(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5937211
(24)【登録日】2016年5月20日
(45)【発行日】2016年6月22日
(54)【発明の名称】集積回路上のコア間でのクロック共有
(51)【国際特許分類】
H03L 7/00 20060101AFI20160609BHJP
H03L 7/081 20060101ALI20160609BHJP
H04B 1/40 20150101ALI20160609BHJP
【FI】
H03L7/00 A
H03L7/08 J
H04B1/40
【請求項の数】32
【全頁数】21
(21)【出願番号】特願2014-526105(P2014-526105)
(86)(22)【出願日】2012年8月10日
(65)【公表番号】特表2014-522213(P2014-522213A)
(43)【公表日】2014年8月28日
(86)【国際出願番号】US2012050466
(87)【国際公開番号】WO2013023188
(87)【国際公開日】20130214
【審査請求日】2014年4月8日
(31)【優先権主張番号】61/522,580
(32)【優先日】2011年8月11日
(33)【優先権主張国】US
(31)【優先権主張番号】13/357,830
(32)【優先日】2012年1月25日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】595020643
【氏名又は名称】クゥアルコム・インコーポレイテッド
【氏名又は名称原語表記】QUALCOMM INCORPORATED
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100109830
【弁理士】
【氏名又は名称】福原 淑弘
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100075672
【弁理士】
【氏名又は名称】峰 隆司
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100140176
【弁理士】
【氏名又は名称】砂川 克
(74)【代理人】
【識別番号】100158805
【弁理士】
【氏名又は名称】井関 守三
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100124394
【弁理士】
【氏名又は名称】佐藤 立志
(74)【代理人】
【識別番号】100112807
【弁理士】
【氏名又は名称】岡田 貴志
(74)【代理人】
【識別番号】100111073
【弁理士】
【氏名又は名称】堀内 美保子
(72)【発明者】
【氏名】キム、ボムサップ
(72)【発明者】
【氏名】パン、ジュ―ウォン
(72)【発明者】
【氏名】キム、ユン・ゴン
【審査官】
鬼塚 由佳
(56)【参考文献】
【文献】
国際公開第2010/151624(WO,A1)
【文献】
特表2001−516985(JP,A)
【文献】
米国特許出願公開第2006/0270348(US,A1)
【文献】
特表2011−514079(JP,A)
【文献】
米国特許出願公開第2011/0075778(US,A1)
【文献】
特表2007−526700(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03L 7/00
H03L 7/081
H04B 1/40
(57)【特許請求の範囲】
【請求項1】
インダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成する第1のコアと、ここにおいて前記クロック信号は前記第1のコアによるワイヤレス通信のために生成され、前記第1のコアは全地球測位システムコアである、
ワイヤレス通信のための前記クロック信号を使用するように構成された第2のコアと、ここにおいて前記第2のコアはFMトランシーバコアであり、前記FMトランシーバコアはFM受信機クロック信号を生成するために前記クロック信号を使用する遅延ロックループベースの同相/直交位相ジェネレータを備える、
を備える集積回路。
【請求項2】
前記クロック信号はGPSクロック信号である、請求項1に記載の集積回路。
【請求項3】
前記FMトランシーバコアは電圧制御発振器を備えない、請求項1に記載の集積回路。
【請求項4】
前記FMトランシーバコアはFM送信機とFM受信機とを備える、請求項1に記載の集積回路。
【請求項5】
前記FM受信機は前記遅延ロックループベースの同相/直交位相ジェネレータを備え、前記FM受信機クロック信号はRx信号のための同相/直交位相信号である、請求項4に記載の集積回路。
【請求項6】
前記Rx信号のための同相/直交位相信号はベースバンド信号を得るために受信信号と混合される、請求項5に記載の集積回路。
【請求項7】
前記遅延ロックループベースの同相/直交位相ジェネレータは、遅延ロックループベースの位相計数周波数分割を使用して実現される、請求項5に記載の集積回路。
【請求項8】
前記遅延ロックループベースの同相/直交位相ジェネレータは、位相セレクタおよびカウンタロジックに結合される一連の遅延ユニットを備える、請求項7に記載の集積回路。
【請求項9】
前記位相セレクタおよびカウンタロジックは複数のスイッチを備え、各スイッチのためのターンオン時間および位相を調整することが前記位相セレクタおよびカウンタロジックの周波数出力を調整する、請求項8に記載の集積回路。
【請求項10】
前記FM送信機はリング電圧制御発振器ベースの位相ロックループを備える、請求項4に記載の集積回路。
【請求項11】
前記リング電圧制御発振器ベースの位相ロックループは外部温度補償型水晶発振器からの温度補償型水晶発振器信号を受け取る、請求項10に記載の集積回路。
【請求項12】
前記リング電圧制御発振器ベースの位相ロックループは、
位相周波数検出器/チャージポンプと、
ローパスフィルタと、
複数の遅延ユニットと
を備える、請求項11に記載の集積回路。
【請求項13】
前記集積回路はシステムオンチップである、請求項2に記載の集積回路。
【請求項14】
集積回路上の第1のコアと第2のコアとの間でクロック信号を共有するための方法であって、前記方法は、
前記集積回路上の前記第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成することと、ここにおいて前記クロック信号は前記第1のコアによるワイヤレス通信のために生成され、前記第1のコアは全地球測位システムコアである、
前記集積回路上の前記第2のコアへ前記クロック信号を供給することと、ここにおいて前記第2のコアはFMトランシーバコアであり、前記FMトランシーバコアはFM受信機クロック信号を生成するために前記クロック信号を使用する遅延ロックループベースの同相/直交位相ジェネレータを備える、
前記第2のコア上で信号を受信するために前記FM受信機クロック信号を使用することと
を備える方法。
【請求項15】
前記クロック信号はGPSクロック信号である、請求項14に記載の方法。
【請求項16】
前記FMトランシーバコアは電圧制御発振器を備えない、請求項14に記載の方法。
【請求項17】
前記FMトランシーバコアはFM送信機とFM受信機とを備える、請求項14に記載の方法。
【請求項18】
前記FM受信機は前記遅延ロックループベースの同相/直交位相ジェネレータを備え、Rx信号のための同相/直交位相信号を生成するために前記クロック信号と前記遅延ロックループベースの同相/直交位相ジェネレータを使用することをさらに備える、請求項17に記載の方法。
【請求項19】
前記Rx信号のための同相/直交位相信号を、ベースバンド信号を得るために受信信号と混合することをさらに備える、請求項18に記載の方法。
【請求項20】
前記遅延ロックループベースの同相/直交位相ジェネレータは、遅延ロックループベースの位相計数周波数分割を使用して実現される、請求項18に記載の方法。
【請求項21】
前記遅延ロックループベースの同相/直交位相ジェネレータは、位相セレクタおよびカウンタロジックに結合される一連の遅延ユニットを備える、請求項20に記載の方法。
【請求項22】
前記位相セレクタおよびカウンタロジックは、複数のスイッチを備え、各スイッチのためのターンオン時間および位相を調整することは、前記位相セレクタおよびカウンタロジックの周波数出力を調整する、請求項21に記載の方法。
