特許第5934851号(P5934851)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イマジニアリング株式会社の特許一覧

<>
  • 特許5934851-内燃機関 図000002
  • 特許5934851-内燃機関 図000003
  • 特許5934851-内燃機関 図000004
  • 特許5934851-内燃機関 図000005
  • 特許5934851-内燃機関 図000006
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5934851
(24)【登録日】2016年5月20日
(45)【発行日】2016年6月15日
(54)【発明の名称】内燃機関
(51)【国際特許分類】
   F02B 23/08 20060101AFI20160602BHJP
   F02P 3/01 20060101ALI20160602BHJP
【FI】
   F02B23/08 L
   F02P3/01 A
【請求項の数】6
【全頁数】15
(21)【出願番号】特願2011-535439(P2011-535439)
(86)(22)【出願日】2010年10月6日
(86)【国際出願番号】JP2010067586
(87)【国際公開番号】WO2011043399
(87)【国際公開日】20110414
【審査請求日】2013年9月30日
(31)【優先権主張番号】特願2009-232902(P2009-232902)
(32)【優先日】2009年10月6日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】504293528
【氏名又は名称】イマジニアリング株式会社
(72)【発明者】
【氏名】池田 裕二
【審査官】 今関 雅子
(56)【参考文献】
【文献】 特開2009−036125(JP,A)
【文献】 特開2009−036201(JP,A)
【文献】 特開2006−132518(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02B 23/02−23/10
F02P 3/01
(57)【特許請求の範囲】
【請求項1】
予め混合された混合気を燃焼させる燃焼室を形成するシリンダと、
上記シリンダと共に上記燃焼室を形成し、該シリンダ内を往復運動するピストンと、
活性種を生成する活性種生成器を備え、
上記活性種生成器を用いて生成された活性種により上記混合気の燃焼を促進させる内燃機関であって、
上記ピストンには、該ピストンの頂面に開口して、上記活性種生成器により活性種が生成される活性種生成室が形成されており、
上記活性種生成器は、上記燃焼室を区画する区画面のうち上記活性種生成室の開口に対向する位置から上記燃焼室側に突出するスパークプラグと、該スパークプラグの中心電極をアンテナとして上記活性種生成室に電磁波を照射する電磁波発生器とからなり、
上記活性種生成室は、燃焼室と連通するスパークプラグの先端部分と対応した形状の連通孔を除いた壁面が球面形状であって、上死点に達する直前から直後に亘って、スパークプラグが挿通孔に挿入された状態となるようにした
ことを特徴とする内燃機関。
【請求項2】
請求項1において、
上記活性種生成器は、縮行程においてスパークプラグが上記活性種生成室に進入する時点から、膨張行程においてスパークプラグが上記活性種生成室から抜け出す時点までの間に、上記活性種生成室において活性種を生成する
ことを特徴とする内燃機関。
【請求項3】
請求項2において、
上記活性種生成器は、膨張行程においてスパークプラグが上記活性種生成室から抜け出した後に、さらに上記燃焼室で活性種を生成する
ことを特徴とする内燃機関。
【請求項4】
請求項1乃至3の何れか1つにおいて、
膨張行程において上記燃焼室の周縁で活性種を生成する周縁側活性種生成器を備えている
ことを特徴とする内燃機関。
【請求項5】
請求項1乃至4の何れか1つにおいて、
上記活性種生成器は、上記混合気が着火される前に最小着火エネルギー未満のエネルギーで活性種を生成する
ことを特徴とする内燃機関。
【請求項6】
請求項1乃至5の何れか1つにおいて、
上記活性種生成器が活性種を生成した後に上記混合気を圧縮着火させる
ことを特徴とする内燃機関。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ピストンが往復運動を行う内燃機関に関する。
【背景技術】
【0002】
従来より、燃焼室において活性種を生成して混合気の燃焼を促進させる内燃機関が知られている。例えば特許文献1には、この種の内燃機関が開示されている。
【0003】
