(58)【調査した分野】(Int.Cl.,DB名)
【図面の簡単な説明】
【0007】
【
図1】心臓同種移植片(A)、脾臓(B)、およびリンパ節(C)におけるLAG−3 mRNAの発現。5日目の心臓移植片におけるLAG−3 mRNAの発現を、定量的RT−PCRにより測定し、ハウスキーピングHPRT転写物の発現と比較した。拒絶:処理を施さない同種移植片(allograft)。シンジェニック:同系移植片(isograft)。寛容:免疫寛容(CsA+抗CD28抗体)処理を受けたレシピエントの同種移植片。
**:p<0.05 シンジェニックおよび寛容と、拒絶とを比較した場合。
【
図2】補体依存性細胞傷害活性アッセイにおける抗LAG−3抗体の特徴付け。ConA刺激した標的細胞を
51Crで標識し、図示した希釈率でウサギ補体および抗LAG−3(実線)または免疫前(点線)血清と混合した。細胞傷害活性(%)は以下のように計算される:(アッセイのCPM−自発的CPM放出)/細胞溶解後に得られる最大放出CPM。
【
図3】抗LAG−3抗体のインビトロ欠乏活性。脾臓由来のT細胞をConAで48時間活性化させてLAG−3の発現を引き起こし、CFSEで標識した。レシピエントは放射線照射を(4.5Gy)行った3日後に、10
5個の細胞をレシピエントに静脈注射した。注射の24時間後に、レシピエントを屠殺し、脾臓のCD4
+およびCD8
+コンパートメント中のCFSE
+細胞の存在をフローサイトメトリーで測定した。
【
図4】抗LAG−3抗体投与後の心臓移植片の生存率。Lew.1A 完全に同種(クラスIおよびIIミスマッチ)のレシピエント、Lew.1W 心臓を、0日目および3日目に200μl(鎖線)もしくは600μl(実線)のウサギ抗LAG−3血清、または600μlの免疫前血清(点線)を注射することにより処理した。移植片の生存率を、心拍を毎日評価することにより求めた。P<0.002、600μlウサギ抗LAG−3血清対前免疫血清。
【
図5】グラフト浸潤性細胞(GIC)の分析。GICを5日目に対照で処理または抗LAG−3抗体で処理したレシピエントの心臓の同種移植片から取り出した。細胞をLAG−3発現についてフローサイトメトリーで計数し、分析した。白色バー:GICの総数。黒色バー:フローサイトメトリーにより測定されたLAG−3
+GIC(p<0.01)。全RNAをGICから抽出し、HPRT発現レベルに対するINFγのメッセンジャーをqPCRにより計量した(網掛け線バー;p<0.05)。
【
図6】LAG−3
+CHO細胞および活性化ヒトT細胞に対する、A9H12の、参照LAG−3特異的17B4モノクローナル抗体との結合の比較。
【0008】
A)陽イオンキレート剤を含むVersene緩衝液を使用して培養プラスチックからhLAG−3をインフェクトしたCHOを分離し、図示した濃度のA9H12または17B4モノクローナル抗体と4℃で30分間インキュベートし、洗浄し、次にFITC結合ヤギ抗マウスIgG+M(H+L)二次抗体(5μg/ml、Coulter社)と4℃で30分間インキュベートした。洗浄後、細胞をFACSCanto(BD Biosciences社)を使用してフローサイトメトリーにより分析し、蛍光強度の測定値を抗体濃度の関数としてプロットした。
【0009】
B)T細胞でのLAG−3発現を誘導するために、健常ボランティアから得たPBMCをSEB(1μg/ml、Sigma Aldrich社)で2日間刺激した。PBMCは上述のように染色した。データは、抗体濃度の関数としてプロットした、PBMC中のLAG−3
+細胞の割合×LAG−3
+細胞の蛍光強度の平均として計算した加重割合を表す。
【
図7】A9H12 LAG−3モノクローナル抗体により誘導された補体依存性細胞傷害活性。
【0010】
A)hLAG−3トランスフェクトCHO細胞と野生型CHO細胞を、FITC共役抗LAG−3モノクローナル抗体(17B4)で標識し、細胞表面のLAG−3発現をFACSCantoを使用してフローサイトメトリーにより分析した。ヒストグラムプロットは、野生型CHO(灰色)およびLAG−3
+CHO(黒色)の平均蛍光強度を表わす。
【0011】
B)hLAG−3トランスフェクトCHO細胞および野生型CHO細胞を、完全培地(
10%の熱不活性化ウシ胎児血清(FCS)を補給したMEM)で洗浄し、0.1μg/mlのA9H12 LAG−3モノクローナル抗体またはmIgG2aアイソタイプ対照モノクローナル抗体(Southern Biotechnologies社)を含む完全培地で4℃、30分間インキュベートした。その後、細胞を、完全培地(補体を含まない、つまり−補体)か、10%の新鮮な再懸濁したウサギ血清(Cerdalane社)MEM(補体を含む、つまり+補体)で、インキュベートした。洗浄後、細胞を室温で15分間7−AAD(Coulter社)で染色し、その直後にフローサイトメトリーにより分析し、死細胞に対応する7−AAD陽性細胞の割合を決定した。データは、hLAG−3トランスフェクトCHO細胞および野生型CHO細胞の各条件における死細胞の割合を示している(図示)。
【0012】
C)LAG−3
+CHO細胞を、図示した濃度のA9H12 LAG−3モノクローナ
ル抗体で、4℃、30分間インキュベートし、次に、25%のウサギ血清を補給したMEMで37℃、1時間インキュベートした。洗浄後、細胞を7−AAD(Coulter社)で染色し、フローサイトメトリーで分析した。細胞傷害活性比の割合は以下の式に従って計算される。
【0013】
(サンプルの死 − 自発的な死) × 100
(最大の死 − 自発的な死)
サンプルの死は、各条件における7−AAD陽性細胞の割合である。自発的な死は、モノクローナル抗体がない場合の7−AAD陽性細胞の割合である。最大の死は、10μg/mlモノクローナル抗体を用いた場合の7−AAD陽性細胞の割合である。
【0014】
D)LAG−3
+CHO細胞を、0.1μg/ml A9H12、17B4または31
G11 LAG−3モノクローナル抗体か、またはそれらの対応するアイソタイプ対照(それぞれIgG2a、IgG1またはIgM)かを用いて、4℃で30分間インキュベートでし、次に、25%ウサギ血清を補給したMEMで37℃、1時間インキュベートした。細胞傷害活性比を上述のように、10μg/ml A9H12(左側パネル)および0.1μg/ml A9H12(右側パネル)に対応する最大死について決定した。
【0015】