【請求項23】
前記FM送信機はリング電圧制御発振器ベースの位相ロックループを備える、請求項17に記載の方法。
【請求項24】
前記リング電圧制御発振器ベースの位相ロックループは外部温度補償型水晶発振器からの温度補償型水晶発振器信号を受け取る、請求項23に記載の方法。
【請求項25】
前記リング電圧制御発振器ベースの位相ロックループは、
位相周波数検出器/チャージポンプと、
ローパスフィルタと、
複数の遅延ユニットと
を備える、請求項24に記載の方法。
【請求項26】
前記集積回路はシステムオンチップである、請求項15に記載の方法。
【請求項27】
集積回路上の第1と第2のコアとの間でクロック信号を共有するために構成された装置であって、
前記集積回路上の前記第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成するための手段と、ここにおいて前記クロック信号は前記第1のコアによるワイヤレス通信のために生成され、前記第1のコアは全地球測位システムコアである、
前記集積回路上の前記第2のコアへ前記クロック信号を供給するための手段と、ここにおいて前記第2のコアはFMトランシーバコアであり、前記FMトランシーバコアはFM受信機クロック信号を生成するために前記クロック信号を使用する遅延ロックループベースの同相/直交位相ジェネレータを備える、
前記第2のコア上で信号を受信するために前記FM受信機クロック信号を使用するための手段と
を備える、装置。
【請求項28】
前記クロック信号はGPSクロック信号である、請求項27に記載の装置。
【請求項29】
前記FMトランシーバコアは電圧制御発振器を備えない、請求項27に記載の装置。
【請求項30】
第1のコアと第2のコアとの間でクロック信号を共有するためのコンピュータプログラムであって、前記コンピュータプログラムは命令群を備え、
前記命令群は、
前記第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成することを電子デバイスにさせるコードと、ここにおいて前記クロック信号は前記第1のコアによるワイヤレス通信のために生成され、前記第1のコアは全地球測位システムコアである、
前記クロック信号を前記第2のコアへ供給することを前記電子デバイスにさせるコードと、ここにおいて前記第2のコアはFMトランシーバコアであり、前記FMトランシーバコアはFM受信機クロック信号を生成するために前記クロック信号を使用する遅延ロックループベースの同相/直交位相ジェネレータを備える、
前記第2のコア上で信号を受信するために前記FM受信機クロック信号を使用することを前記電子デバイスにさせるコードとを備える、
コンピュータプログラム。
【請求項31】
前記クロック信号はGPSクロック信号である、請求項30に記載のコンピュータプログラム。
【請求項32】
前記FMトランシーバコアは電圧制御発振器を備えない、請求項30に記載のコンピュータプログラム。
【発明の詳細な説明】
【0001】
[35U.S.C.§119に基づく優先権の主張]
本特許出願は、「集積回路上のコア間でのクロック共有(“CLOCK SHARING BETWEEN CORES ON AN INTEGRATED CIRCUIT”)」と題され、2011年8月11日に出願され、その譲受人に譲渡され、引用によって本明細書に明確に組み込まれた仮米国特許出願第61/522,580号への優先権を主張する。
【技術分野】
【0002】
本開示は一般に電子通信に関する。より具体的には、本開示は集積回路上のコア間でのクロック共有のためのシステムおよび方法に関する。
【背景技術】
【0003】
無線通信システムが音声、ビデオ、データ等のような様々なタイプの通信コンテンツを提供するために広く展開されている。これらシステムは、1つまたは複数の基地局との複数の無線通信デバイスの同時通信をサポートできる多元接続システムでありうる。
【0004】
無線通信ネットワーク上の無線信号の適正な受信および送信に関し、無線通信デバイスは所望の周波数で信号を生成するために1つまたは複数の電圧制御発振器(VCO)を使用しうる。無線通信デバイスおよび/または無線通信システム仕様(specifications)は、生成された信号の振幅がある要件を満す一方でこの信号が高いレベルの信頼性を維持することも要求しうる。加えて、無線通信デバイスはバッテリを使用して動作しうる。所望の周波数で信号を生成するために使用されるダイ面積および/または電力消費における低減は、それゆえ有益でありうる。
【発明の概要】
【0005】
集積回路が開示される。この集積回路は、インダクタ-キャパシタ電圧制御発振器(inductor-capacitor voltage controlled oscillator)を使用してクロック信号を生成する第1のコアを含む。この集積回路は、またクロック信号を使用するように構成された第2のコアを含む。
【0006】
第1のコアは全地球測位システムコアでありうる。クロック信号はGPSクロック信号でありうる。第2のコアはトランシーバコアでありうる。トランシーバコアは電圧制御発振器を含まないでもよい。トランシーバコアは、Bluetooth(登録商標)コア、無線フィデリティコア、セルラコアまたはFMトランシーバコアでありうる。
【0007】
FMトランシーバコアはFM送信機とFM受信機を含みうる。このFM受信機は、GPSクロック信号を使用する遅延ロックループベースの同相/直交位相ジェネレータ(delay locked loop based inphase/quadrature generator)をRx信号のための同相/直交位相(inphase/quadrature)を生成するために含みうる。Rx信号のための同相/直交位相はベースバンド信号を得るために受信信号と混合されうる。遅延ロックループベースの同相/直交位相ジェネレータは、遅延ロックループベースの位相計数周波数分割(phase counting frequency division)を使用して実現されうる。遅延ロックループベースの同相/直交位相ジェネレータは、位相セレクタ(phase selector)およびカウンタロジックに結合される一連の遅延ユニット(delay units)を含みうる。これら位相セレクタおよびカウンタロジックは複数のスイッチを含みうる。各スイッチのためのターンオン時間(turn-on time)および位相を調整することが、位相セレクタおよびカウンタロジックの周波数出力を調整する。
【0008】
FM送信機はリング電圧制御発振器ベースの位相ロックループ(ring voltage controlled oscillator based phase locked loop)を含みうる。リング電圧制御発振器ベースの位相ロックループは外部温度補償型水晶発振器(external temperature compensated crystal oscillator)から温度補償型水晶発振器信号(temperature compensated crystal oscillator signal)を受け取りうる。リング電圧制御発振器ベースの位相ロックループは位相周波数検出器/チャージポンプ(phase frequency detector/charge pump)、ローパスフィルタ(low pass filter)および複数の遅延ユニットを含みうる。集積回路はシステムオンチップ(system-on-a-chip)でありうる。
【0009】
集積回路上の第1のコアと第2のコアとの間でクロック信号を共有するための方法もまた説明される。クロック信号が集積回路上の第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用して生成される。クロック信号は集積回路上の第2のコアへ供給される。クロック信号は第2のコア上で信号を受信するために使用される。
【0010】
集積回路上の第1と第2のコアとの間でクロック信号を共有するために構成された装置が説明される。この装置は、集積回路上の第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成するための手段を含む。この装置は、集積回路上の第2のコアへクロック信号を供給するための手段も含む。この装置は、さらに第2のコア上で信号を受信するためにクロック信号を使用するための手段も含む。
【0011】
