(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、建物上層の鉛直荷重は主に柱を介して下層に伝達されるため、既存建物の基礎のうち柱の直下に位置する部分は、残りの部分に比べて大きな鉛直荷重がかかっている。よって、既存建物の基礎を仮支持する際に、基礎梁や耐圧版など柱から離れた部分を支持すると、この支持した部分に大きな負荷がかかることになる。したがって、柱に作用する鉛直荷重に対して、基礎梁や耐圧版の剛性が低い場合には、基礎にクラックが生じたり沈下したりする、という問題があった。
【0006】
本発明は、基礎梁や耐圧版の剛性が低い既存建物であっても、確実に免震化できる基礎の仮支持方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
請求項1に記載の基礎の仮支持方法は、既存建物(例えば、後述の既存建物1)を基礎(例えば、後述の基礎3)の下で免震化する際に、前記既存建物の基礎を仮支持する仮支持方法であって、地盤の掘削開始地点(例えば、後述の掘削開始地点A)から掘進方向に沿って並ぶ前記既存建物の
複数の柱(例えば、後述の柱4)の列を柱列(例えば、後述の柱列P)とし、当該各柱列の直下
の両脇の地盤(例えば、後述の地盤5)に、土中の水分を凍結させて2列の凍土
壁(例えば、後述の凍土壁30A、30B)を当該柱列に沿って設ける工程(例えば、後述のステップS1)と、前記掘削開始地点から前記2列の凍土
壁の間の地盤を
前記複数の柱の直下に亘って掘削して掘削空間(例えば、後述の掘削空間21a)を形成する工程(例えば、後述のステップS2)と、当該掘削空間に支保工(例えば、後述の支保工40)を設けて、当該支保工で前記基礎を仮支持する工程(例えば、後述のステップS3)と、を備えることを特徴とする。
【0008】
請求項2に記載の基礎の仮支持方法は、既存建物を基礎の下で免震化する際に、前記既存建物の基礎を仮支持する仮支持方法であって、地盤の掘削開始地点から掘進方向に沿って並ぶ前記既存建物の
複数の柱の列を柱列(例えば、後述の柱列Q)とし、当該柱列の直下
の脇の地盤に、土中の水分を凍結させて1列の凍土
壁(例えば、後述の凍土壁50、51)を当該柱列に沿って設ける工程(例えば、後述のステップS11)と、前記掘削開始地点から当該掘削開始地点に最も近い2つの凍土
壁(例えば、後述の凍土壁50)の間の地盤を
前記複数の柱の直下に亘って掘削して掘削空間を形成し、当該掘削空間に支保工を設けて、当該支保工で前記基礎を仮支持する工程(例えば、後述のステップS12、S13)と、前記掘削開始地点に次に近い凍土
壁(例えば、後述の凍土壁51)までの間の地盤を
前記複数の柱の直下に亘って掘削して掘削空間を形成し、当該掘削空間に支保工を設けて、当該支保工で前記基礎を仮支持することを繰り返す工程(例えば、後述のステップS14〜S16)と、を備えることを特徴とする。
【0009】
請求項3に記載の基礎の仮支持方法は、既存建物を基礎の下で免震化する際に、前記既存建物の基礎を仮支持する仮支持方法であって、地盤の掘削開始地点から掘進方向に交差する方向に並ぶ前記既存建物の
複数の柱の列を柱列(例えば、後述の柱列R)とし、当該柱列の直下
の脇の地盤に、土中の水分を凍結させて1列の凍土
壁(例えば、後述の凍土壁60〜63)を当該柱列に沿って設ける工程(例えば、後述のステップS11B)と、前記掘削開始地点から当該掘削開始地点に最も近い凍土
壁(例えば、後述の凍土壁60)までの間の地盤を
前記複数の柱の直下に亘って掘削して掘削空間を形成し、当該掘削空間に支保工を設けて、当該支保工で前記基礎を仮支持する工程(例えば、後述のステップS12B、S13)と、前記掘削開始地点に次に近い凍土
壁(例えば、後述の凍土壁61)までの間の地盤を