E)T細胞にLAG−3発現を誘導するためにPBMCをSEB(1μg/ml)で刺激し、次に、A9H12もしくは31G11 LAG−3モノクローナル抗体、またはそれらのアイソタイプ対照の存在下でのCDCアッセイにおける標的細胞としてそれを使用した。蛍光色素と共役したCD3、CD4、CD8、CD25および17B4で細胞を染色した後、7−AAD陽性細胞の割合を図示したT細胞部分母集団について分析した。データは、各集団における(モノクローナル抗体がない場合の自発的な死を差し引いている)の死細胞の割合を示している。
【
図8】A9H12 LAG−3モノクローナル抗体により誘導された抗体依存性細胞性細胞傷害活性 A)エフェクター細胞(PBMC)を、IL−2(100IU/ml、BD Biosciences社)で1日間刺激した。標的細胞(hLAG−3トランスフェクトCHO細胞)をCFSE(蛍光性生体染料)で標識し、室温で20分、1μg/mlのA9H12、mIgG2a、17B4またはmIgG1とインキュベートした。その後、エフェクター細胞および標的細胞を図示したE:T比(E:T、エフェクタ:標的)で混合し、37℃で16時間インキュベートした。付着していない細胞も付着細胞も、Versene試薬を用いて収穫し、7−AADで染色し、その直後にフローサイトメトリーにより分析してCFSE陽性集団中の7−AAD陽性細胞の割合を決定した。データは、死細胞の割合を表し、アイソタイプ対照の存在下での非特異的細胞は差し引いている。
【0016】
B)CFSE標識した野生型CHO細胞またはLAG−3
+標的細胞を、図示した濃度
のA9H12またはmIgG2aとインキュベートし、IL−2刺激したPBMCを50:1のE:T比で加え、37℃で16時間インキュベートした。細胞死を上記と同様に分析した。データは、A9H12またはそのアイソタイプ一致IgG2a対照モノクローナル抗体の存在下でのCFSE陽性細胞の死細胞の割合を示す。
【
図9】関節炎の発生率(CIAを発症したマウスの割合) 雄DBA/1マウス(n=22)に、250μgの結核菌(M.tuberculosis)を含みウシII型コラーゲン(200μg)を乳化させたCFAを静脈注射した。
【
図11】IMP731の軽鎖(パネルA)および重鎖(パネルB)のための発現プラスミド。
【
図12】CHO細胞の安定なトランスフェクションのために使用した最終的なバイシス
【
図13】LAG−3
+CHOおよび活性化ヒトT細胞に対するIMP731の結合。
【0017】
A)陽イオンキレート剤を含むVersene緩衝液を使用して培養プラスチックからhLAG−3をインフェクトしたCHOを分離し、図示した濃度のIMP731抗体またはそのアイソタイプ対照hIgG1(Chemicon社)で4℃で30分間インキュベートし、洗浄し、次にFITC結合F(ab)’
2ヤギ抗ヒトIgG1二次抗体(5μg
/ml、SBA社)と4℃で30分間インキュベートした。洗浄後、細胞をFACSCanto(BD Biosciences社)を使用して、フローサイトメトリーにより分析し、蛍光強度の測定値を抗体濃度の関数としてプロットした。
【0018】
B)T細胞でのLAG−3発現を誘導するために、健常ボランティアから得たPBMCをSEB(1μg/ml。Sigma Aldrich社)で2日間刺激した。PBMCは上述のように染色した。データは、抗体濃度の関数としてプロットした、PBMC中のLAG−3
+細胞の割合×LAG−3
+細胞の蛍光強度の平均として計算した加重割合を表す。
【
図14】IMP731 LAG−3モノクローナル抗体により誘導された補体依存性細
【0019】
hLAG−3トランスフェクトCHO細胞を、1μg/mlのIMP731抗体またはhIgG1アイソタイプ対照モノクローナル抗体(Chemicon社)を含む完全培地(10%の熱不活性化ウシ胎児血清(FCS)を補給したMEM)で4℃、30分間インキュベートした。その後、細胞を、完全培地(補体を含まない)か、または25%の新鮮な再懸濁したウサギ血清(Cerdalane社)MEM(補体を含む)で、37℃、1時間インキュベートした。洗浄後、細胞を室温で15分間7−AAD(Coulter社)で染色し、その直後にフローサイトメトリーにより分析し、死細胞に対応する7−AAD陽性細胞の割合を決定した。データは、図示した各条件における死細胞の割合を示している。
【
図15】IMP731により誘導された抗体依存性細胞性細胞傷害活性。 A)エフェクター細胞(PBMC)を、IL−2(100IU/ml(BD Biosciences社)で1日間刺激した。標的細胞(hLAG−3トランスフェクトCHO細胞)をCFSE(蛍光性生体染料)で標識し、室温で10分、1μg/ml IMP731またはhIgG1とインキュベートした。その後、エフェクター細胞および標的細胞を図示したE:T比(E:T、エフェクタ:標的)で混合し、37℃で16時間インキュベートした。細胞を7−AADで染色し、その直後にフローサイトメトリーにより分析してCFSE陽性集団中の7−AAD陽性細胞の割合を決定した。データは、死細胞の割合を表す。
【0020】
B)CFSE標識したLAG−3
+CHO標的細胞を、図示した濃度のIMP731ま
たはhIgG1とインキュベートし、IL−2刺激したPBMCを、50:1のE:T比で加え、37℃で16時間インキュベートした。細胞をCFSE陽性集団において上記と同様に分析した。細胞傷害活性比の割合は以下の式従って計算される。
【0021】
(サンプルの死 − 自発的な死) × 100
(最大の死 − 自発的な死)
サンプルの死は、各条件における7−AAD陽性細胞の割合である。自発的な死は、抗体がない場合の7−AAD陽性細胞の割合である。最大の死は、1μg IMP731を用いた場合の7−AAD陽性細胞の割合である。
【0022】
C) エフェクター細胞(PBMC)を、IL−2(100IU/ml(BD Biosciences社)で1日間刺激した。標的細胞(hLAG−3
+CHO細胞またはh
LAG−3
-CHO細胞)をCFSE(蛍光性生体染料)で標識し、室温で10分、1μ
g/mlのIMP731またはhIgG1とインキュベートした。その後、エフェクター細胞と標的細胞を図示したE:T比(E:T、エフェクタ:標的)で混合し、37℃で16時間インキュベートした。細胞を、7−AADで染色し、その直後にフローサイトメトリーにより分析してCFSE陽性集団中の7−AAD陽性細胞の割合を決定した。データは、死細胞の割合を表す。