第1のコアと第2のコアとの間でクロック信号を共有するためのコンピュータプログラム製品がまた説明される。このコンピュータプログラム製品は、その上に命令群を有する非一時的コンピュータ読取可能な媒体を含む。この命令群は、第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成することを電子デバイスにさせるためのコードを含む。この命令群は、このクロック信号を第2のコアへ供給することを電子デバイスにさせるためのコードも含む。この命令群は、さらに第2のコア上の信号を受信するためにクロック信号を使用することを電子デバイスにさせるためのコードも含む。
【図面の簡単な説明】
【0012】
【
図1】
図1は、複数のコアを有する集積回路を例示するブロック図である。
【
図2】
図2は、集積回路上のコア間でクロック信号を共有するための方法の流れ図である。
【
図3】
図3は、本システムおよび方法において使用するためのFMトランシーバコアのブロック図である。
【
図4】
図4は、集積回路上のGPSコアとFMトランシーバコアとの間でGPSクロック信号を共有するための方法の流れ図である。
【
図5】
図5は、本システムおよび方法において使用するための遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータを例示するブロック図である。
【
図6】
図6は、本システムおよび方法において使用するための位相セレクタおよびカウンタロジックを例示するブロック図である。
【
図7】
図7は、本システムおよび方法において使用するためのリング電圧制御発振器(VCO)ベースの位相ロックループ(PLL)を例示するブロック図である。
【
図8】
図8は、遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータのために生成される波形を例示する。
【
図9】
図9は、フラクショナルスパー(fractional spur)の可能なディザリングを例示する。
【
図10】
図10は、集積回路上の複数のコア間でのクロック共有を使用する電子デバイス/無線デバイスのハードウェア実施例の一部を示す。
【発明を実施するための形態】
【0013】
詳細な説明
図1は、複数のコアを有する集積回路102を例示するブロック図である。集積回路102はシステムオンチップ(SOC)でありうる。システムオンチップ(SOC)は、コンピュータや他の電子デバイスの全コンポーネントを1つの集積回路102上に集積することことを指す。従って、システムオンチップ(SOC)は、アナログ回路、デジタル回路およびラジオ周波数(RF)回路を含みうる。システムオンチップ(SOC)の使用がより一般的になることで、ますます多くのコアが単一のシリコン集積回路102内で集積されうる。これらコアは、全地球測位システム(GPS)コア104、無線フィデリティ(Wi−Fi)コア110、セルラコア112、Bluetoothコア114、近距離無線通信(NFC:near field communication)コア193、およびFMトランシーバコア116を含みうる。これらコアは、全ての極めて重要な建造ブロック(crucial building block)が各コア上に存在する機能を実現するために必要とされる独立型(stand alone)製品でありうる。集積回路102は電子デバイスや無線デバイス上に位置されてよい。電子デバイスや無線デバイスは、アクセス端末、移動局、無線通信デバイス、ユーザ機器(UE)、基地局、ノードB、発展型ノードB、ハンドヘルド電子デバイス、GPSデバイス等でありうる。
【0014】
システムオンチップ(SOC)上のスペースを解放する(free up space)ため、これらコアのいくつかは、異なるコア間で互換性のある極めて重要な建造ブロックを共有しうる。ラジオ周波数(RF)フロントエンドなのような、極めて重要な建造ブロックのいくつかは異なるコア間において互換性がない。しかしながら、周波数シンセサイザのような、他の建造ブロックは、ある条件が満たされれば、異なるコア間で共有されうる。そのような極めて重要な建造ブロックの1つがクロック生成回路である。インダクタ-キャパシタ(LC)電圧制御発振器(VCO)106のような、クロック生成回路は、追加の回路のために転用可能なはずである集積回路102上のスペースの大部分を使用しうる。クロック生成回路を共有することにより、システムオンチップ(SOC)はより少ない電力を使用してより経済的に実現可能になりうる。
【0015】
電力および面積の節約は両方とも肝要なパラメータである。低減された電力消費は無線デバイスの使用時間を増加させる。低減された面積はダイのコストを低減できる。技術がスケールダウンさせることに伴って、集積回路102上のアクティブデバイスによって占有される面積が劇的に低減される。しかしながら、インダクタ(L)およびキャパシタ(C)などの受動デバイスのサイズは、異なったスケールの技術間で同等である。言い替えれば、これらの受動デバイスのサイズは、アクティブデバイスによって占有される面積がより小さくなることに伴って減少しない。このため、受動デバイスによって占有される面積は、業界がディープサブミクロン技術に移行することに伴って、ますます目立つようになっている。このことは、インダクタ-キャパシタ(LC)電圧制御発振器(VCO)106についてもあてはまる。
【0016】
GPSコア104はインダクタ-キャパシタ(LC)電圧制御発振器(VCO)106を含みうる。インダクタ-キャパシタ(LC)電圧制御発振器(VCO)106は、3ギガヘルツ(GHz)の周波数を有するGPSクロック信号108を生成しうる。GPSクロック信号108の周波数は時間や地形(geography)と共に変化せず、かつ、GPSコア104によって生成されるGPSクロック信号108は(例えば、GPSコア104が決してオフされない)動作中に常に利用可能であることから、GPSクロック信号108を他のトランシーバコアのために再使用することは、魅力的な選択肢(attractive option)である。インダクタ-キャパシタ(LC)電圧制御発振器(VCO)106は、数ギガヘルツ(GHz)での高Q値(Q:high quality factor)振幅を達成するために大量の電力消費を必要としうる。従って、集積回路102から、インダクタ-キャパシタ(LC)電圧制御発振器(VCO)106を取り除くこと(すなわち、GPSコア104以外のトランシーバコアからインダクタ-キャパシタ(LC)電圧制御発振器(VCO)106を取り除くこと)は、低ノイズクロック信号が他のどこかで得られるならば、集積回路102の電力消費を著しく低減できる。GPSクロック信号108は、Wi−Fiコア110、FMトランシーバコア116、セルラコア112および/またはBluetoothコア114のようなトランシーバコアにおいて使用できる。
【0017】
FMトランシーバコア116はFM送信機118およびFM受信機120を含みうる。FM受信機120のための厳しいノイズ要件を満足させるため、(電圧制御発振器(VCO)のような)専用のインダクタ-キャパシタ(LC)発振器が通常構築される。専用のインダクタ-キャパシタ(LC)発振器を取り除くことは、チップスペースを節約し、かつ電力消費を低減できる。FM受信機120は、FM信号を適正に受信するために低ノイズ同相/直交位相(I/Q)信号を必要としうる。FM受信機120は、低ノイズ同相/直交位相(I/Q)信号を生成するためにGPSクロック信号108を使用する遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ124を含みうる。このため、FMトランシーバコア116は、動作のために専用のインダクタ-キャパシタ(LC)発振器を必要としなくてよい。FMトランシーバコア116は、FMが時分割二重通信(TDD)システムであって、このため同一の期間中に送信し受信することがないことから、GPSクロック信号108を再使用しうる。GPSクロック信号108は、周波数分割二重通信(FDD)システムのためにも使用されうる。FM送信機118は、FMトランシーバコア116のための専用のインダクタ-キャパシタ(LC)電圧制御発振器(VCO)を使用することに比べてコストにおける著しい低減を伴って約100メガヘルツ(MHz)の送信出力信号を生成するために、リング電圧制御発振器(VCO)ベースのロックループ(PLL)122および外部温度補償型水晶発振器(TXCO)を含みうる。FM送信機118がFMデータ変調を果たすためにシグマ−デルタ変調器を使用することから、このFM送信機118がGPSクロック信号108を使用することは不可能でありうる。しかしながら、FM送信機が別のタイプの変調器を使用したならば、GPSクロック信号108がFM送信機のためにも使用されうる。
