU300によって決定されて用いられ、レーザ作成切開部の配置を誘導することができる。この遷移に対応するスキャナ位置の値は、リンバス408の位置を定める。従って、互いに位置合わせされた状態で、OCT100は、リンバス408に対してビーム6の位置を誘導することができる。この同じ撮像手法を用いて、組織の厚みも識別することができる。従って、切開部の深度及び組織内の切開の配置は、正確に定めることができる。その点に鑑みて、OCT装置100に対する波長の選択は、好ましくは、強膜測定の要件に対処するものである。800−1400nmの範囲の波長は、それらが組織中であまり散乱しない(かつ〜1mmの深度まで浸透する)と同時に、そうでなければこれらの性能を低下させると考えられる水又は他の組織成分によって線形光吸収が損なわれることがないので、これに適している。
【0045】
標準白内障切開部は、典型的には、直接眼の周りから見た時に〜30°の角膜輪部角度を必要とする。そのような切開部は、平均して0から1.0Dの乱視を誘発することが示されている。従って、術後正視眼を達成することは、より困難になる場合がある。乱視に対処するために、本発明はまた、「乱視角膜切除術(AK)」切開部を生成することができる。そのような切開部は、非対称形状の角膜をその急勾配軸に沿って減張することによって乱視を矯正するのに日常的に用いられる。白内障切開部と同様に、そのような減張切開部(RI)は、リンバスに沿って又はリンバスのすぐ近くに正確に配置する必要があり、「角膜輪部減張切開術(LRI)」として公知である。減張切開術は、しかし、部分的浸透切開術であるに過ぎない。これらは、その進行中の構造的一体性を維持するために少なくとも200μmの組織厚を残す必要がある。同様に、「角膜減張切開術(CRI)」は、透明角膜組織中のリンバスの前方に設けられて、乱視矯正の同じ臨床目的を果たす切開術である。具体的な臨床上の詳細に加えて、周方向の向き及び角度範囲も、白内障切開部の影響を受ける。従って、本発明により、RIは、白内障切開部と共に計画されて実行され、他の可能なものよりも良好な視力矯正を達成することができる。全体の治療を最適化するために、白内障切開部は、角膜の急勾配軸において又はこの近くに配置すべきではない。そうである場合、1つのRIのみが従来から推奨されている。現在、臨床医によって用いられて、RIの配置及び範囲を規定する経験的観察に基づく様々な計算図表がある。これらは、それらに限定されるものではないが、「Donnenfeld」、「Gills」、「Nichamin」、及び「Koch」計算図表を含む。
【0046】
図6は、
図1に示すようなシステム2ではあるが、患者の角膜の乱視を特徴付けるサブシステムを有するシステム2を示している。具体的には、X−Yスキャナ50の遠位側に表面形状測定装置415が含まれて、患者の眼68の角膜の連続的な遮るものがない視界を可能にする。表面形状測定装置415及びそのセンサ417は、ビーム結合器419を通じてシステム2に付加されて、入力/出力バス302によりシステムコントローラ300に
図6に示すように接続される。
図1に説明する構成と比べて、この実施形態では、コンタクトレンズ66又は眼68の角膜406に対するその配置は、作動の表面形状測定装置のモードに適するように修正又は補償する必要がある場合がある。これは、表面形状測定装置415が、角膜が表面と接触させるのではなくてその自然な状態あること、及び場合によってはその形状に適合して、入力/出力バス302及び制御電子器械300を通じて計算及び位置合わせのために正確に角膜406を測定してシステム2にデータを提供することを必要とするからである。代替的に、コンタクトレンズ66は、眼との接触から取り出すことができ、システム2の診断及び治療部分は、
図9に示すように眼68まで間隙421を横切るようにされた。コンタクトレンズ66を取り出すことによって作られた眼68とシステム2の間の関係の変化は、次に、ビーム6、114、及び202の測距及び位置合わせにおいて対処すべきである。角膜406の位置及び形状を識別するためのOCT100の使用は、角膜406からの反射が、位置合わせを容易にする非常に強力な信号を提供することになるので、この点で特に有用である。
【0047】