【発明を実施するための形態】
【0023】
本発明は、LAG−3タンパク質に結合し、LAG−3
+活性化T細胞の欠乏を引き起
こす分子を提供する。かかる欠乏は、末梢血リンパ球数、組織または器官の変化により測定可能である。
【0024】
本発明は、好ましくは、ヒトLAG−3タンパク質(hLAG−3は以後LAG−3とも称される)関する。好ましい実施形態では、LAG−3タンパク質結合分子は、細胞傷害活性抗LAG−3モノクローナル抗体か、またはLAG−3
+活性化T細胞の欠乏を引
き起こすその断片であり、該抗体は、ヒトIgG1またはIgM(またはマウスIgG2a)サブクラスのFc断片と、LAG−3に結合するFAb断片とを有し、該抗体は、補体依存性細胞傷害活性(CDC)および抗体依存性細胞傷害活性(ADCC)のうちの少なくとも一方を示す。
【0025】
リンパ球活性化遺伝子−3(LAG−3、CD223)はT細胞活性化の初期段階に上方制御されている。本発明は、選択されたLAG−3モノクローナル抗体が低用量(<0.1μg/ml)でLAG−3
+活性化エフェクターT細胞の欠乏に有効であるという、
急性心臓の同種移植片拒絶および慢性関節リウマチ(インビボ動物試験)でのおよびインビトロ試験での、LAG−3に対する細胞傷害活性抗体の作用の分析に基づいている。
【0026】
完全に血管形成された異所性同種心臓移植が、完全MHC不適合障害のラットで行われた(LEW.1WからLEW.IAへ)。レシピエントは、LAG−3のエキストラループ領域に対する抗体または対照抗体の2つの注射(0日目および3日目)を受けた。移植生存率、組織構造、mRNA転写物およびリンパ球の同種反応性を試験した。
【0027】
末梢リンパ器官ではなく拒絶反応する心臓の同種移植片にLAG−3 mRNA分子が蓄積することが最初に注目された。抗LAG−3抗体の投与は、エフェクター単核細胞によるグラフト浸潤を阻害し、対照抗体で処理したレシピエントの同種移植片の生存率を6日から平均27日に延長した。
【0028】
LAG−3浸潤を発現している細胞が心臓同種移植片を拒絶し、誘発単独治療として細胞傷害活性抗体を用いたLAG−3のターゲッティングが、T細胞および単球によるグラ
フト浸潤を低減することにより急性拒絶を遅延させることが判明した。
【0029】
短期間のCD40L抗体治療がマウスと霊長類での長期移植片生存を達成し得ることを示す実験は、初めは同時刺激ブロックの効果として解釈された。しかしながら、モンク(Monk)ら(2)は、抗CD40L治療の効能の多くが、同時刺激ブロックではなく活性化T細胞の破壊に由来することを示した。結果は、抗原を受けた潜在的侵攻性T細胞の選択的なパージングである。
【0030】
コラーゲン誘発性関節炎(CIA)は慢性関節リウマチ用のよく説明されている動物モデルである。コラーゲン誘発性関節炎は、異種II型コラーゲンでの免疫によるラット、マウスおよび霊長類に誘発可能な自己免疫疾患である。生じる関節の病態は、滑膜増殖、軟骨浸食および最も重度な場合では骨吸収を伴う慢性関節リウマチに類似している(12)。
【0031】
特定の免疫プロトコルを使用して、初期の研究で、H−2ハプロタイプに関連するCIAに対する反応性の階層を確立したところ、H−2
q(例えばDBA/1マウス)は最も
反応性の高い系統であり、H−2
b(例えばC57BL/6マウス)が最も反応しない系
統であった。しかしながら、いくつかの研究によると、CIAに対する反応性は以前に考えられていた程にはMHCクラスIIによっては制限されない可能性があり、免疫条件によるのと同じ程度である可能性があることが示された(13)。異なる種由来の種々のII型コラーゲン(CII)と、種々の濃度のヒト結核菌を含む完全フロイントアジュバント(CFA)準備は、関節炎発達の重要なパラメータであった。イングリス(Inglis)らは、ウシではなくニワトリのCIIがC57BL/6マウスで疾患を誘発できると共に、発生率が50%から75%であることを証明した。これは、ウシ、マウスおよびニワトリのCIIのすべてが疾患を誘発し、発生率が80%から100%であるDBA/1マウスとは対照的である。関節炎の発現型は、C57BL/6マウスではDBA/1マウスより穏やかであり、膨潤が少なく臨床スコアが徐々に増大した(14)。さらに、関節炎の発生率が雌マウスより雄マウスの方が幾分高いので、CIA研究には雄マウスが好まれることが多い。
【0032】
マウスではCIAは、CFAの存在下でII型コラーゲン(CII)を皮内注射し、通常その21日後にアジュバントなしのCIIのブースト注射を行うことにより誘発される。しかしながら、免疫法のほとんどすべての態様で変動があることが報告されており、最も感受性の高いDBA/1マウスでも、CIAの発症時間、重症度、および発生率が変動し得る(13,15)。
【0033】
自動免疫疾患の治療のための治療用抗体は、慢性関節リウマチにおけるTNFαモノクローナル抗体のように、既に説明されている。「LAG−3(リンパ球活性化遺伝子−3)」の定義は、最近活性化されたエフェクターT細胞のためのマーカーである。これらのエフェクターLAG−3
+T細胞が欠乏すると、免疫抑制が標的化(つまり、コルチコイ
ドまたはサイクロスポリンと同様に、すべてのT細胞ではなく、活性化T細胞のみが抑制される。)されるだろう。この非常に特異的な免疫抑制は、古典的な免疫抑制物質や、TNFαをブロックする治療用抗体(例えばヒュミラ、レミケード)または可溶性受容体(例えばエンブレル)に比べると、より高い治療誘発につながるに違いない。したがって、LAG−3は、自動反応性活性化エフェクターT細胞を除外するための治療用欠乏性モノクローナル抗体アプローチに利用可能な、有望なターゲットである。
【0034】
LAG−3タンパク質に結合し、LAG−3
+活性化T細胞欠乏を引き起こす分子は、
本発明によれば、抗体(モノクローナルとポリクローナルのいずれでもよいが好ましくはモノクローナル)およびその断片、ペプチドおよび有機小分子を包含する。
【0035】
本発明の細胞傷害活性抗LAG−3モノクローナル抗体またはその断片は、LAG−3
+活性化T細胞の30%よりも多く、好ましくは50%よりも多くの欠乏を引き起こす。
本発明の細胞傷害活性抗LAG−3モノクローナル抗体またはその断片は、強いCDCまたはADCC特性を与えるマウスIgG2aまたはヒトIgG1 Fc領域を備えた抗体を含む。
【0036】