【0018】
図2は、集積回路102上のコア間でクロック信号を共有するための方法200の流れ図である。方法200は、集積回路102によって実行されうる。1つの構成において、この集積回路102はシステムオンチップ(SOC)でありうる。この集積回路102は電子デバイスや無線デバイス上に位置されてよい。このため、1つの構成では、方法200が電子デバイスや無線デバイスによって実行されうる。
【0019】
集積回路102は、集積回路102上のGPSコア104におけるインダクタ-キャパシタ(LC)電圧制御発振器(VCO)106を使用してクロック信号を生成しうる 202。生成されたクロック信号はこのためGPSクロック信号108でありうる。集積回路はこのクロック信号を集積回路102上の非GPSコアへ供給しうる 204。非GPSコアは、Wi−Fiコア110、FMトランシーバコア116、セルラコア112またはBluetoothコア114でありうる。この後、集積回路102は非GPSコア上で信号を送信し受信するためにクロック信号を使用しうる 206。例えば、集積回路102は送信信号や受信信号を適切な周波数へ混合するための混合器と併せてクロック信号を使用しうる。
【0020】
図3は、本システムおよび方法において使用するためのFMトランシーバコア316のブロック図である。
図3のFMトランシーバコア316は
図1のFMトランシーバコア116の1つの構成でありうる。FMトランシーバコア316は、インダクタ-キャパシタ(LC)電圧制御発振器(VCO)106を伴うGPSコア104をも含む集積回路102上に存在しうる。FMトランシーバコア316はFM送信機318およびFM受信機320を含みうる。
【0021】
FM送信機318はリング電圧制御発振器(VCO)ベースのロックループ(PLL)322を含みうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)322は、FM送信信号変調のためにFM送信機318によって使用されうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)322は送信のためのFMデータ330を受け取りうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)322は温度補償型水晶発振器(TXCO)326からの温度補償型水晶発振器(TXCO)クロック信号328も受け取りうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)322は
図7に関連して以下にさらに詳細に説明される。リング電圧制御発振器(VCO)ベースのロックループ(PLL)322はドライバ増幅器(DA)332に結合されうる。ドライバ増幅器(DA)332は続いてアンテナへ送信信号334を出力しうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)322はインダクタ-キャパシタ(LC)電圧制御発振器(VCO)106よりもはるかに少ない集積回路102上のダイ面積を占有しうる。シグマ−デルタ変調器(図示せず)はリング電圧制御発振器(VCO)ベースのロックループ(PLL)322内に含まれうる。概して、リング電圧制御発振器(VCO)ベースのロックループ(PLL)322は、FM受信機320がインダクタ-キャパシタ(LC)発振器を含むことから、FM送信機318においてシステムオンチップ(SOC)のために使用されない。しかしながら、リング電圧制御発振器(VCO)ベースのロックループ(PLL)322は、FM受信機320がインダクタ-キャパシタ(LC)発振器を含まないときに必要とされうる。
【0022】
FM受信機320は遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324を含みうる。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324は、FM受信機320と同じ集積回路102上に位置するGPSコア104からGPSクロック信号308を受け取りうる。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324は、FM受信機320の受信周波数を制御するFMトランシーバ制御信号338も受け取りうる。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324はRx信号のための同相/直交位相(I/Q)336を生成しうる。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324は
図5に関連して以下にさらに詳細に説明される。Rx信号のための同相/直交位相(I/Q)336は混合器344へ入力されうる。FM受信機320はアンテナからの受信信号340を受け取りうる。受信信号340は低ノイズ増幅器(LNA)342によって増幅されうる。増幅された受信信号340も続いて混合器344に入力されうる。混合器344はベースバンド信号346を出力しうる。このため、混合器344は受信信号340を適切な周波数に混合しうる。
【0023】
遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324は、直接デジタル合成(DDS:Direct Digital Synthesis)を使用して構築される。直接デジタル合成(DDS)では、波形の各ポイントがランダムアクセスメモリ(RAM)に保存され、合成された出力がこれら保存されたデータポイントを組合せる(combine)ことによって作成される。直接デジタル合成(DDS)の実施は、デジタル・アナログ変換器(DAC)およびランダムアクセスメモリ(RAM)のような、追加の回路を必要としうる。直接デジタル合成(DDS)の実施は、低い周波数の合成(一般的に100MHz未満)に対してより適しうる。
【0024】
遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324は遅延ロックループ(DLL)ベースのエッジ結合周波数合成/分割(edge-combining frequency synthesis/division)を使用して構築されてもよい。遅延ロックループ(DLL)ベースのエッジ結合周波数合成/分割において、遅延ラインからの複数の位相による複数のエッジは、乗算または除算のどちらかがなされた出力周波数を生成するために結合され(combined)うる。解像度は、使用される遅延セルのユニット遅延に限定されうる。遅延ロックループ(DLL)ベースのエッジ結合周波数合成/分割は、大きな単位周波数ステップ(large unit frequency step)を有する整数N分割器(integer-N divider)のためにより適している。
【0025】
遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324は、また遅延ロックループ(DLL)ベースの計数周波数分割を使用して実現されうる。平均での分数分割(fractional division on average)は、異なる時間に異なる位相を計数すること(counting)によって果たされうる。遅延ロックループ(DLL)ベースの計数周波数分割は、マルチチャネルデジタル通信での証明された技術であり、約100MHzの範囲の分数分割アプリケーション(fractional division applications)のために適している。遅延ロックループ(DLL)ベースの計数周波数分割の実現は、
図5に関連して以下にさらに詳細に説明される。遅延ロックループ(DLL)ベースの計数周波数分割は、必要な分数周波数分割(fractional frequency division)を生成しうる。遅延ロックループ(DLL)ベースの計数周波数分割を具現化(materialize)するための現実的構造を見いだすには、多量のシステムシミュレーションが必要でありうる。
【0026】
図4は、集積回路102上においてGPSコア104とFMトランシーバコア116との間でGPSクロック信号108を共有するための方法400の流れ図である。この方法400は集積回路102によって実行されうる。1つの構成において、集積回路102はシステムオンチップ(SOC)でありうる。集積回路102は、電子デバイスや無線デバイス上に位置されてよい。このため、方法400は、1つの構成において、電子デバイスや無線デバイスによって実行されうる。