具体的に、特許文献1の内燃機関では、スパークプラグの放電ギャップにおいてスパーク放電を生じさせ、その放電ギャップに向けてマイクロ波が放射される。放電ギャップに生成されたプラズマは、マイクロ波パルスからエネルギーの供給を受ける。これにより、プラズマ領域の電子が加速され、プラズマの体積が増大する。プラズマの生成に伴って多くの活性種が生成される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−38025号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、従来の内燃機関では、活性種生成器により活性種が生成される領域が燃焼室に比べて狭いため、それほど多くの混合気に活性種を接触させることができなかった。そのため、活性種により化学反応が促進される混合気の量が比較的少なくなってしまい、活性種による燃焼促進の効果が十分に得られているとは言い難かった。
【0006】
本発明は上述の実情に鑑みなされたものであって、その目的は、活性種により混合気の燃焼を促進させる内燃機関において、混合気に活性種を効果的に接触させ、活性種による燃焼促進の効果を増大させることにある。
【課題を解決するための手段】
【0007】
第1の発明は、予め混合された混合気を燃焼させる燃焼室を形成するシリンダと、上記シリンダと共に上記燃焼室を形成し、該シリンダ内を往復運動するピストンと、活性種を生成する活性種生成器を備え、上記活性種生成器を用いて生成された活性種により上記混合気の燃焼を促進させる内燃機関を対象とする。この内燃機関では、上記ピストンに、該ピストンの頂面に開口して、上記活性種生成器により活性種が生成される活性種生成室が形成されている。
【0008】
第1の発明では、活性種生成器により活性種が生成される活性種生成室が、ピストンに形成されている。活性種生成室は、ピストンの頂面の開口を通じて、燃焼室に連通している。活性種生成室は、ピストンに形成されているので、燃焼室に比べて横断面の面積(ピストンの往復方向に垂直な断面の面積)が狭くなる。そのため、活性種生成室を横断面で見た場合に、活性種が生成される領域の占める割合が比較的高くなる。そのため、活性種生成室では、活性種と混合気が接触しやすい。
【0009】
第2の発明は、第1の発明において、上記活性種生成器が、上記燃焼室を区画する区画面のうち上記活性種生成室の開口に対向する位置から上記燃焼室側に突出するスパークプラグを備え、圧縮行程においてスパークプラグが上記活性種生成室に進入する時点から、膨張行程においてスパークプラグが上記活性種生成室から抜け出す時点までの間に、上記活性種生成室において活性種を生成する。
【0010】
第2の発明では、スパークプラグが活性種生成室に進入している間に、活性種が生成される。
【0011】
第3の発明は、第2の発明において、上記活性種生成器が、膨張行程においてスパークプラグが上記活性種生成室から抜け出した後に上記燃焼室で活性種を生成する。
【0012】
第3の発明では、スパークプラグが活性種生成室に進入している間に活性種生成室で活性種が生成され、スパークプラグが活性種生成室から抜け出した後に、燃焼室で活性種が生成される。そのため、燃焼室の混合気には、活性種生成室から供給される活性種だけでなく、燃焼室で生成された活性種が接触する。
【0013】
第4の発明は、第1の発明において、上記活性種生成器が、上記活性種生成室に電磁波を照射するためのアンテナを備え、上記活性種生成室には、上記アンテナから照射される電磁波の電界強度を局所的に高める電極が設けられ、上記電磁波照射器から電磁波を照射すると、上記電極近傍でプラズマが生成されて活性種が生成される。
【0014】
第4の発明では、電磁波の電界強度を局所的に高める電極が、活性種生成室に設けられている。アンテナから電磁波を照射すると、電極近傍でプラズマが生成されて活性種が生成される。第4の発明では、アンテナが活性種生成室に存在しない状態でも、活性種生成室において活性種が生成される。
【0015】
第5の発明は、第1乃至第4の何れか1つの発明において、膨張行程において上記燃焼室の周縁で活性種を生成する周縁側活性種生成器を備えている。
【0016】
第5の発明では、膨張行程において上記燃焼室の周縁で活性種が生成される。ここで、例えばOHラジカルなどの活性種は生存期間が短い。そのため、活性種生成室で生成された活性種は、燃焼室の周縁に到達する前に消滅するおそれがある。従って、膨張行程において燃焼室の周縁で活性種を生成することで、燃焼室の周縁の混合気に活性種が接触するようにしている。
【0017】
第6の発明は、第1乃至第5の何れか1つの発明において、上記活性種生成器が、プラズマを生成することにより活性種を生成する。
【0018】
第6の発明では、プラズマにより活性種生成室の内圧が上昇する。従って、活性種生成室の活性種が燃焼室へ噴き出される。
【0019】
第7の発明は、第1乃至第6の何れか1つの発明において、上記活性種生成器が、上記混合気が着火される前に最小着火エネルギー未満のエネルギーで活性種を生成する。
【0020】