本発明の細胞傷害活性抗LAG−3モノクローナル抗体またはその断片は、
(i)0.1μg/ml未満のモノクローナル抗体濃度で最大CDC活性の50%を超える活性、または
(ii)0.1μg/ml未満のモノクローナル抗体濃度で最大ADCC活性の50%を超える活性
のうちの少なくとも一方を示す。
【0037】
LAG−3タンパク質結合分子、より詳細にはLAG−3
+活性化T細胞および抗体の
欠乏を引き起こす細胞毒素抗LAG−3モノクローナル抗体は、当業者に周知の方法により生産することができる。
【0038】
CD223ポリペプチドに対して作製される抗体は、CD223ポリペプチドを、動物へ、好ましくは非ヒトへ、投与、特には直接注射することにより得ることができる。このように、CD223ポリペプチドの断片のみをコードする配列も、未変性CD223ポリペプチド全体に結合する抗体を作製するために使用することができる。
【0039】
モノクローナル抗体の準備については、連続細胞株培養により作製された抗体を与える技術であればいかなるものを使用してもよい。実施例はハイブリドーマ法(9)、トリオーマ法、ヒトB細胞ハイブリドーマ法(10)を包含する。
【0040】
一本鎖抗体の作製について説明した技術(米国特許第4,946,778号)を容易に使用して、CD223ポリペプチドに対する一本鎖抗体を生産することができる。また、遺伝子組換えマウスを使用して、免疫原CD223ポリペプチドに対するヒト化抗体を発現させてもよい。
【0041】
A9H12と称される本発明の第1のモノクローナル抗体は、アクセス数CNCM 1−3755の下でCNCMで置かれたハイブリドーマによって生産される。
31G11と称される本発明の第2のモノクローナル抗体は、アクセス番号CNCM1−3756の下CNCMに2007年4月27日に寄託されたハイブリドーマによって生産される。
【0042】
本発明は、臓器移植拒絶を治療もしくは予防するかまたは自己免疫疾患を治療するための、医薬の製造のための細胞傷害活性抗LAG−3モノクローナル抗体またはその断片の使用方法をもその対象とする。
【0043】
本発明は、臓器移植拒絶を治療もしくは予防するか、または自己免疫疾患を治療するための方法をさらに提供する。かかる方法は、哺乳動物対象に、治療上有効量の細胞傷害活性抗LAG−3モノクローナル抗体またはその断片を投与することを含む。
【0044】
臓器移植拒絶は、同種宿主における臓器の移植のことを指す。臓器移植は、異常に多いT細胞集団または有害なT細胞活性を生じさせる状態に罹患している生物の治療に有効であり得る。異常に多いT細胞集団または有害なT細胞活性を生じさせる状態とは、宿主T細胞により媒介されるグラフト拒絶、グラフト対宿主疾患、および慢性関節、I型糖尿病
、筋肉硬化症等のT細胞媒介性自己免疫疾患および炎症性疾患が挙げられる。本発明の方法は、CD223を発現するT細胞を含むすべての生物に適用可能であり、これには任意の動物、特にはヒトよびマウスが含まれるが、それらに限定されない。
【0045】
自己免疫疾患は、対象自身の免疫系が対象の細胞に反して反応する疾患である。本発明による治療を受け得る自己免疫疾患には、自己免疫溶血性貧血、自己免疫性血小板減少紫斑病、グッドパスチャー症候群、尋常性天疱瘡、急性リウマチ熱、本態性混合型クリオグロブリン血症、全身性紅斑性狼、インスリン依存性糖尿病、慢性関節リウマチ、グレーヴス病、ハシモト甲状腺炎、重症筋無力症および多発性硬化症が含まれる。
【0046】
本発明の患者から得たサンプルからLAG−3
+活性化T細胞を欠乏させる方法は、サ
ンプルを、上述の抗体を含む抗体組成物と反応させることからなる。
本発明の医薬組成物は、単一用量で30〜300mgの上述の細胞傷害活性モノクローナル抗体と、哺乳動物への投与用の1または複数の医薬として許容される担体および/または希釈剤とを含む。本発明の医薬組成物は、固体か液体の形式で投与用に特に調剤されてもよい。
【0047】
実施例1;細胞傷害活性抗体により標的とされるLAG−3陽性細胞
材料および方法
動物と移植
MHC領域全体がそれぞれ異なる、8−12週例の雄Lewis.1W(LEW.1W(ハプロタイプRT1
U))およびLewis.1A(LEW.1A(ハプロタイプRT
1
a))の同属ラット(Centre d’Elevage Janvier、Le G
enest−Isle、フランス)。LEW.1Wの異所的心臓移植を、以前に記述されている(11)ように行った。移植生存率を腹壁を介した触診により評価した。
【0048】
抗LAG−3抗体
ラットLAG−3タンパク質のエキストラループ領域に対応する合成ペプチド(NCBIアクセッション番号 DQ438937;ペプチドDQPASIPALDLLQGMPSTRRHPPHR)をオボアルブミンに結合し、2羽のウサギの免疫に使用した。免疫前血清と、4回目の免疫後63日目に採取した免疫血清とを、免疫原およびペプチドに対するELISAにより、およびCon−A活性化ラット脾臓細胞に対するフローサイトメトリーにより分析した。
【0049】
免疫前血清はいずれの分析でも陰性であった。プールした免疫血清は、ELISAで1/60000の力価(50%シグナルに稀釈)およびFACSで1/1000の力価を示し、活性化T細胞に対する特異性を示した。
【0050】
補体依存性細胞傷害活性分析
補体媒介性の抗体依存性細胞傷害活性を、Lewis 1AラットT細胞に対するウサギ血清を使用して
51Cr放出アッセイで試験した。合計2×10
6のLewis 1A
T細胞を、10%FCSを含むRPMI(GIBCO)溶液中で、30μCiの
51Crで37℃、90分標識した。3回洗浄した後、T細胞を96 V字底プレートに分配し、ウサギ補体および熱で不活性化させたウサギ血清の系列希釈とインキュベートした。37℃で4時間後、シンチレーション計数器を使用して、
51Crの放出を上澄みで測定した。細胞傷害活性比を以下の式に従って計算した:
(実験による放出 − 自発的放出) ×100/(最大放出 − 自発的放出)。
【0051】
インビボの抗体誘発性細胞傷害活性
LAG−3
+細胞に対する抗LAG−3抗体の細胞傷害活性を、インビボで評価した。
ConA活性化(48時間)LEW.1W脾細胞をCFSEで標識し、抗LAG−3抗体と共に、放射線照射した(4.5Gy、−3日)LEW.1Aレシピエントへ移した(10
8細胞)。1日目に、レシピエントを屠殺し、リンパ器官中および血液中のCFSE陽