【0027】
集積回路102は、集積回路102上のGPSコア104におけるインダクタ-キャパシタ(LC)電圧制御発振器(VCO)106を使用してGPSクロック信号108を生成しうる 402。集積回路102はこのGPSクロック信号108を集積回路102上のFMトランシーバコア116における遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ124へ供給しうる 404。集積回路102は、Rx信号のための同相/直交位相(I/Q)336を生成するために遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ124およびGPSクロック信号108を使用しうる 406。集積回路102は、この後Rx信号のための同相/直交位相(I/Q)336を、ベースバンド信号346を得るために受信信号340と混合しうる 408。このため、FMトランシーバコア116は、専用のインダクタ-キャパシタ(LC)電圧制御発振器(VCO)を必要とせずにFM信号を適正に受信でき、著しい電力の節約とダイ面積の節約をもたらす。
【0028】
図5は、本システムおよび方法において使用するための遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524を例示するブロック図である。
図5の遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524は、
図1の遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ124の1つの構成でありうる。
図5の遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524は、遅延ロックループ(DLL)ベースの計数周波数分割の実施例である。
【0029】
遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524はGPSコア104からのGPSクロック信号508を受け取りうる。GPSクロック信号508は、400MHzの信号550を得るために(デジタル回路を使用して)7.8で除算されうる 548。400MHzの信号550は、20MHzの信号558を得るために20で除算されうる 556。20MHzの信号558は、この後位相周波数検出器/チャージポンプ(PFD/CP)560へ入力されうる。
【0030】
400MHzの信号550は遅延ユニット566a〜jのシーケンスも通過されうる。遅延ユニット566a〜jは位相周波数検出器/チャージポンプ(PFD/CP)560によって制御されうる。各遅延ユニット566の出力は位相セレクタおよびカウンタロジック568へ入力され、さらに次の遅延ユニット566の入力へ入力されうる(すなわち、第1の遅延ユニット566aの出力は第2の遅延ユニット565bへ入力される)。最後の遅延ユニット566jの出力は、位相周波数検出器/チャージポンプ(PFD/CP)560へも入力される20MHzのフィードバック信号562を得るために20で除算されうる 564。位相セレクタおよびカウンタロジック568は、
図6に関連して以下にさらに詳細に説明される。
【0031】
GPSクロック信号508は、また位相セレクタおよびカウンタロジック568によって使用される20MHzのシステムクロック554を得るために150で除算されうる 552。位相セレクタおよびカウンタロジック568は、チャネルデータ542も受け取りうる。位相セレクタおよびカウンタロジック568は、(チャネル周波数に依存して)およそ400MHzの基準信号570を出力しうる。およそ400MHzの基準信号570は、Rx信号のための同相/直交位相(I/Q)536と100MHzの信号576を得るために4で除算するブロック594へ入力されうる。例として、100.2MHzの信号がFM受信機120のために必要とされる場合、位相セレクタおよびカウンタロジック568は、Rx信号のための適切な同相/直交位相(I/Q)536を得るために使用されうる。
【0032】
100MHzの信号576はFMチャネルのために使用される。受信されたFMチャネルデータを復調するには、Rx信号のための同相/直交位相(I/Q)536が特定のチャネル周波数において局所的に生成されることが必要である。位相セレクタおよびカウンタロジック568は、FMチャネル周波数の4倍である信号を得るために分数分割を使用しうる。例えば、最後のチャネル周波数が92.5MHzの場合、基準信号570は4×92.5MHz=370MHzでありうる。GPSコア104からみて、GPSクロック信号508はちょうど3.176GHzである。位相セレクタおよびカウンタロジックは、370MHzの基準信号570を得るためにGPSクロック信号508を8.5837で除算しうる。370MHzの基準信号570は、この後、必要とされる92.5MHzでRx信号のための同相/直交位相(I/Q)536を得るために4で除算するブロック594を通して送られうる。
【0033】
図6は、本システムおよび方法において使用するための位相セレクタおよびカウンタロジック668を例示するブロック図である。
図6の位相セレクタおよびカウンタロジック668は
図5の位相セレクタおよびカウンタロジック568の1つの構成でありうる。位相セレクタおよびカウンタロジック668は20MHzのシステムクロック654を受け取りうる(すなわち、150で除算されるGPSクロック信号508 552)。20MHzのシステムクロック654は、プログラム可能な分割器(programmable divider)678へ、および、FMチャネル復号ロジック682へ入力されうる。
【0034】
プログラム可能な分割器678は2MHzの信号661をコントローラ679へ出力しうる。コントローラ679はFMチャネル復号ロジック682からの命令群677も受け取りうる。コントローラ679は位相セレクタおよびカウンタロジック668における複数のスイッチP1〜P10 686a〜jを制御しうる。スイッチP1〜P10 686a〜jの各々は、遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524における遅延ユニット566から加算器688へ出力された遅延信号684a〜jを結合しうる。スイッチ686a〜jをP1からP10へ順番に50ナノ秒(ns)ずつオンすることによって、位相セレクタおよびカウンタロジック668が各位相あたり20カウントまでを生成しうる。各スイッチ686a〜jのためのターンオン時間のみならず、オンされるべきスイッチ686a〜jの数も変更することによって、GPSクロック信号108の分数分割が位相セレクタおよびカウンタロジック668によって出力される信号690において達成されうる。例えば、2MHzの周波数(1/2MHz=500nsの周期を有する)を得るには、400MHzの位相入力が200回ほど計数されうる。
【0035】
FMトランシーバコア116のようなアプリケーションは、チャネル周波数を正しく合わせる(match)ために基準クロックソースから分数分割を生成することを求められる。位相セレクタおよびカウンタロジック668は、またスイッチ668a〜jの複数の調整によって分数分割を提供できる。一例として、到来信号(incoming signal)684a〜jが異なる位相を伴った400MHzであると仮定されうる。1つの400MHzクロックサイクルは4Tdと表されうる。言い替えれば、1/4Td=400MHzである。また、遅延ロックループ(DLL)位相の数が(10の代わりに)4であると仮定されうる。実際の実施例において、この数字は任意の数であることができる。4個のスイッチ686のみが(4個の入力遅延信号684と一緒に)使用される場合、第1のスイッチ686aは遅延信号684aを伴わない400MHzを表すことができる。同様に、第2のスイッチ686bは0.25*(1/400MHz)=1Td遅延を伴った400MHzを表すことができる。さらに、第3のスイッチ686cは2Td遅延を伴った400MHzを表すことができ、第4のスイッチ686dは3Td遅延を伴った400MHzを表すことができる。
【0036】