第7の発明では、混合気が着火される前に最小着火エネルギー未満のエネルギーで活性種が生成される。従って、着火する前に混合気が改質される。
【0021】
第8の発明は、第1乃至第5の何れか1つの発明において、上記活性種生成器が活性種を生成した後に上記混合気を圧縮着火させる。
【0022】
第8の発明では、混合気に活性種を接触させた後に混合気が圧縮着火される。
【0023】
第9の発明は、第1の発明において、上記活性種生成器が、上記活性種生成室に電磁波を照射するためのアンテナを備え、上記活性種生成室は、上記アンテナから照射される電磁波により共振が生じるように形成されている。
【0024】
第9の発明では、活性種生成室において、アンテナから照射される電磁波により共振が生じる。従って、強電場が形成される。
【発明の効果】
【0025】
本発明では、燃焼室に比べて横断面の面積が狭い活性種生成室で活性種を生成することで、活性種と混合気が接触しやくなるようにしている。従って、燃焼室で活性種を生成する場合に比べて、活性種により化学反応が促進される混合気の量を増大させることができ、活性種による燃焼促進の効果を増大させることができる。
【0026】
上記第3の発明では、燃焼室の混合気に、活性種生成室から供給される活性種だけでなく、燃焼室で生成された活性種が接触するようにしている。従って、活性種による燃焼促進の効果をさらに増大させることができる。
【0027】
上記第4の発明では、アンテナが活性種生成室に存在しない状態でも、活性種生成室において活性種が生成されるようにしている。アンテナを設ける部品を燃焼室側へ大きく突出させることなく、ピストンが上死点に到達する時点よりもある程度早いタイミング(例えば、混合気を着火させるよりも早いタイミング)で、活性種生成室において活性種を生成することが可能である。アンテナを設ける部品を燃焼室側へ大きく突出させると、その部品から熱が逃げにくく、その部品が損傷しやすくなる。従って、アンテナを設ける部品の損傷を抑制しつつ、ピストンが上死点に到達する時点よりもある程度早いタイミングで、活性種生成室において活性種を生成することが可能である。
【0028】
上記第5の発明では、膨張行程において燃焼室の周縁で活性種を生成することで、燃焼室の周縁の混合気に活性種が接触するようにしている。そのため、活性種に接触する混合気の量を増大させることができるので、活性種による燃焼促進の効果をさらに増大させることができる。
【0029】
上記第6の発明では、プラズマにより活性種生成室の内圧を上昇させて、活性種生成室の活性種が燃焼室へ噴き出されるようにしている。従って、活性種に接触する混合気の量を増大させることができるので、活性種による燃焼促進の効果をさらに増大させることができる。
【図面の簡単な説明】
【0030】
図1】実施形態の内燃機関の概略構成図である。
図2】実施形態の変形例1の内燃機関の断面図である。
図3】実施形態の変形例2の内燃機関の断面図である。
図4】実施形態の変形例3の内燃機関の断面図である。
図5】実施形態の変形例4の内燃機関の断面図である。
【発明を実施するための形態】
【0031】
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
−内燃機関の構成−
【0032】
本実施形態は、本発明に係る内燃機関100(往復動内燃機関)である。この内燃機関100は、4ストロークのガソリンエンジンである。この内燃機関100は、図1に示すように、シリンダブロック110とシリンダヘッド130とピストン120とを備えている。
【0033】
シリンダブロック110には、横断面が円形のシリンダ102が4つ形成されている。ピストン120は、略円柱状に形成され、横断面の形状がシリンダ102に対応する円形である。ピストン120は、シリンダ102に摺動自在に設けられている。ピストン120には、シリンダヘッド130から離れる方向に伸びるコネクティングロッド122が連結されている。コネクティングロッド122のピストン120と反対側には、内燃機関100の出力軸となるクランクシャフト124が連結されている。クランクシャフト124は、シリンダブロック110に回転自在に支持されている。各シリンダ102内においてシリンダ102の軸方向にピストン120が往復運動すると、コネクティングロッド122がピストン120の往復運動をクランクシャフト124の回転運動に変換する。
【0034】
シリンダヘッド130は、ガスケット104を挟んで、シリンダブロック110上に載置されている。シリンダブロック110、ピストン120及びシリンダヘッド130により、内燃機関100の燃焼室196が形成されている。
【0035】
シリンダヘッド130には、各シリンダ102に対して、吸気ポート132及び排気ポート134が1つ又は複数形成されている。吸気ポート132及び排気ポート134は、シリンダヘッド130を貫通し、一端がピストン120の頂面(燃焼室196を区画する面)を臨む位置に開口している。吸気ポート132には、吸気バルブガイド孔140が開口している。排気ポート134には、排気バルブガイド孔142が開口している。吸気ポート132は、内燃機関100の吸気通路の一部を構成し、排気ポート134は、内燃機関100の排気通路の一部を構成している。