前記複数の柱の直下に亘って掘削して掘削空間を形成し、当該掘削空間に支保工を設けて、当該支保工で前記基礎を仮支持することを繰り返す工程(例えば、後述のステップS14〜S16)と、を備えることを特徴とする。
【0010】
本発明の基礎の仮支持方法は、構造物(例えば、後述の既存建物1)を下から仮支持する仮支持方法であって、前記構造物の下の地盤(例えば、後述の地盤5)の少なくとも一部の土中の水分を凍結させて凍土部(例えば、後述の凍土壁30A、30B、50、51、60〜63)を設ける工程(例えば、後述のステップS1、S11、S11B)と、掘削開始地点(例えば、後述の掘削開始地点A)から前記地盤の一部を掘削して掘削空間(例えば、後述の掘削空間21a)を形成する工程(例えば、後述のステップS2、S12、S12B)と、当該掘削空間に支保工(例えば、後述の支保工40)を設けて、当該支保工で前記構造物を仮支持する工程(例えば、後述のステップS3、S13)と、を備えること
が好ましい。
【0011】
この発明によれば、柱列の直下近傍の地盤に、この柱列に沿って凍土部を設けたので、柱の直下の近傍に凍土部が配置されることになる。よって、既存建物の柱にかかる鉛直荷重をこの凍土部で仮支持できるので、基礎梁や耐圧版の剛性が低い既存建物であっても、基礎にクラックが生じたり沈下したりするのを防いで、確実に免震化できる。
また、地盤を掘削しても、掘削面の一部を凍土部で構成することで、掘削面が崩壊するのを防止できる。
また、既存建物の内部に入る必要がないので、既存建物をそのまま使用しながら施工できる。
【0012】
ここで、地盤改良を行う方法としては、固化材を高圧で噴射して土と混合する方法(深層混合処理工法)、薬液を注入する薬液注入工法、本発明の凍結工法の3つが挙げられるが、本発明の凍結工法は、深層混合処理工法や薬液注入工法に対して以下のような効果がある。
すなわち、凍土部を構築する際に、深層混合処理工法や薬液注入などのようにセメント系の材料を使用しないため、凍土部を構成する土砂を産業廃棄物として処理する必要がなく、低コストとなる。
【0013】
また、薬液注入では注入量を制御して地盤の強度を管理するのが困難であるが、本発明では、凍土部の凍結温度を管理することで、地盤の強度や安全性を確保できる。
また、薬液注入では風化岩などの岩質には対応できないが、本発明では、岩質に関係なく、含水比のみで凍土部を構築できるので、岩質を問わず対応できる。
また、深層混合処理工法では、土に高圧で固化材を噴射するため、既存建物にクラックが入ったり既存建物の基礎や耐圧版が持ち上がったりするおそれがあるが、本発明では、既存建物にこのような影響は生じない。
【発明の効果】
【0014】
本発明によれば、柱列の直下近傍の地盤に、この柱列に沿って凍土部を設けたので、柱の直下の近傍に凍土部が配置されることになる。よって、既存建物の柱にかかる鉛直荷重をこの凍土部で仮支持できるので、基礎梁や耐圧版の剛性が低い既存建物であっても、基礎にクラックが生じたり沈下したりするのを防いで、確実に免震化できる。また、地盤を掘削しても、掘削面の一部を凍土部で構成することで、掘削面が崩壊するのを防止できる。また、既存建物の内部に入る必要がないので、既存建物をそのまま使用しながら施工できる。
【図面の簡単な説明】
【0015】
【
図1】本発明の第1実施形態に係る基礎の仮支持方法が適用される既存建物の基礎部分の断面図である。
【
図2】前記実施形態に係る既存建物が免震化された状態を示す断面図である。
【
図3】前記実施形態に係る既存建物を免震化する手順のフローチャートである。
【
図4】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その1)である。
【
図5】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その2)である。
【
図6】本発明の第1実施形態に係る基礎の仮支持方法により既存建物を免震化する手順のフローチャートである。
【