1つの特定の例では、2MHzの入力信号661の1クロックサイクル(500ns)中に、第2のスイッチ686bおよび第3のスイッチ686cのみが交互に7.5ns(400MHzの入力信号の3クロックサイクル)期間オンする。第1の15ns(400MHzの信号の6クロックサイクル)の間、出力信号690は位相切り換え(phase switching)によって7個の立上りエッジ(rising edge)を含みうる。15nsが7個の立上りエッジを含むことができる場合、その周波数が1/(2.14286ns)=466.66MHzのように計算されることができる。このシーケンスが際限なく繰り返される場合、入力周波数のフラクション(fraction)である466.66MHzの安定した出力周波数が達成される。後ほど、466.66MHzの出力信号690は、FMトランシーバコア116を駆動することに使用される116.66MHzの信号を得るために4で除算されうる。
【0037】
例えば、スイッチ686が(4Tの周期を伴った)位相Aと(3Tの周期を伴った)位相Cとを交互にする場合、分数分割が可能である。平均周期は、(4+4+3+3+3+4+4+2)× T/7=3.42857Tでありうる。この後、計数サイクル(counting cycle)中における異なる複数のエッジが分数分割を得るために計数されうる。到来信号(incoming signal)は400MHzでありうる。この400MHzの信号は、位相AからDを生成するために4相生成遅延ロックループ(DLL)(4-phase generating delay locked loop)を通過されうる。この後、1つのクロックサイクルは、4T=1/400MHz=2.5ナノ秒(ns)と等しくなりうる。
【0038】
出力位相セレクタが位相Aを最初に選択し、この後位相Cへ移す場合、位相Aから位相Cへの遷移の間、出力クロックサイクルは、4Tから4T、3T、3t、4T、4T、2Tと変化しうる。この繰り返しは、入力クロック期間の6サイクル毎に、位相Aから位相Cへ無期限に実行されると仮定されうる。このため、出力平均周期が常に3.42857Tになる。位相セレクタを変化させることで、異なる出力周波数が達成されうる。4T=2.5nsなので、1/3.42857T=466.67MHzである。4個の位相の代わりに10個の位相を使用することは、出力スパーに対するより多くのディザリングを可能にする。
【0039】
図7は、本システムおよび方法において使用するためのリング電圧制御発振器(VCO)ベースのロックループ(PLL)722を例示するブロック図である。
図7のリング電圧制御発振器(VCO)ベースのロックループ(PLL)722は
図1のリング電圧制御発振器(VCO)ベースのロックループ(PLL)122の1つの構成でありうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)722における遅延ユニット745a〜eの数は遅延ロックループ(DLL)ベースのRxアプローチのそれの半分でありうる。リング電圧制御発振器(VCO)ベースのロックループ(PLL)722は位相周波数検出器/チャージポンプ(PFD/CP)760を含みうる。位相周波数検出器/チャージポンプ(PFD/CP)760は外部温度補償型水晶発振器(TXCO)326からの温度補償型水晶発振器(TXCO)信号728を受け取りうる。位相周波数検出器/チャージポンプ(PFD/CP)760はリング電圧制御発振器(VCO)ベースのロックループ(PLL)722上でN分割器(N divider)755からのフィードバック信号759も受信しうる。位相周波数検出器/チャージポンプ(PFD/CP)760の出力はローパスフィルタ(LPF)743へ入力されうる。
【0040】
ローパスフィルタ(LPF)743の出力は、第1の遅延ユニット745a、第2の遅延ユニット745b、第3の遅延ユニット745c、第4の遅延ユニット745dおよび第5の遅延ユニット745eを制御しうる。第1の遅延ユニット745aの出力は第2の遅延ユニット745bの入力でありうる。第2の遅延ユニット745bの出力は第3の遅延ユニット745cの入力でありうる。第3の遅延ユニット745cの出力は第4の遅延ユニット745dの入力でありうる。第4の遅延ユニット745dの出力は第5の遅延ユニット745eの入力でありうる。第5の遅延ユニット745eの出力は第1の遅延ユニット745aの入力でありうる。第5の遅延ユニット745eの出力は800MHzの信号747でありうる。800MHzの信号747は8/9プリスケーラ753へも入力されうる。8/9プリスケーラ753の出力はN分割器755へ入力されうる。
【0041】
リング電圧制御発振器(VCO)ベースのロックループ(PLL)722はシグマ−デルタ変調器757を含みうる。シグマ−デルタ変調器757はチャネル情報およびFMデータ792を受け取りうる。シグマ−デルタ変調器757は、リング電圧制御発振器(VCO)ベースのロックループ(PLL)722が分数分割を達成することを可能にしうる。N分割器は8/9プリスケーラ753の出力とシグマ−デルタ変調器757の出力を受け取りうる。さらに、800MHzの信号747は、2で除算するブロック749へ入力されうる。この後、2で除算するブロック749は、400MHzの変調されたTX出力信号751を出力しうる。
【0042】
図8は、遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ324のために生成される波形を例示する。波形は、周波数(x軸上)に対する振幅(y軸上)を例示する。(a)において、波形は複数の周波数トーン890a〜cを伴った非常に精細なスペクトル分析器(very fine spectrum analyzer)を使用して見たものとして示される。システムレベルのシミュレーションを実行して位相ノイズ仕様(phase noise specification)を満足できる単一の周波数トーン890dを(b)に例示されるように達成するためにどの程度の解像度が必要かを決定しうる。
【0043】
図9は、フラクショナルスパー(fractional spur)の可能なディザリング(possible dithering)990a〜eを例示する。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524を使用することの1つの否定的なアプローチは、遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524が受信信号340への余分なスパー(extra spur)990をもたらす潜在性である。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524おける位相周波数検出器/チャージポンプ(PFD/CP)560での定常誤差が余分な基準スパー(reference spur)990aを生じさせうる。遅延ロックループ(DLL)ベースの同相/直交位相(I/Q)ジェネレータ524が遷移をディザ(dither)しないならば、本来のフラクショナルスパー(fractional spur) の問題もある。フラクショナルスパー990aの振幅は、スパー仕様(spur specification)よりも大きくなりうる。
【0044】
異なる位相間のユニット遅延差(unit delay difference)は、フラクショナルスパー990aをさらに増大させうる。異なる位相間のユニット遅延差は、較正されて取り除かれ(calibrated out)うる。シグマデルタ(SD)ノイズディザリングが実施されされないならば、フラクショナルスパー990aがRx信号のための同相/直交位相(I/Q)336において非常に顕著になりうる。位相セレクタおよびカウンタロジック668におけるスイッチ686を異なるサイクルでオンすることにより、スパーの仕様((a)に示される)に違反するフラクショナルスパー990aがスパー仕様に違反しないように広がりうる(複数のスパー990b〜eとして、(b)に示される)。例えば、NとN+kとの間のディザリングの代わりに、(N+1)/Kと(N+2)/Kとの間のディザリングが量子化ノイズの絶対量を低減させるために使用されうる。
【0045】