性細胞の存在をフローサイトメトリーにより評価した。
【0052】
免疫染色
移植片サンプルを、Tissue Tek(OCT化合物、Torrance、アメリカ合衆国カリフォルニア)に埋設し、液体窒素で瞬間凍結し、5μm切片に切断し、アセトンで固定した。Dakoビオチンブロックシステム(Dako、Trappes、フランス)を使用して内因性ビオチン活性をブロックした。その後、切片を3段階の間接的免疫ペルオキシダーゼ顕色により標識した。各免疫ペルオキシダーゼ標識組織切片の細胞浸潤領域を、定量的形態測定分析により決定した。
【0053】
各スライド上の陽性染色細胞を、顕微鏡のアイピース中に121に分けられた正方形グリッドの点算法分析(14)を使用した形態測定分析により計数した。簡単に説明すると、特定の抗原特異性(領域浸潤)を有する細胞が占める各移植切片の領域の割合を、以下のように計算した:
[グリッドの目の下にある陽性細胞の数/(グリッドの目の合計数=121)×100]。
【0054】
移植切片を400倍で調べた。この技術の精度は、数えた点の数に比例する。したがって、<10%の標準誤差を維持するために、各標識切片当たり15個のフィールドを数えた。結果は、(OX1、OX30標識で決定される)白血球により浸潤された組織切片の免責の割合として現され、該浸潤の発現型組成と、その部分母集団とは、白血球総数の割合に関し、白血球の割合として表される。
【0055】
移植浸潤細胞抽出染色
破断した心臓を、37℃で10分、コラゲナーゼD(2mg/ml、Boehringer Mannheim)で消化した。その後、細胞をステンレス鋼メッシュに通過させて抽出により収集した。得られた懸濁液をフィコール分離により清澄化した。
【0056】
定量的RT−PCR
リアルタイム定量的PCRを、SYBR Green Core Reagents(Applied Biosystems、カリフォルニア州フォスターシティ所在)を用いてApplied Biosystems GenAmp 7700 Sequence Detection Systemで行った。本研究には以下のオリゴヌクレオチドを使用した:
ラットLAG−3:
上流プライマー 5’−ATATGAATTCACAGAGGAGATGAGGCAG−3’
下流プライマー 5’−ATATGAATTCTCCTGGTCAGAGCTGCCT−3’
ラットINF−g:
上流プライマー 5’−TGGATGCTATGGAAGGAAAGA−3’
下流プライマー 5’−GATTCTGGTGACAGCTGGTG−3’
ラットHPRT:
上流プライマー 5’−CCTTGGTCAAGCAGTACAGCC−3’
下流プライマー 5’−TTCGCTGATGACACAAACATGA−3’。
【0057】
100ngの全RNAの逆転写に対応する一定量のcDNAを、25μlのPCR混合
物(300nMの各プライマー;200μMのdATP、dGTP、およびdCTP;400μM dUTP;3mM MgCl
2;0.25U ウラシル−N−グリコシラーゼ
;0.625 AmpliTaq Gold DNAポリメラーゼ)に入れて増幅した。混合物は40サイクル増幅させた。リアルタイムPCRのデータを、ΔR
n蛍光シグナル
対サイクル数としてプロットした。ΔR
n値は、以下の式を使用してApplied B
iosystems 7700配列検出ソフトウェアにより計算した:ΔR
n=(R
n +)−(R
n−)、式中、R
n +は所定時間の生成物の蛍光シグナルであり、R
n−はサイクル
3−13の間の平均蛍光シグナルで、ベースラインと呼ばれる。C
t値はΔR
nが閾値を超えたときのサイクル数として定義される。閾値は、陽性反応の増幅曲線の指数関数部分と交差するようバックグラウンド蛍光を超えるよう設定される。C
tはPCR内のテンプレ
ートのlog量に反比例する。
【0058】
統計分析
統計学的有意差を、2群比較のためのaa Mann−Whitneyアッセイを使用して評価した。移植片の生存率はlog rankアッセイを用いたKaplan−Meier分析により評価した。
【0059】
結果
拒絶された同種移植片およびリンパ器官でのLAG−3 mRNAの発現
LAG−3は、炎症を起こしたリンパ器官および組織中の活性化T細胞により発現される(7)。LAG−3が拒絶された同種移植片でも発現されているかどうかを確認するために、LEW.1WからLEW IW.1Aラットレシピエントへの心臓移植片を5日目(6日目に拒絶が生じている)に分析した。LAG−3の伝令RNAを分析し、寛容誘導剤(抗CD28抗体+CSA、文献(16)に記載)を受けた同種移植片(アログラフト)および同系移植片(アイソグラフト)と比較した。拒絶された同種移植片は、寛容移植片および同系移植片と比較してそれぞれ7倍および25倍のLAG−3 mRNA蓄積を示した(
図1A)。このような蓄積は、拒絶レシピエントのリンパ節(
図1B)または脾臓(
図1C)では検知されなかった。
【0060】
抗LAG−3抗体の作用機序
抗LAG−3抗体を、クラスIIとのLAG−3の相互作用に関連する(PNAS Huard 1997を参照)LAG−3 Ig様 N末端領域のエキストラループ由来の合成ペプチドで免疫することにより、ウサギで生産した。免疫後血清は、IgG分画と同様に、ラット脾臓細胞の1%未満を染色し、40%のラット脾臓細胞をConA、PMA+イオノマイシン、またはPHAで48時間活性化させた。免疫前血清は陰性であった(データは図示しない)。LAG−3
+細胞に対する抗LAG−3抗体の作用を特徴付ける
ために、補体およびADCC依存性細胞傷害活性をインビトロで分析した。15%のConA活性化脾臓細胞が補体依存性細胞傷害活性分析で溶解された(
図2)。ConA活性化標的細胞の40%しかLAG−3を発現していないことを考えると、この分析により、調製物中のLAG−3
+脾臓細胞の約37%が補体活性化の結果、インビトロで溶解され
たことが明らかとなった。
【0061】
インビボで、抗LAG−3抗体の欠乏活性を、放射線照射されたラットレシピエントに適合移植されたCFSE標識活性化T細胞の運命の測定により評価した。治療用量の抗LAG−3免疫血清を注射した1日後には、免疫前血漿の同様な注射と比べて、CFSE
+
/CD4
+およびCFSE
+/CD8
+細胞の半分量しか脾臓から回収することができなか
った(
図3)。
【0062】
抗LAG−3抗体は心臓同種移植の拒絶反応を遅延させる