図7】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その1)である。
【
図8】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その2)である。
【
図9】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その3)である。
【
図10】本発明の第1実施形態に係る基礎の仮支持方法により既存建物を免震化する手順を説明するための平面図および断面図(その1)である。
【
図11】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その2)である。
【
図12】前記実施形態に係る既存建物を免震化する手順を説明するための平面図および断面図(その3)である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る基礎の仮支持方法が適用される既存建物1の基礎部分の断面図である。
既存建物1は、地下躯体2を有しており、この地下躯体2は、基礎3と、この基礎3から上方に延びる複数本の柱4と、を備えている。
【0017】
基礎3は、地盤5の上に構築された杭のないべた基礎であり、この基礎3は、フーチング10と、これらフーチング10同士を連結する耐圧版11と、を備える。
上述の柱4は、フーチング10の中心部から上方に延びている。
【0018】
本発明では、
図2に示すように、既存建物1の基礎3の下に設置スペース21を形成し、この設置スペース21に免震装置20を設置して、免震装置20により既存建物1の基礎3を支持することで、既存建物1を基礎3の下で免震化するものである。
【0019】
具体的には、既存建物1の基礎3の下には、免震装置20を設置するための設置スペース21が形成されている。この設置スペース21の底面には、全面に亘って、鉄筋コンクリート造の底盤としてのマットスラブ22が構築されている。このマットスラブ22のうち柱4の直下には、鉄筋コンクリート造である免震基礎23が設けられ、免震装置20は、この免震基礎23の上に設けられている。
免震装置20は、免震基礎23およびマットスラブ22に反力をとって、基礎3の柱4の直下に位置する部分を下から支持しつつ、基礎3が水平方向に移動可能な状態を保持している。
【0020】
図3は、既存建物1の基礎3を免震化する手順を示すフローチャートである。
ステップS1では、
図4に示すように、既存建物1の外側に掘削開始地点Aを設ける。この掘削開始地点Aは、地上から基礎3の下の地盤5の深さまで掘り進んで形成された空間である。掘削開始地点Aら既存建物1の奥に向かう方向を掘進方向(
図4中矢印で示す)とする。
ここで、地盤5は、既存建物1の基礎3の直下の地層M1と、この地層M1の下の地層M2と、で構成されている。地層M1は軽石凝灰岩の層であり、地層M2は凝灰質シルト岩の層である。
【0021】
さらに、既存建物1の掘進方向に沿って並ぶ柱4の列を柱列P(
図4中破線で示す)として、各柱列Pの直下の地盤5に、柱列Pに沿って2列の凍土部としての凍土壁30A、30Bを設ける。具体的には、これら2列の凍土壁30A、30Bは、フーチング10の両端部の直下に設けられている。
【0022】
これら凍土壁30A、30Bは、凍結工法により形成される。すなわち、掘削開始地点Aから地盤5に複数本の凍結管31を略水平に埋設し、この凍結管31に冷却液を流通させることで、凍結管31の周囲を冷却して土中の水分を凍結させる。これにより、これら凍結管31を中心とする凍土壁30A、30Bが形成される。
これら凍土壁30A、30Bの高さは、地層M1と地層M2との境界部分から基礎3の下面までとなっている。
【0023】
ステップS2では、