図10は、集積回路102上の複数のコア間でクロック共有を使用する電子デバイス/無線デバイス1001内に含まれうる確かなコンポーネンツを例示する。電子デバイス/無線デバイス1001は、アクセス端末、移動局、無線通信デバイス、基地局、ノードB、ハンドヘルド電子デバイス等でありうる。電子デバイス/無線デバイス1001はプロセッサ1003を含む。プロセッサ1003は、汎用シングルチップまたはマルチチップマイクロプロセッサ(例えば、ARM)、特殊用途マイクロプロセッサ(例えば、デジタル信号プロセッサ(DSP))、マイクロコントローラ、プログラム可能ゲートアレイ等でありうる。プロセッサ1003は中央処理ユニット(CPU)と称されうる。
図10の電子デバイス/無線デバイス1001中には、単一のプロセッサ1003のみが示されているが、代替的な構成では、複数のプロセッサの組合せ(例えば、ARMとDSP)も使用できる。
【0046】
電子デバイス/無線デバイス1001はメモリ1005も含む。メモリ1005は、電子情報を記憶できる任意の電子コンポーネントでありうる。メモリ1005は、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、磁気ディスク記憶媒体、光学記憶媒体、RAMにおけるフラッシュメモリデバイス、プロセッサと共に含まれるオンボードメモリ、EPROMメモリ、EEPROMメモリ、レジスタ等、およびこれらの組合せとして実施されうる。
【0047】
データ1007aおよび命令群1009aはメモリ1005に格納されうる。命令群1009aは、本明細書に開示される方法を実現するためにプロセッサ1003によって実行可能でありうる。命令群1009aを実行することは、メモリ1005に格納されたデータ1007aの使用を含みうる。プロセッサ1003が命令群1009aを実行すると、命令群1009bの様々な部分がプロセッサ1003上にロードされ、データ1007bの様々な部分がプロセッサ1003上にロードされうる。
【0048】
電子デバイス/無線デバイス1001は、電子デバイス/無線デバイス1001へおよびからの信号送信および信号受信を可能にするために送信機1011および受信機1013も含みうる。送信機1011および受信機1013はトランシーバ1015と総称されうる。アンテナ1017はこのトランシーバ1015に電気的に結合されうる。電子デバイス/無線デバイス1001は、複数の送信機、複数の受信機、複数のトランシーバ、および/または、複数のアンテナも含みうる(図示せず)。
【0049】
電子デバイス/無線デバイス1001はデジタル信号プロセッサ(DSP)1021を含みうる。電子デバイス/無線デバイス1001は通信インタフェース1023も含みうる。通信インタフェース1023は、電子デバイス/無線デバイス1001と対話することをユーザにさせうる。
【0050】
電子デバイス/無線デバイス1001の様々なコンポーネントは、電力バス、制御信号バス、ステータス信号バス、データバス等を含みうる、1つまたは複数のバスで相互に結合されうる。明確さのために、様々なバスは
図10においてバスシステム1019として例示される。
【0051】
本明細書に説明される技術は、直交多重スキームに基づく通信システムを含む様々な通信システムのために使用されうる。このような通信システムの例は、直交周波数分割多元接続(OFDMA)システム、シングル・キャリア周波数分割多元接続(SC−FDMA)システム等を含む。OFDMAシステムは、全システム帯域幅を複数の直交サブキャリアに分割する変調技術である直交周波数分割多重(OFDM)を利用する。これらサブキャリアは、トーン、ビン、等とも称されうる。OFDMでは、各サブキャリアがデータを用いて個別に変調されうる。SC−FDMAシステムはシステム帯域幅にわたって分散されるサブキャリア上で送信するためのインターリーブされたFDMA(IFDMA)、隣り合ったサブキャリアのブロック上で送信するための局所化されたFDMA(LFDMA)、あるいは隣り合ったサブキャリアの複数のブロック上で送信するための拡張されたFDMA(EFDMA)を利用しうる。一般に、変調シンボルは周波数ドメインにおいてOFDMを用いて送られ、時間ドメインにおいてはSC−FDMAを用いて送られる。
【0052】
上記の説明では、参照番号がしばしば様々な用語に関連して使用された。用語が参照番号に関連して使用される場合、これが1つまたは複数の図面のに示される特定の要素を指すことを意図されうる。用語が参照番号なしで使用される場合、これが任意の特定の図面に限定することのない用語のことを一般的に指すことを意図されうる。
【0053】
「決定すること(determining)」という用語は、多種多様なアクションを包含する、このため「決定すること」とは、計算すること、演算すること、処理すること、導出すること、調査すること、調べること(例えば、表、データベース、または他のデータ構造を調べること)、確認することなどを含みうる。また、「決定すること」は、受け取ること(例えば、情報を受け取ること)や、アクセスすること(例えば、メモリ内のデータにアクセスすること)などを含みうる。また、「決定すること」は、解決することや、選択することや、選ぶことや、確立することなどを含みうる。
【0054】
フレーズ「〜に基づく」は、そうではないと明確に特定されない限り、「〜のみに基づく」ということを意味しない。言い替えれば、フレーズ「〜に基づく」は「〜のみに基づく」と「少なくとも〜に基づく」との両方を表す。
【0055】
ここで説明した機能は、1つまたは複数の命令としてプロセッサ読取可能またはコンピュータ読取可能な媒体上に格納されうる。「コンピュータ読取可能な媒体」という用語は、コンピュータまたはプロセッサによってアクセスされることのできる任意の利用可能な媒体のことを指す。限定ではなく、例として、このような媒体は、RAM、ROM、EEPROM、フラッシュメモリ、CD−ROM、または他の光学ディスク記憶装置、磁気ディスク記憶装置または他の磁気記憶デバイス、あるいは、命令群またはデータ構造の形態で所望のプログラムコードを格納するために使用されることができ、かつ、コンピュータまたはプロセッサによってアクセスされることができる他の任意の媒体を備えうる。ここで使用したようなディスク(diskおよびdisc)は、コンパクトディスク(CD)、レーザディスク(登録商標)、光ディスク、デジタル多用途ディスク(DVD)、フロッピー(登録商標)ディスク、およびブルーレイ(登録商標)ディスクを含み、一般にディスク(disk)はデータを磁気的に再生するのに対し、ディスク(disc)はデータをレーザで光学的に再生する。コンピュータ読取可能な媒体が有形かつ非一時的でありうることに留意されるべきである。「コンピュータプログラム製品」という用語は、コンピューティングデバイスまたはプロセッサによって実行された、処理された、あるいは演算された命令群(例えば、「プログラム」など)またはコードと組合せた、プロセッサあるいはコンピューティングデバイスを指す。ここで使用されるように、「コード」という用語はコンピューティングデバイスまたはプロセッサによって実行可能なソフトウェア、命令、コードまたはデータを指しうる。
【0056】
ソフトウェアまたは命令群は、伝送媒体上で送信されることもできる。例えば、ソフトウェアが、ウェブサイト、サーバ、または、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者ライン(DSL)、あるいは赤外線、ラジオ、およびマイクロ波のような無線技術を使用する他の遠隔ソースから送信される場合には、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、ラジオ、およびマイクロ波のような無線技術が送信媒体の定義に含まれる。
【0057】
さらに、
図2および
図4で例示されたような、本明細書において説明された方法および技術を実行するためのモジュールおよび/または他の適切な手段は、ダウンロードされること、および/または、そうでなくデバイスによって取得されることが可能であると理解されるべきである。例えば、デバイスは、本明細書において説明された方法を実行するための手段の転送を容易にするためにサーバに結合されうる。代替的に、本明細書において説明される様々な方法は、記憶手段(例えば、ランダムアクセスメモリ(RAM)、読取専用メモリ(ROM)、コンパクトディスク(CD)あるいはフロッピーディスクのような物理記憶媒体等)を介して提供されうるもので、デバイスは記憶手段をこのデバイスに結合または提供することに伴って様々な方法を取得しうる。さらに、他の任意の適切な技術はデバイスに対して本明細書に記載される方法および技術を提供するために利用できる。
【0058】