予備的薬物動態学的観察から、発明者らは0日目と3日目に600μlの抗LAG−3
ウサギ血清を2回静脈注射したところ、少なくとも2週間、レシピエントの血清中で抗LAG−3の結合活性が維持された。この処理は、心臓の同種移植の拒絶反応を、未処理レシピエントおよび対照処理レシピエントの6日から、平均27日へと遅延させた。しかしながら、レシピエントはすべて、最終的には10週以内に移植片を拒絶した(
図4)。5日目に、対照処理レシピエントの移植片は活性化T細胞により重度に浸潤されていたが、この浸潤は抗LAG−3処理レシピエントではそれほど重要ではなかった。しかしながら、CD25
+細胞およびNK細胞による浸潤はこの処理によっては変化しなかった。発明
者らの抗LAG−3抗体は免疫組織化学ではLAG−3を認識しないため、移植浸潤細胞(GIC)によるLAG−3発現を、摘出後にフローサイトメトリーにより分析した。対照拒絶移植片から平均8.5 10
6±0.76個のGICを回収できた。抗LAG−3
処理レシピエントの心臓同種移植からは、3.16±0.44 10
6 GICしか回収
できなかった(n=3、p<0.005)。GICは、対照では41.17±1%のLAG−3
+細胞(すなわち3.5 10
6細胞)を含むのに対し、処理動物では22.2±0.9%のLAG−3
+細胞(つまり0.7 10
6細胞、n=3、p<0.0005、
図5)しか含んでいなかった。mRNA転写物の分析により、発明者らは処理移植片では4倍より少ないINFγ mRNA分子を測定したため、単核細胞により心臓移植片の浸潤が減少されるという上記知見が補強された。
【0063】
抗LAG−3抗体は進行中の急性心臓同種移植片の遅延拒絶を阻害する
進行中の急性同種移植拒絶の治療剤として機能するか否かを調べるために、発明者らはLEW.1Wの心臓を、治療せずに3日または4日間維持しておいたLEW.1A同種レシピエントに移植した。その時、レシピエントは、600mlの対照または抗LAG−3ウサギ血清の注射を受けた。対照処理レシピエントは5日目に同種移植片を拒絶したが、抗LAG−3抗体処理レシピエントは11日目になって拒絶した(表1)。
【0065】
実施例2;新しい高親和性hLAG−3モノクローナル抗体の作製
材料および方法
マウスを、hLAG−3トランスフェクトCHO細胞(10
7個の細胞、復腔内注射)
で3回免疫し、10μg IMP321(臨床グレードのhLAG−3Ig組換えタンパ
ク質)でブースト静脈注射した。ブーストの3日後、脾臓細胞をX63.AG8653融合パートナーと融合し、ハイブリドーマ細胞を産出した。ハイブリドーマからの上澄みを、hLAG−3トランスフェクトCHO対野生型CHO細胞に対するその特異的結合についてスクリーニングした(FACS分析)。
【0066】
1つのマウスIgG2a抗体(580.1E9H3A9H12、A9H12と称される)を選択し、サブクローニングして安定した細胞株を産出し、さらにはマウスIgG2a
Fc領域が異種細胞(つまりCHO細胞またはヒトPBMC)でもCDC(補体依存性細胞傷害活性)およびADCC(抗体依存性細胞性細胞傷害活性)という活性を伝達するのにマウスでは最も効率的であることが公知であることに鑑みてCDCおよびADCCを介してLAG−3
+細胞を欠乏させるその能力を特徴付けた。
【0067】
結果
最初に、A9H12の用量依存的結合を、hLAG−3トランスフェクトCHO細胞に対する、およびLAG−3
+インビトロ 17B4活性化ヒトT細胞に対する参照LAG
−3特異的17B4モノクローナル抗体と比較した(
図6)。A9H12は、いずれの細胞型に対する参照17B4モノクローナル抗体よりも大きな結合を示した。例えば、活性化ヒトT細胞へのA9H12の有意な結合が、0.01μg/mlという低い濃度で観察された。
【0068】
CDC試験については、この分析で使用した標的細胞はLAG−3
+CHO細胞であり
、これを野生型CHO細胞と比較した(
図7A)。いずれのタイプの細胞も、A9H12、そのマウスアイソタイプ一致IgG2a陰性対照モノクローナル抗体、31G11、そのマウスアイソタイプ一致IgM陰性対照、または参照17B4(IgG1)モノクローナル抗体と、活性補体を含むウサギ血清と、37℃、1時間インキュベートした。次に、細胞生存率を、7−アミノアクチノマイシンD(7−AAD)(死後に急速に現われる現象である膜質の完全性を失った細胞を標識する蛍光染料)を使用して評価した。7−AAD陽性のCHO細胞(つまり死んでいる標的細胞)の割合を、フローサイトメトリー分析により決定した。A9H12は、このCDC分析で強力かつ特異的な細胞傷害活性を示し、補体の存在下ではLAG−3
+CHO細胞のみを殺した(
図7B)。低濃度の抗体でC
DCを活性化する抗体の効力を決定するために、抗LAG−3抗体の力価を測定した。A9H12は0.01μg/mlという低い濃度で効率的にLAG−3
+CHO細胞の死を
誘発した(
図7C)。IgG1 17B4抗体もこの分析で試験したが、効果がなく(
図7D、左側のパネル)、すべてのLAG−3モノクローナル抗体がこのバイオアッセイで細胞傷害活性を引き起こすとは限らない可能性を示した。A9H12に関して観察されるように、2番目の31G11 LAG−3特異的モノクローナル抗体も、LAG−3
+C
HO細胞の死を誘発した(
図7D、右側のパネル)。
【0069】
CDCバイオアッセイを、スーパー抗原SEBで刺激したPBMCでも行なった。A9H12および31G11の細胞傷害活性を、活性化した(すなわちCD25
+/LAG−
3
+細胞)および活性化しない(すなわちCD25
-/LAG−3
-細胞)CD4
+ヘルパーT細胞およびCD8
+細胞傷害活性T細胞の両方について分析した。活性化CD4
+およびCD8
+T細胞のみが、A9H12および31G11により特異的に死滅されたが(
図7
E)、これは活性化ヒトT細胞が補体存在下でのA9H12または31G11特異的死滅を受けることを示している。
【0070】
ADCC試験については、PMBCをエフェクター細胞として機能するようIL−2で1日間刺激し、LAG−3
+CHO細胞を標的細胞として機能するよう生体染料CFSE
で標識した。A9H12の存在下で、PBMCはLAG−3
+CHO細胞の有意な割合を
死滅させることができ、この作用はエフェクター細胞数と共に増大した(
図8A)。17
B4が存在すると、E:T比が高くても低い割合の標的細胞しか死滅しなかったが(