【0036】
また、シリンダヘッド130には、各シリンダ102に対して、プラグ取付孔136が設けられている。プラグ取付孔136は、シリンダヘッド130を貫通し、一端がピストン120の頂面を臨む位置に開口している。シリンダヘッド130には、各シリンダ102に対して、スパークプラグ150が1つ設けられている。
【0037】
スパークプラグ150は、活性種を生成する活性種生成器の一部を構成している。スパークプラグ150は、プラグ取付孔136に取り付けられている。スパークプラグ150は、ピストン120に形成された活性種生成室194に嵌り込む。具体的に、スパークプラグ150は、シリンダヘッド130において燃焼室196を区画する区画面のうち、活性種生成室194の連通孔190に対向する位置から燃焼室196側に突出している。スパークプラグ150は、ピストン120が下死点から上死点に移動する際に活性種生成室194に進入し、ピストン120が上死点から下死点に移動する際に活性種生成室194から抜け出す。
【0038】
吸気ポート132には、インジェクタ取付孔138が開口している。インジェクタ取付孔138には、燃料を噴射する燃料噴射装置160(インジェクタ)が取り付けられている。インジェクタ160の燃料噴射孔は、吸気ポート132に開口している。インジェクタ160には、燃料供給管が接続されている。インジェクタ160から噴射された燃料は、吸気ポート132を流れる空気に供給される。燃焼室196には、燃料と空気とが混合された混合気が導入される。燃焼室196では、予め混合された混合気が燃焼する。
【0039】
吸気ポート132には、該吸気ポート132を開閉する吸気バルブ172が設けられている。吸気バルブのバルブステム170は、吸気バルブガイド孔140に往復自在に嵌まっている。吸気バルブ172は、カムなどを有する動弁機構(図示省略)により駆動されて、吸気ポート132を開閉する。
【0040】
排気ポート134には、該排気ポート134を開閉する排気バルブ182が設けられている。排気バルブ182のバルブステム180は、排気バルブガイド孔142に往復自在に嵌まっている。排気バルブ182は、カムなどを有する動弁機構(図示省略)により駆動されて、排気ポート134を開閉する。
【0041】
本実施形態では、ピストン120の頂面のうち、スパークプラグ150の対向する領域が陥没している。この陥没部分が、上述した活性種生成室194を構成している。活性種生成室194は、ピストン120の頂面に開口して、活性種生成器により活性種が生成される。
【0042】
活性種生成室194は、円形の連通孔190を通じて、燃焼室196に連通している。連通孔190は、スパークプラグ150の突出部分に対応した形状をしている。図1に示すように、ピストン120が上死点にある状態では、スパークプラグ150が連通孔190に挿入されている。スパークプラグ150は、ピストン120が上死点に達する直前から直後に亘って、連通孔190に挿入された状態になる。この状態では、燃焼室196と活性種生成室194が、連通孔190の孔面とスパークプラグ150との隙間を介して連通している。
【0043】
陥没部分において連通孔190を除く壁面192は、球面形状である。つまり、活性種生成室194は球状の空間である。ピストン120が上死点にある状態では、スパークプラグ150の放電ギャップが活性種生成室194の中心に位置している。活性種生成室194の直径は、スパークプラグ150の外周面の直径よりも大きい。
【0044】
なお、この内燃機関100においては、燃焼室196と活性種生成室194と合計容積が、一般的な内燃機関におけるすき間容積に相当する。燃焼室196と活性種生成室194と合計容積は、ピストン120が下死点にあるときの合計容積が上死点にあるときの10倍以上であってもよい。すなわち、この内燃機関100の圧縮比は10以上であってもよい。また、圧縮比は14以上であってもよい。
【0045】
内燃機関100は、エンコーダ200とエンジン制御ユニット202(ECU)と点火コイル204とを備えている。エンコーダ200は、クランクシャフト124の回転角が所定角度であるときに検出信号を出力する。エンジン制御ユニット202は、エンコーダ200、インジェクタ160及び点火コイル204に接続されている。エンジン制御ユニット202は、エンコーダ200の検出信号をタイミングの基準信号として、インジェクタ160及び点火コイル204を制御する。インジェクタ160は、エンジン制御ユニット202から出力された噴射指令信号に従って燃料を噴射する。点火コイル204は、エンジン制御ユニット202から出力された点火指令信号に従って、投入電力から高電圧パルスを生成する。エンコーダ200及び点火コイル204には、一般的な内燃機関に用いられるものが使用される。