この実施形態では、表面形状測定装置415を用いて、患者の角膜の形状を矯正してその乱視を軽減するように乱視角膜切除を処方することができる。表面形状測定装置415は、プラシドシステム、三角測量システム、レーザ変位センサ、干渉計、又は他のそのような装置とすることができ、これは、ある所定の軸に対する横方向寸法の関数として角膜の表面プロフィール又は表面サグ(すなわち、矢状)としても公知の角膜トポグラフィーを測定する。この軸は、典型的には、眼の視軸であるが、角膜の光軸とすることができる。代替的に、表面形状測定装置415を波面センサと置換して、より完全に患者の眼を光学的に特徴付けることができる。波面感知システムは、眼の光学システムの収差を測定する。この仕事を達成するための共通の技術は、眼の瞳孔を出る光の波面(定位相の表面)の形状を測定する「Shack−Hartmann」波面センサである。眼が完全な光学システムであったら、これらの波面は、完全に平坦になるであろう。眼は、完全ではないので、波面は、平坦でなくて不規則な湾曲形状を有する。「Shack−Hartmann」センサは、入射ビーム及びその全体の波面をサブビームに分け、各々がマイクロレンズによって検出ピクセルのサブアレイに集束させた別々のファセットに波面を分ける。各ファセットからの焦点スポットが、ピクセルのそのサブアレイに衝突する場所に応じて、次に、局所波面傾斜(又は傾き)を判断することができる。全てのファセットのその後の分析は、互いに全体の波面形態の決定をもたらす。完全に全体的平坦波面からのこれらのずれは、角膜表面で行うことができる限局性矯正を示している。波面センサの測定結果は、上述のように、システムに常駐する予測アルゴリズムを通じて乱視角膜切除術を自動的に処方するために、コントローラ300によって用いることができる。
【0048】
図7は、そのような乱視角膜切除術の可能な構成を示している。この例では、眼68が示され、一連の減張切開部RI420は、角膜406の区域内の位置で作られる。同様に、当業技術で公知のように、そのような減張切開部は、リンバス408又は強膜410に作ることができる。乱視は、角膜が球形でない時に存在し、すなわち、それは、一方の子午線方向において他方の(直交の)子午線方向よりも急勾配である。乱視が「直乱視」、「倒乱視」、又は斜乱視であるか否かに関わらず、角膜形状の性質を判断することは重要である。「直」乱視では、垂直子午線は、水平子午線よりも急勾配であり、「倒」乱視では、水平子午線は、垂直子午線よりも急勾配である。角膜輪部減張切開術(LRI)は、乱視角膜切除術(AK)の修正、乱視を治療するための処置である。LRIは、角膜の遠い周囲アスペクト(リンバス)上に設けられ、より丸い角膜を生じる。乱視は、軽減して裸眼視力は、改善している。LRIは、8ジオプター(D)まで乱視を矯正することができるが、LRIの使用は、0.5−4Dの乱視の矯正のために現在日常的に制限されている。LRIは、角膜減張切開術(CRI)に比較して弱い矯正処置であるが、LRIは、術後グレアを起こしにくくて、患者の不快感を起こしにくい。更に、これらの切開部は、より早く治る。CRIと異なって、リンバスにおいて切開部を作ることで、角膜の完全な光学的品質を保つ。LRIも、より寛容な処置であり、かつ外科医は、多くの場合に早期の症例でさえも優れた結果を得る。
【0049】
減張切開部420の望ましい長さ、数、及び深度は、計算図表を用いて判断することができる。開始点の計算図表は、LRIの長さ及び数によって手術を調節することができる。しかし、長さ及び配置は、トポグラフィー及び他の因子に基づいて異なる場合がある。この目標は、倒乱視を最小にする必要があるために、円筒形屈折力を低減すること及び絶対に直乱視を過矯正しないようにすることである。強膜、リンバス、又は角膜に形成された減張切開部は、一般的には、直乱視及び低倒乱視の症例に用いられる。倒乱視と共に減張切開術を用いる時に、LRIは、僅かに角膜へ移動することができ、又は代替的にLRIは、強膜、リンバス、又は角膜における別の減張切開部の反対側に配置することができる。直乱視又は斜乱視を有する患者に対して、減張切開部は、一時的に作られて、LRIは、急勾配軸に設けられる。LRIの配置は、角膜のトポグラフィーにカスタマイズする必要がある。