図8A)、これはすべてのLAG−3モノクローナル抗体がこのバイオアッセイで細胞傷害活性を引き起こすとは限らない可能性を示している。低濃度の抗体でADCCを誘導する抗体の効力を決定するために、A9H12 LAG−3モノクローナル抗体の力価を測定した。A9H12は、0.01μg/mlという低い濃度で効率的にLAG−3
+CHO細
胞死を誘発した(
図8B)。
【0071】
実施例3;コラーゲン誘発性関節炎マウスモデルにおける欠乏性LAG−3抗体の試験
材料および方法
動物と材料
8−10週齢の雄DBA/1(H−2
q)マウスをJanvier研究所から得た。動
物実験は当局のガイドラインに従って行なった。ウシCII(関節軟骨)をBioColから購入した。不完全フロイントアジュバントはシグマから提供されたものである。加熱殺菌した結核菌H37RaをDifco研究所から購入した。
【0072】
コラーゲン誘発性関節炎(CIA)の誘発
2つの刊行物(13,15)に以前に記載されている通りに、CIAの誘発および評価を行なった。完全フロイントアジュバントを、13.3ml IFAに100mgの加熱殺菌結核菌(最終濃度7.5mg/ml)を混合することにより調製した。ウシCIIを、10mM酢酸中に3mg/mlとなるように4℃で一晩溶解させた。2体積のCIIを1体積のCFAと混合することにより、エマルジョンを形成した。CII溶液と、CFAのエマルジョンは、常に新しく調製した。雄DBA/1マウスに、200μgのCIIと250μgの結核菌を含む合計100μlのエマルジョンを、尾の基部に1日目(D1)に皮内注射した。係る注射を21日目(D21)に繰り返した。対照として、3匹のマウスにCIIを含まないCFAのエマルジョンを注射した。
【0073】
関節炎マウスの臨床評価
22日目から、一週間に3回、関節炎の徴候についてマウスを試験した。疾患の重度を各肢について以下のスコアシステムで決定した:
スコア0=正常、
スコア1=足蹠または関節の腫れ、
スコア2=足蹠の腫れと、1または2箇所の関節の腫れ
スコア3=足蹠の腫れと、3または4箇所の関節の腫れ
スコア4=足蹠の腫れと、すべての関節の腫れ。
【0074】
各足を類別し、一つのマウス当たりの考えられる最大スコアが16になるように、4つのスコアを合計した。発生率を、関節炎スコアが1以上であるマウスの割合として表した。
【0075】
結果
CIAが、250μgの結核菌を含むCFAで乳化されたウシII型コラーゲン(CII)の皮内注射により引き起こされた。1回の注射後、22匹のマウスのうち4匹のマウスが21日目に関節炎になった。2回目の注射の2週間後、35日目には、80−90%のマウスが関節炎の臨床症状を呈した(
図9)。マウスは、1から16までの全範囲の応答を包含する臨床スコアを示し、いくつかの肢では足蹠、足首/手首の関節ならびに指が重度に腫れていた(表2)対照動物(CIIを含まないCFAを注射)はいずれも関節炎の症状を呈しなかった(データは示さない)。
【0077】
発明者らの結果は、CIAプロトコルを使用すると、関節炎の症状を呈するマウスを高い割合(80−90%)で得ることが可能であることを示している。この実験プロトコルは、自動免疫疾患における欠乏作用を有する欠乏性LAG−3抗体(マウスLAG−3に特異的)の治療効果を評価するためのモデルを提供する。
【0078】
200μgの欠乏性LAG−3モノクローナル抗体(A9H12または31G11)を15日目および25日目に腹腔内または静脈注射する。関節炎発生率の有意な減少および平均臨床スコアの有意な低下のいずれにも関与する。
【0079】
実施例4:IMP731により引き起こされる補体依存性細胞傷害活性(CDC)および抗体依存性細胞性細胞傷害活性(ADCC)
材料および方法
欠乏特性を有する新規なマウスモノクローナル抗体A9H12は、ヒヒおよびマカクザルのLAG−3
+細胞をも高い親和力で認識することが示されており、発明者らのリード
治療用モノクローナル抗体として選択した(Immu.Tu.ne IMP731)。
【0080】
A9H12を、標準遺伝工学技術およびPCRプロトコルを使用して、ヒトIgG1 Fc領域とキメラ化し、CDC(補体依存性細胞傷害活性)およびADCC(抗体依存性細胞傷害活性)特性を与えた。
【0081】
A9H12ハイブリドーマ細胞mRNAに由来するA9H12 VH配列およびVL cDNA配列を、ヒトCH1−ヒンジ−CH2−CH3 IgG1領域およびCκ鎖の上流でそれぞれ融合した。
【0082】
2つの軽いおよび重いIMP731キメラ鎖を、別々の発現プラスミドに入れて独立してPGK(または別の構築物ではSRalpha、図示せず)の制御下でクローニングした(それぞれ
図11のパネルAおよびB)。これらの2つのプラスミドを共にCHO細胞へ同時トランスフェクト(一過性トランスフェクション)し、2日目または3日目に培養液上澄みからプロテインAカラムアフィニティ捕捉および溶出(pH3)を使用してIM
P731を精製した。Tris−HClで中和後、精製したIMP731抗体を、そのLAG−3
+標的細胞を死滅させる能力について、CDCおよびADCC実験で試験した。
【0083】
次に、2つのIMP731の軽鎖および重鎖を、同じ組み込み部位(
図12)の2つのIMP731鎖が統合発現されるよう頭から尾への状態でPGK(またはSRalpha、図示せず)プロモータを用いて共にクローニングした。このバイシストロンIMP731発現プラスミドを使用したのは、無血清培地中で増大する濃度のヒグロマイシンを使用して、安定したトランスフェクションと高い生産性(例えば1日当たり、100万個のCHO−S細胞当たり、20ピコグラムのIMP731タンパク質)のCHO−S細胞を得るためである。
【0084】
結果
最初に、IMP731の用量依存的結合を、hLAG−3トランスフェクトCHO細胞(
図13A)に対して、およびLAG−3
+インビトロ活性化ヒトT細胞(
図13B)に
対して評価した。IMP731は、活性化T細胞の対して0.01μg/mlという低濃度でいずれの細胞のタイプに対しても有意な結合を示した。
【0085】
補体依存性細胞傷害活性(CDC)試験については、この分析で使用した標的細胞はLAG−3
+CHO細胞であった(
図14)。細胞を、IMP731またはそのヒトアイソ