【0046】
本実施形態では、内燃機関100が、さらに、ミキサ回路210と電磁波発生器220と電磁波制御器230とを備えている。
【0047】
電磁波制御器230は、エンコーダ200、エンジン制御ユニット202及び電磁波発生器220に接続されている。電磁波制御器230は、エンコーダ200の検出信号と点火指令信号とをタイミングの基準信号として、電磁波発生器220の駆動シーケンスを定める制御信号に変換する。なお、駆動シーケンスとは、電磁波生成の開始時刻及び終了時刻、並びに電磁波のパワー等を表す。電磁波制御器230は、点火コイル204による高電圧パルスの発生時刻付近の所定の時間帯において、所定のパワーで電磁波を発生させるように電磁波発生器220を制御する。電磁波制御器230は、上記時間帯の間に亘って、電磁波発生器220に断続的に電磁波を発生させる。
【0048】
電磁波発生器220は、マグネトロンにより構成された発振器と、該発振器を駆動させるための電源装置とを有している。電磁波発生器220は、電磁波制御器230より与えられる電磁波発振指令に従い、電磁波を発生する。具体的には、発振器は、2.4GHz帯の電磁波を発振するマグネトロンであり、電源装置は昇圧用のトランス等を有するインバータ電源である。なお、発振器は、クライストロン、半導体発振器、LC共振回路等であってもよい。
【0049】
なお、活性種生成室194は、活性種生成室194に照射される電磁波に共振する共振空洞構造になるよう寸法を定めてもよい。例えば、活性種生成室194の寸法は、電磁波発生器220が発生させる電磁波の周波数に応じて決定される。活性種生成室194の寸法の決定には、さらに内燃機関100の圧縮比を用いてもよい。
【0050】
ミキサ回路210は、直流線路と電磁波入力端子と極板と絶縁部とハウジングとを備えている。直流線路は、点火コイル204とスパークプラグ150の入力端子とを接続する。電磁波入力端子は、同軸線路の入力端子により構成されている。極板は、電磁波入力端子の中心導体に接続され、その電磁波入力端子を直流線路に容量結合させる。絶縁部は、直流線路と極板の間の電気的絶縁を確保する。ハウジングは、導電性の部材により構成され、直流線路と電磁波入力端子と極板と絶縁部を収容する。
【0051】
ミキサ回路210は、直流線路の入力側が点火コイル204に接続され、電磁波入力端子が電磁波発生器220に接続され、直流線路の出力側がスパークプラグ150に接続されている。ミキサ回路210は、高電圧パルス及び電磁波を重畳させて、スパークプラグ150に印加する。
【0052】
なお、エンコーダ200、エンジン制御ユニット202、点火コイル204、電磁波発生器220、及び電磁波制御器230は、電源(図示省略)より電力の供給を受ける。電源は、例えば自動車用の直流12Vのバッテリである。電源は、家庭用の100Vの交流電源であってもよい。電源が交流電源である場合は、点火コイル204への給電がA/Cアダプタを介して行われる。
【0053】
本実施形態では、点火コイル204、電磁波発生器220、ミキサ回路210及びスパークプラグ150が、活性種生成器を構成している。この活性種生成器は、プラズマを生成することにより活性種を生成する。また、活性種生成器は、プラズマを生成させて混合気を着火させる。また、活性種生成器のうち電磁波発生器220、ミキサ回路210及びスパークプラグ150は、活性種生成室194に電磁波を照射する電磁波照射器を構成している。スパークプラグ150の中心電極が、電磁波照射器のアンテナとなる。
【0054】
活性種生成器では、スパークプラグ150の中心電極に高電圧パルスが供給されると、中心電極と接地電極の間の放電ギャップで火花放電が生じる。この火花放電に伴って小規模のプラズマが生成される。他方、スパークプラグ150の中心電極からは、電磁波が照射される。小規模のプラズマは、電磁波のエネルギーを吸入して拡大する。
【0055】
なお、本実施形態では、スパークプラグ150の中心電極からの電磁波が、火花放電(スパーク放電)が生じる前に照射される。電磁波は、火花放電が生じた後まで継続して照射される。電磁波は、極めて短い時間に亘って放射される。なお、電磁波の照射開始は、小規模のプラズマが消滅する前であれば、火花放電が生じた後であってもよい。
−内燃機関の動作−
【0056】
本実施形態の内燃機関100は、4ストロークの内燃機関である。燃焼室196では、ピストン120が2往復する間に、混合気の吸入行程、圧縮行程、膨張行程、及び燃焼ガスの排出行程の4行程がこの順で行われる。
【0057】
吸入行程は、ピストン120が上死点から下死点に向かう間に行われる。吸気バルブが開かれて、吸気ポート132と燃焼室196とが連通すると、混合気が燃焼室196に導入される。吸気ポート132が閉鎖されると吸気行程は終了する。
【0058】