本明細書に開示される方法は、説明された方法を達成するために1つまたは複数のステップまたはアクションを備える。方法のステップおよび/またはアクションは本願の特許請求の範囲から逸脱することなく入れ換えられてよい。言い替えれば、ステップあるいはアクションの特定の順序は、説明されている方法の適正動作に必要とされない限り、特定のステップおよび/またはアクションの順序および/または用途は本願の特許請求の範囲から逸脱せずに変形できる。
【0059】
本願の特許請求の範囲は、上述の厳密な構成およびコンポーネンツに限定されないことが理解されるべきである。様々な修正、変更およびバリエーションが、ここで説明されたシステム、方法、および装置の配置、オペレーション、および詳細において、特許請求の範囲から逸脱することなく行われうる。
【0060】
要素が「〜のための手段(means for)」という表現を使用して明確に記載されていない限り、または、方法請求項の場合、要素が「〜のためのステップ(step for)」という表現を使用して記載されていない限り、どの請求項エレメントも米国特許法第112条6項の規定のもとで解釈されるべきではない。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1] インダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成する第1のコアと、
前記クロック信号を使用するように構成された第2のコアと
を備える集積回路。
[C2] 前記第1のコアは全地球測位システムコアであり、前記クロック信号はGPSクロック信号であり、前記第2のコアはトランシーバコアである、C1に記載の集積回路。
[C3] 前記トランシーバコアは電圧制御発振器を備えない、C2に記載の集積回路。
[C4] 前記トランシーバコアはBluetoothコアである、C2に記載の集積回路。
[C5] 前記トランシーバコアは無線フィデリティコアである、C2に記載の集積回路。
[C6] 前記トランシーバコアはセルラコアである、C2に記載の集積回路。
[C7] 前記トランシーバコアはFMトランシーバコアである、C2に記載の集積回路。
[C8] 前記FMトランシーバコアはFM送信機とFM受信機とを備える、C7に記載の集積回路。
[C9] 前記FM受信機は、Rx信号のための同相/直交位相を生成するために前記GPSクロック信号を使用する遅延ロックループベースの同相/直交位相ジェネレータを備える、C8に記載の集積回路。
[C10] 前記Rx信号のための同相/直交位相はベースバンド信号を得るために受信信号と混合される、C9に記載の集積回路。
[C11] 前記遅延ロックループベースの同相/直交位相ジェネレータは、遅延ロックループベースの計数周波数分割を使用して実現される、C9に記載の集積回路。
[C12] 前記遅延ロックループベースの同相/直交位相ジェネレータは、位相セレクタおよびカウンタロジックに結合される一連の遅延ユニットを備える、C11に記載の集積回路。
[C13] 前記位相セレクタおよびカウンタロジックは複数のスイッチを備え、各スイッチのためのターンオン時間および位相を調整することが前記位相セレクタおよびカウンタロジックの周波数出力を調整する、C12に記載の集積回路。
[C14] 前記FM送信機はリング電圧制御発振器ベースの位相ロックループを備える、C8に記載の集積回路。
[C15] 前記リング電圧制御発振器ベースの位相ロックループは外部温度補償型水晶発振器からの温度補償型水晶発振器信号を受け取る、C14に記載の集積回路。
[C16] 前記リング電圧制御発振器ベースの位相ロックループは、
位相周波数検出器/チャージポンプと、
ローパスフィルタと、
複数の遅延ユニットと
を備える、C15に記載の集積回路。
[C17] 前記集積回路はシステムオンチップである、C2に記載の集積回路。
[C18] 集積回路上の第1のコアと第2のコアとの間でクロック信号を共有するための方法であって、前記方法は、
前記集積回路上の前記第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成することと、
前記集積回路上の前記第2のコアへ前記クロック信号を供給することと、
前記第2のコア上で信号を受信するために前記クロック信号を使用することと
を備える方法。
[C19] 前記第1のコアは全地球測位システムコアであり、前記クロック信号はGPSクロック信号であり、前記第2のコアはトランシーバコアである、C18に記載の方法。
[C20] 前記トランシーバコアは電圧制御発振器を備えない、C19に記載の方法。
[C21] 前記トランシーバコアはBluetoothコアである、C19に記載の方法。
[C22] 前記トランシーバコアは無線フィデリティコアである、C19に記載の方法。
[C23] 前記トランシーバコアはセルラコアである、C19に記載の方法。
[C24] 前記トランシーバコアはFMトランシーバコアである、C19に記載の方法。
[C25] 前記FMトランシーバコアはFM送信機とFM受信機とを備える、C24に記載の方法。
[C26] 前記FM受信機は遅延ロックループベースの同相/直交位相ジェネレータを備え、Rx信号のための同相/直交位相を生成するために前記クロック信号と前記遅延ロックループベースの同相/直交位相ジェネレータを使用することをさらに備える、C25に記載の方法。
[C27] 前記Rx信号のための同相/直交位相を、ベースバンド信号を得るために受信信号と混合することをさらに備える、C26に記載の方法。
[C28] 前記遅延ロックループベースの同相/直交位相ジェネレータは、遅延ロックループベースの計数周波数分割を使用して実現される、C26に記載の方法。
[C29] 前記遅延ロックループベースの同相/直交位相ジェネレータは、位相セレクタおよびカウンタロジックに結合される一連の遅延ユニットを備える、C28に記載の方法。
[C30] 前記位相セレクタおよびカウンタロジックは、複数のスイッチを備え、各スイッチのためのターンオン時間および位相を調整することは、前記位相セレクタおよびカウンタロジックの周波数出力を調整する、C29に記載の方法。
[C31] 前記FM送信機はリング電圧制御発振器ベースの位相ロックループを備える、C25に記載の方法。
[C32] 前記リング電圧制御発振器ベースの位相ロックループは外部温度補償型水晶発振器からの温度補償型水晶発振器信号を受け取る、C31に記載の方法。
[C33] 前記リング電圧制御発振器ベースの位相ロックループは、
位相周波数検出器/チャージポンプと、
ローパスフィルタと、
複数の遅延ユニットと
を備える、C32に記載の方法。
[C34] 前記集積回路はシステムオンチップである、C19に記載の方法。
[C35] 集積回路上の第1と第2のコアとの間でクロック信号を共有するために構成された装置であって、
前記集積回路上の前記第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成するための手段と、
前記集積回路上の前記第2のコアへ前記クロック信号を供給するための手段と、
前記第2のコア上で信号を受信するために前記クロック信号を使用するための手段と
を備える、装置。
[C36] 前記第1のコアは全地球測位システムコアであり、前記クロック信号はGPSクロック信号であり、前記第2のコアはトランシーバコアである、C35に記載の装置。
[C37] 前記トランシーバコアは電圧制御発振器を備えない、C36に記載の装置。
[C38] 第1のコアと第2のコアとの間でクロック信号を共有するためのコンピュータプログラム製品であって、前記コンピュータプログラム製品は、
その上に命令群を有する非一時的コンピュータ読取可能な媒体を備え、
前記命令群は、
前記第1のコアにおけるインダクタ-キャパシタ電圧制御発振器を使用してクロック信号を生成することを電子デバイスにさせるコードと、
前記クロック信号を前記第2のコアへ供給することを前記電子デバイスにさせるコードと、
前記第2のコア上で信号を受信するために前記クロック信号を使用することを前記電子デバイスにさせるコードと
を備える、
コンピュータプログラム製品。
[C39] 前記第1のコアは全地球測位システムコアであり、前記クロック信号はGPSクロック信号であり、前記第2のコアはトランシーバコアである、C38に記載のコンピュータプログラム製品。
[C40] 前記トランシーバコアは電圧制御発振器を備えない、C39に記載のコンピュータプログラム製品。