タイプ一致IgG1陰性対照のいずれかとインキュベートし、次に、活性補体を含むウサギ血清と37℃、1時間インキュベートした。次に、細胞生存率を、7−アミノアクチノマイシンD(7−AAD)を使用して評価した。7−AADは、死後に急速に現われる現象である膜質の完全性を失った細胞を標識する蛍光染料である。7−AAD陽性のCHO細胞(つまり死んでいる標的細胞)の割合を、フローサイトメトリー分析により決定した。IMP731は、このCDC分析で強力かつ特異的な細胞傷害活性を示し、補体の存在下ではLAG−3
+CHO細胞のみを殺した(
図14)。
【0086】
抗体依存性細胞性細胞傷害活性(ADCC)試験については、PMBCをエフェクター細胞として機能するようIL−2で1日間刺激し、LAG−3
+CHO細胞を標的細胞と
して機能するよう生体染料CFSEで標識した。IMP731の存在下で、PBMCはLAG−3
+CHO細胞の有意な割合を死滅させることができた(
図15A)。低濃度の抗
体でADCCを誘導する抗体の効力を決定するために、IMP731 LAG−3モノクローナル抗体の力価を測定した。IMP731は、0.01μg/mlという低い濃度で効率的にLAG−3
+CHO細胞の死を誘発した(
図15B)。この分析ではIMP73
1の添加によりLAG−3
+細胞は死滅したがLAG−3
-細胞は死滅しなかった(
図15C)。
【0087】
IMP371の結合活性および機能的活性は、ハイブリドーマ細胞により生産された親であるA9H12マウスモノクローナル抗体に類似しているようであった。
参考文献
1. Waldmann H. The new immunosuppression: just kill the T cell. Nat Med 2003; 9 (10): 1259.
2. Monk NJ, Hargreaves RE, Marsh JE, et al. Fc- dependent depletion of activated
T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 2003; 9 (10): 1275.
3. Andre P, CityplacePrasad StateKS, Denis CV, et al. CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 2002; 8 (3): 247.
4. Avice MN, Sarfati M, Triebel F, Delespesse G, Demeure CE. Lymphocyte activation gene-3, a MHC class II ligand expressed on activated T cells, stimulates TNF-alpha and IL-12 production by monocytes and dendritic cells. J. Immunol. 1999; 1
62: 2748.
5. Andreae S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol 2002; 168 (8): 3874.
6. Andreae S, Buisson S, Triebel F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 2003; 102 (6): 2130.
7 . Triebel F. LAG-3: a regulator of T-cell and DC responses and its use in therapeutic vaccination. Trends Immunol 2003; 24 (12): 619.
8. Macon-Lemaitre L, Triebel F. The negative regulatory function of the lymphocyte-activation gene-3 co- receptor (CD223) on human T cells. Immunology 2005; 115
(2): 170.
9. Kohler and Milstein. Continuous cultures of fused cells secreting antibody of
predefined specificity. Nature. 1975; 256(5517): 495-497.
10. Kozbor et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96.
11. Ono et al, Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg. 57, 225-229.
12. Stasiuk et al, Collagen-induced arthritis in DBA/1 mice: Cytokine gene activation following immunization with type II collagen. Cellular Immunol. 1996; 173:
269-275.
13. Campbell et al, Collagen-induced arthritis in C57BL/6 (H-2
b) mice: new insights into an important disease model of rheumatoid arthritis. Eur. J. Immunol. 2000; 30: 1568-1575.
14. Inglis et al, Collagen-induced arthritis in C57BL/6 is associated with a robust and sustained T-cell response to type II collagen. Arthritis Research & Therapy. 2007; 9: R113.
15. Hiroaki et al, A tumor necrosis factor receptor loop peptide mimic inhibits bone destruction to the same extent as anti-tumor necrosis factor monoclonal ntibody in lurine collagen-induced arthritis, arthritis & Rheumatism. 2007; 56(4): 1164-1174.