続いて、圧縮行程では、ピストン120が下死点から上死点に近づくに従って、燃焼室の混合気が圧縮される。ピストン120が上死点に到達する直前に、スパークプラグ150の突出部分は、連通孔に挿入される。そして、スパークプラグ150の放電ギャップが活性種生成室194の中心付近に達するタイミングで、エンジン制御ユニット202は、点火コイル204に対して点火指令信号を出力し、電磁波制御器230に対して電磁波発振信号を出力する。点火コイル204は、点火指令信号に応答して、ミキサ回路210を介してスパークプラグ150に高電圧パルスを印加する。スパークプラグ150は、この高電圧パルスの印加を受けると、放電ギャップで火花放電を生成する。他方、電磁波制御器230は、電磁波発振信号に応答して、電磁波発生器220に制御信号を出力する。電磁波発生器220は、この制御信号により定められた駆動シーケンスで、電磁波を発生させる。電磁波発生器220は、ミキサ回路210を介して、スパークプラグ150に電磁波を印加する。電磁波は、スパークプラグ150の中心電極から燃焼室196に照射される。火花放電により生じたプラズマが電磁波に曝されると、プラズマ中の荷電粒子がエネルギーを受けて加速され、その周囲の混合気の分子と衝突する。これにより、混合気の分子は電離し、プラズマ領域が拡大する。
【0059】
この拡大されたプラズマは、活性種生成室194の混合気に熱エネルギーを供給すると同時に、OHラジカル、オゾン等の活性種を生成する。活性種は、混合気の化学反応を促進し、火炎核を形成する。活性種生成室194では、火炎核から壁面192に向かって火炎が伝播し、活性種生成室194の混合気が燃焼する。その結果、活性種生成室194の圧力が急速に増大し、圧力波が活性種生成室194の中心付近から壁面192に向かって進行する。活性種生成室194は球状であるため、圧力波は壁面192にほぼ同じタイミングで到達する。そのため、壁面192付近で圧力勾配が生じにくく、壁面192での偶発的な自着火が発生しにくくなる。すなわち、活性種生成室194での燃焼に伴うノッキングの発生が抑制される。なお、プラズマを拡大させることにより、活性種生成室194での燃焼期間は、火花放電のみにより着火させた場合より短くなる。また、高圧縮比でも安定して混合気に着火することができる。
【0060】
活性種生成室194での燃焼の過程で活性種生成室194の圧力が増大すると、活性種生成室194内のガスは、スパークプラグ150を活性種生成室194から押し出そうとする。この押し出す力により、ピストン120が下死点側へ付勢される。そして、着火後にピストン120が上死点から下死点に向かって移動すると、スパークプラグ150が連通孔190から抜け出し、燃焼室196と活性種生成室194とが連通する。そうすると、活性種生成室194の高温高圧のガスは、急速に燃焼室196へ噴出する。その結果、活性種生成室194から噴出したガスは、急速に断熱膨張して温度が低下する。また、活性種生成室194から噴出したガスは、燃焼室196の混合気を攪拌しつつ混ざり合う。また、活性種生成室194から噴出したガスに含まれる活性種は、燃焼室196の混合気と接触する。燃焼室196の混合気は、活性種生成室194から噴出したガスの熱エネルギーを受けて、着火されて燃焼する。燃焼室196の混合気の燃焼は、活性種生成室194から供給された活性種により促進される。
【0061】
膨張行程では、燃焼室196内で燃焼が進展しつつ、燃焼室196及び活性種生成室194のガスが膨張し、ピストン120を下死点側に付勢する。膨張行程は、ピストン120が下死点に達するまで行われる。
【0062】
排気行程では、ピストン120が下死点から上死点に向かう間に行われる。排気バルブが開かれて、排気ポート134と燃焼室196とが連通すると、燃焼室196のガスが排気ポート134から排出される。排気ポート134が閉鎖されると排気行程が終了する。
−実施形態の効果−
【0063】
本実施形態では、燃焼室196に比べて横断面の面積が狭い活性種生成室194で活性種を生成することで、活性種と混合気が接触しやくなるようにしている。従って、燃焼室196で活性種を生成する場合に比べて、活性種により化学反応が促進される混合気の量を増大させることができ、活性種による燃焼促進の効果を増大させることができる。
【0064】
また、本実施形態では、プラズマにより活性種生成室194の内圧を上昇させて、活性種生成室194の活性種が燃焼室196へ噴き出されるようにしている。従って、活性種に接触する混合気の量を増大させることができるので、活性種による燃焼促進の効果をさらに増大させることができる。
【0065】
また、本実施形態では、燃焼室196と活性種生成室194とで、燃焼が段階的に行われる。そのため、時間スケール上で総じて見れば、燃焼の進展を調整できる。これは、内燃機関の熱効率向上に資する。
【0066】