図5に示すように、掘削開始地点Aから第1段階の掘削を行う。すなわち、既存建物1の基礎3の下の2列の凍土壁30A、30Bの間の地盤5を掘削して、柱列Pの直下に掘削空間21aを形成する。
この掘削空間21aは、上述の設置スペース21の一部となる。
【0024】
ステップS3では、掘削空間21aの底部に支保工40を設置して、基礎3を仮支持する。この支保工40は、柱列Pを構成する柱4の直下の近傍に設置される。具体的には、支保工40は、2列の凍土壁30A、30Bの間でかつフーチング10のうち柱4以外の部分の直下に設置される。
【0025】
ステップS4では、第2段階の掘削を行う。すなわち、さらに既存建物1の基礎3の下の地盤5を掘削して、
図2に示すように、設置スペース21を完成させる。
【0026】
ステップS5では、掘削空間21aの底部に配筋してコンクリートを打設することで、上述のマットスラブ22を構築する。このとき、上述の支保工40の下部は、このマットスラブ22に埋め殺す。
【0027】
ステップS6では、マットスラブ22上に免震基礎23を構築し、この免震基礎23上に免震装置20を設置して、この免震装置20で基礎3の柱4の直下に位置する部分を支持する。
【0028】
ステップS7では、支保工40による仮支持を解除し、この支保工40を撤去する。
【0029】
本実施形態によれば、上述の(1)と同様の効果がある。
(1)柱列Pの直下近傍の地盤5に、この柱列Pに沿って2列の凍土壁30A、30Bを設けたので、柱4の直下の近傍に凍土壁30A、30Bが配置されることになる。よって、既存建物1の柱4にかかる鉛直荷重をこの凍土壁30A、30Bで仮支持できるので、基礎梁や耐圧版の剛性が低い既存建物1であっても、基礎3にクラックが生じたり沈下したりするのを防いで、確実に免震化できる。
また、地盤5を掘削しても、掘削面の一部を凍土壁30A、30Bで構成することで、掘削面が崩壊するのを防止できる。
また、既存建物1の内部に入る必要がないので、既存建物1をそのまま使用しながら施工できる。
【0030】
凍土壁30A、30Bを構築する際に、深層混合処理工法や薬液注入などのようにセメント系の材料を使用しないため、凍土壁30A、30Bを構成する土砂を産業廃棄物として処理する必要がなく、低コストとなる。
【0031】
また、薬液注入では注入量を制御して地盤の強度を管理するのが困難であるが、本発明では、凍土壁30A、30Bの凍結温度を管理することで、地盤の強度や安全性を確保できる。
また、薬液注入では風化岩などの岩質には対応できないが、本発明では、岩質に関係なく、含水比のみで凍土壁30A、30Bを構築できるので、岩質を問わず対応できる。
また、深層混合処理工法では、土に高圧で固化材を噴射するため、既存建物1にクラックが入ったり既存建物の基礎や耐圧版が持ち上がったりするおそれがあるが、本発明では、既存建物1にこのような影響は生じない。
【0032】
〔第2実施形態〕
図6は、本発明の第2実施形態に係る基礎の仮支持方法を用いて、既存建物1の基礎3を免震化する手順を示すフローチャートである。
【0033】
本実施形態では、凍土壁の位置および掘削方法が、第1実施形態と異なる。
すなわち、ステップS11では、
図7に示すように、既存建物1の掘進方向(
図7中矢印で示す)に沿って並ぶ柱4の列を柱列Qとし、これら柱列Qの直下の地盤5に、この柱列Qに沿って1列の凍土部としての凍土壁50、51を設ける。具体的には、各凍土壁50、51は、フーチング10の掘削開始地点Aから離れた方の端部の直下に設けられている。
【0034】
これら凍土壁50、51は、掘削開始地点Aに近いものを凍土壁50とし、遠いものを凍土壁51とする。これにより、凍土壁50および凍土壁51は、それぞれ、一対ずつ設けられる。
これら凍土壁50、51の構築方法は、凍土壁30A、30Bと同様である。
【0035】
ステップS12では、
図8に示すように、掘削開始地点Aから第1段階の掘削を行う。すなわち、掘削開始地点Aからこの掘削開始地点Aに最も近い2つの凍土壁50同士の間の地盤5を掘削して、掘削空間21aを形成する。