非対称性乱視の症例では、急勾配軸のLRIは、僅かに伸長させることができ、次に、2つの急勾配軸の同量のフラッタを短縮することができる。対にされたLRIは、同じ子午線方向に作る必要はない。低(<1.5D)倒乱視の患者は、白内障切開部の反対側に設けられた急勾配子午線方向の単一LRIのみを受け取る。しかし、乱視が、1.5Dよりも大きい場合、1対のLRIを用いる必要がある。倒乱視症例では、1対のLRIは、白内障切開部に組み込むことができる。LRIの長さは、白内障切開部の存在の影響を受けない。これは、現在の方法で正確に実施するのは困難である。低直乱視症例では、単一6mmLRI(深度が0.6mm)は、90°で作られる。LRIは、直乱視症例の白内障切開部とは無関係とすることができる(白内障切開部が一時的であり、かつLRIが優位である場合)。
【0050】
更に、外側で開始して内向きに切断する必要がある切開部の作成に対する従来のコールドスチールの外科的手法と異なって、これらの切開部を作るための光源の使用は、RI420を内側から外に作ることを可能にし、従って、組織の構造的一体性をより良く保って断裂及び感染の危険を制限する。更に、白内障切開部402及び減張切開部420は、システム2の撮像及び走査機能を用いて自動的に作ることができる。切開部402及び420を形成するために、1対の治療パターンを発生させることができ、従って、これらの切開部の絶対及び相対位置決め方式を通してより正確な制御をもたらす。治療パターンの対は、順次的に又は同時に適用することができる(すなわち、治療パターンの対は、切開部の両タイプを形成する単一治療パターンに組み合わせることができる)。治療ビームパターンの適正なアラインメントのために、システム2からの照準ビーム及び/又はパターンは、治療パターンが投影されることになる場所を示す可視光線でターゲット組織上に最初に投影することができる。これは、外科医が、治療パターンのサイズ、位置、及び形状をこれらの実際の適用前に調節して確認することを可能にする。その後、2次元又は3次元治療パターンは、システム2の走査機能を用いてターゲット組織に迅速に適用することができる。
【0051】
従来の技術を用いて達成されない白内障切開部402に対する代替の幾何学形状を作成するための特殊な走査パターンも可能である。一例は、
図8に示されている。白内障切開部402の代替の幾何学形状の断面図は、勾配付きの特徴430を有するように示されている。勾配付きの特徴430は、創傷治癒、密封、又は固定に有用であろう。そのような3次元白内障切開部402は、システム2の3次元走査機能を利用して正確かつ迅速に達成することができる。勾配付きの切開部を図示しているが、多くのそのような幾何学形状は、本発明を用いて使用可能であり、かつ本発明の範囲内である。以前と同様に、切開部402は、角膜406に示されているが、代替的に、リンバス408又は強膜410に配置することができる。
【0052】
切開部がリンバス又は強膜のような最も外側の領域に作られる時のような大きな視野に対して、特殊なコンタクトレンズを用いることができる。このコンタクトレンズは、隅角鏡又はレンズの形態にすることができると考えられる。レンズは、正反対に対称である必要はない。レンズの1つの部分だけを延ばして、リンバス408及び強膜410のような眼の外側領域に到達することができる。いかなるターゲット位置も、特殊なレンズの適正な回転によって到達することができる。
【0053】
本発明は、本明細書に上述して図示した実施形態に限定されることなく、特許請求の範囲に属するいかなる及び全ての変形を包含することは理解されるものとする。例えば、本明細書における本発明への参照は、いかなる特許請求の範囲又は特許請求の範囲の条項の範囲を限定するように意図したものではなく、特許請求の範囲の1つ又はそれよりも多くによって含むことができる1つ又はそれよりも多くの特徴を単に参照するに過ぎない。
図1、3、及び4に示すスキャナ50の下流の全ての光学要素は、ビーム6、114、及び202をターゲット組織へ送出するための光学要素の送出システムを形成する。おそらく、システムの望ましい特徴に応じて、示した光学要素の一部又はその殆どさえも送出システムでは省略することができ、システムは、依然として走査ビームをターゲット組織へ確実に送出する。