また、本実施形態では、火花放電とマイクロ波とを併用する着火方式を用いることにより、高圧縮比の条件下においても安定して混合気に着火させることができる。また、着火直後において燃焼室196と活性種生成室194とが区画されている。従って、断熱膨張を伴う2段階の燃焼を行なうことができ、燃焼温度の過度の上昇を抑制できる。これは、NOxの低減に資する。また、活性種生成室194から噴出するガスにより、燃焼室196に存在する混合気に乱れを与えることが可能となる。そのため、混合気の燃焼を促進できる。さらに、活性種生成室194が概ね球状に形成されているので、ノッキング等の発生を抑制できる。以上により、熱効率の高い高圧縮比の条件下において、混合気を安定に燃焼させて、窒素酸化物の発生及びノッキングの発生を抑制できる。
【0067】
なお、点火後に活性種生成室194と燃焼室196とが連通するタイミングが活性種生成室194のガス温度が例えば2000Kに達する前になるように、スパークプラグ150の突出量や、点火タイミングを適宜選択してもよい。そのようにすることで、より効果的にNOxを抑制できる。
−実施形態の変形例1−
【0068】
変形例1では、図2に示すように、ピストン120に、活性種生成室194を囲う筒状の断熱部材120bが設けられている。断熱部材120bは、例えばセラミックスにより構成されている。断熱部材120bの内側には、ピストン120の中心部120aが嵌め込まれている。断熱部材120bは、ピストン120の外周部120cの内側に嵌り込んでいる。
【0069】
この変形例1では、活性種生成室194において、プラズマを生成して拡大することにより混合気に熱エネルギーが付与される。活性種生成室194の混合気の熱エネルギーは、ピストン120に伝達されて失われる。この変形例1では、断熱部材120bにより、活性種生成室194の混合気からピストン120に伝達される熱量が低減される。従って、活性種生成室194の混合気から燃焼室196の混合気へ多くの熱エネルギーを供給することができる。
【0070】
また、変形例1では、図2に示すように、シリンダヘッド130おいてプラグ取付孔136を形成する部分30が、燃焼室196側へ突出している。この突出部分30の内面は、スパークプラグ150のうちプラグ取付孔136に螺合される部分150aに当接している。従って、スパークプラグ150の先端で発生する熱を突出部分30から放熱することができるので、スパークプラグ150の損傷を抑制することができる。なお、シリンダヘッド130に突出部分30を設けてスパークプラグ150の先端の熱を放熱させる構成は、上記実施形態、後述の変形例2〜4においても適用可能である。
−実施形態の変形例2−
【0071】
変形例2では、図3に示すように、活性種生成室194に、スパークプラグ150の中心電極から照射される電磁波の電界強度を局所的に高める電極51が設けられている。電極51の周囲には、絶縁リング52が設けられている。スパークプラグ150の中心電極から電磁波が照射されると、電極51近傍でプラズマが生成されて活性種が生成される。電磁波を照射する際には、スパークプラグ150に高電圧パルスを供給して放電ギャップで放電を生じさせてもよい。これにより、プラズマ生成に要する電磁波のエネルギーを低減させることが可能になる。
【0072】
この変形例2では、圧縮行程においてスパークプラグ150が活性種生成室194に進入する前に、スパークプラグ150の中心電極から電磁波を照射して、電極51近傍でプラズマが生成される。スパークプラグ150が活性種生成室194に存在しない状態でも、活性種生成室194において活性種が生成される。スパークプラグ150を燃焼室196側へ大きく突出させることなく、ピストン120が上死点に到達する時点よりもある程度早いタイミング(例えば、混合気を着火させるよりも早いタイミング)で、活性種生成室194において活性種を生成することが可能である。従って、スパークプラグ150の損傷を抑制しつつ、ピストン120が上死点に到達する時点よりもある程度早いタイミングで、活性種生成室194において活性種を生成することが可能である。
【0073】
また、変形例2では、スパークプラグ150が挿入される連通孔190の周囲に、燃焼室196と活性種生成室194とを連通させる外側連通孔41が形成されている。外側連通孔41は複数形成されている。また、外側連通孔41の出口は、燃焼室196の外側を向いている。活性種生成室194の燃焼ガス及び活性種は、連通孔190だけでなく外側連通孔41からも噴き出される。
−実施形態の変形例3−
【0074】
変形例3では、図4に示すように、ピストン120に複数の活性種生成室194,62a,62bが形成されている。ピストン120には、中心側活性種生成室194の周囲に、外側活性種生成室62a,62bが複数形成されている。なお、ピストン120内部に連通孔を形成し、これらの活性種生成室194,62a,62bの間を互いに連通させてもよい。
【0075】
また、シリンダヘッド130には、各活性種生成室194,61a,61bにおいて活性種を生成するためのスパークプラグ150,61a,61bが設けられている。各スパークプラグ150,61a,61bは、ピストン120が下死点から上死点へ移動する際に、対応する活性種生成室194,61a,61bに進入し、ピストン120が上死点から下死点へ移動する際に、対応する活性種生成室194,61a,61bから抜け出す。各スパークプラグ150,61a,61bには、上記実施形態と同様に、高電圧パルスと電磁波とが供給される。
【0076】
この変形例3では、燃焼室196の中心だけでなく、燃焼室196の周囲においても、活性種生成室194,61a,61bで生成した活性種が噴き出される。従って、活性種により化学反応が促進される混合気の量を増大させることができ、活性種による燃焼促進の効果を増大させることができる。
−実施形態の変形例4−
【0077】
変形例4では、図5に示すように、燃焼室の周縁で活性種を生成する周縁側アンテナ71a,71b(周縁側活性種生成器)が設けられている。周縁側アンテナ71a,71bは、シリンダヘッド130に埋設されている。周縁側アンテナ71a,71bは、シリンダヘッド130と絶縁されている。
【0078】
膨張行程(例えば、スパークプラグ150が活性種生成室194から抜け出した直後)において周縁側アンテナ71a,71bから電磁波を照射すると、周縁側アンテナ71a,71bの先端付近に強電場が形成されてプラズマが生成される。燃焼室196の周縁では、プラズマの生成に伴って活性種が生成される。なお、電磁波を照射する際には、スパークプラグ150に高電圧パルスを供給して放電ギャップで放電を生じさせてもよい。
【0079】
変形例4では、膨張行程において燃焼室196の周縁で活性種を生成することで、燃焼室の周縁の混合気に活性種が接触するようにしている。そのため、活性種に接触する混合気の量を増大させることができるので、活性種による燃焼促進の効果をさらに増大させることができる。
《その他の実施形態》
【0080】
上記実施形態は、以下のように構成してもよい。
【0081】
上記実施形態において、膨張行程において活性種生成室194からスパークプラグ150が抜け出した後に、スパークプラグ150に高電圧パルスと電磁波とを供給してプラズマを生成することにより、燃焼室196で活性種を生成してもよい。
【0082】
また、上記実施形態において、混合気が着火される前に最小着火エネルギー未満のエネルギーで活性種を生成するように活性種生成器を構成してもよい。
【0083】
また、上記実施形態において、活性種生成室194が、ピストン120の往復方向に連続して複数形成されていてもよい。
【0084】
また、上記実施形態において、活性種生成器が活性種を生成した後に燃焼室196の混合気が圧縮着火されるように内燃機関100を構成してもよい。この場合、着火する前の予混合気には、活性種生成器が生成した活性種が供給されるので、予混合気の燃焼が促進される。
【0085】
また、上記実施形態では、内燃機関100がポートインジェクション方式であったが、燃焼室196に燃料を直接噴射する直噴方式にしてもよい。その場合、インジェクタ160の燃料噴出孔を燃焼室196に開口させる。また、活性種生成室194と燃焼室196とを連通する連通孔をピストン120にもう1箇所形成し、ピストン120が上死点にあるときにインジェクタ160がその連通孔に挿入されるようにしてもよい。ピストン120が上死点にあるときにインジェクタ160の噴孔は、活性種生成室194に開口する。連通孔を2箇所形成すると、活性種生成室194から燃焼室196へのガスの掃気が容易になる。
【0086】
また、上記実施形態では、電磁波及び高電圧パルスを重畳してスパークプラグ150に印加したが、活性種生成室194に電磁波放射用のアンテナを別途に設け、電磁波の印加箇所と高電圧パルスの印加箇所とを別々にしてもよい。その場合、アンテナをスパークプラグ150と一体化してもよい、アンテナをスパークプラグと別体にしてもよい。
【0087】
また、上記実施形態において、火花放電に代えて、レーザーや高周波等を用いて生成されるプラズマに電磁波を照射してもよい。また、熱電子、又はパイロットバーナ等で生成される火炎に電磁波を照射してもよい。荷電粒子が存在する箇所に電磁波を照射すると、荷電粒子が加速されるので、上記実施形態と同様のプラズマを生成することが可能である。
【0088】
また、上記実施形態において、内燃機関100が、2ストロークエンジンの内燃機関であってもよい。
【産業上の利用可能性】
【0089】
以上説明したように、本発明は、ピストンが往復運動を行う内燃機関について有用である。
【符号の説明】
【0090】
100 内燃機関
102 シリンダ
110 シリンダブロック
120 ピストン
130 シリンダヘッド
150 スパークプラグ(活性種生成器)
160 インジェクタ
194 活性種生成室
196 燃焼室

図1
図2
図3
図4
図5