この掘削空間21aは、上述の設置スペース21の一部となる。
【0036】
ステップS13では、掘削空間21aの底部に支保工40を設置して、基礎3を仮支持する。この支保工40は、柱列Pを構成する柱4の直下の近傍に設置される。
【0037】
ステップS14では、
図9に示すように、第2段階の掘削を行う。すなわち、次に掘削開始地点Aに近い凍土壁51までの間の地盤を掘削して、掘削空間21aを拡張する。
【0038】
ステップS15では、拡張した掘削空間21aの底部に支保工40を設置して、基礎3を仮支持する。この支保工40は、柱列Pを構成する柱4の直下の近傍に設置される。具体的には、支保工40は、凍土壁51の近傍でかつフーチング10のうち柱4以外の部分の直下に設置される。
【0039】
ステップS16では、ステップS14、S15を所定回繰り返して、設置スペース21を完成させる。
【0040】
ステップS17では、設置スペース21の底部に配筋してコンクリートを打設することで、マットスラブ22を構築する。
【0041】
ステップS18では、マットスラブ22上に免震基礎23を構築し、この免震基礎23上に免震装置20を設置して、この免震装置20で基礎3の柱4の直下に位置する部分を支持する。
【0042】
ステップS19では、支保工40による仮支持を解除し、この支保工40を撤去する。
【0043】
本実施形態によれば、上述の(1)と同様の効果がある。
【0044】
〔第3実施形態〕
本実施形態では、凍土壁の位置および掘削方法が、第2実施形態と異なる。
具体的には、
図3のフローチャートにおいて、ステップS11、S12、S14をステップS11B、S12B、S14Bに入れ替えたものである。
【0045】
すなわち、ステップS11Bでは、
図10に示すように、既存建物の柱1の掘進方向(
図10中矢印で示す)に交差する方向に並ぶ柱4の列を柱列Rとし、これら柱列Rの直下の地盤5に、この柱列Qに沿って1列の凍土部としての凍土壁60、61、62、63を設ける。具体的には、各凍土壁60〜63は、フーチング10の掘削開始地点Aから離れた方の端部の直下に設けられている。
【0046】
これら凍土壁60〜63は、掘削開始地点Aに近いものから順に凍土壁60、61、62、63とする。
これら凍土壁60〜63の構築方法は、凍土壁30A、30Bと同様である。
【0047】
ステップS12Bでは、
図11に示すように、掘削開始地点Aから第1段階の掘削を行う。すなわち、掘削開始地点Aからこの掘削開始地点Aに最も近い凍土壁60までの間の地盤を掘削して、掘削空間21aを形成する。
【0048】
ステップS14Bでは、
図12に示すように、第2段階の掘削を行う。すなわち、次に掘削開始地点Aに近い凍土壁61までの間の地盤を掘削して、掘削空間21aを拡張する。
【0049】
本実施形態によれば、上述の(1)と同様の効果がある。
【0050】
なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述の各実施形態では、凍土壁30A、30B、50、51、60〜63の高さを、地層M1と地層M2との境界部分から基礎3の下面までとしたが、これに限らず、凍土壁の高さをマットスラブ22の下端近傍から基礎3の下面までとしてもよい。
【0051】
また、上述の各実施形態では、掘削空間21aの底部に支保工40を設置し、その後マットスラブ22を構築したが、これに限らず、支保工40を設置する際に、マットスラブ22の一部を構築して、この構築したマットスラブの上に支保工を設けてもよい。
【0052】
また、上述の各実施形態では、既存建物1の外側に掘削開始地点Aから掘削を開始したが、敷地に余裕のない場合には、既存建物1の耐圧版に開口を設けて、この開口を掘削開始地点として掘削を開始してもよい。
【0053】
また、上述の第2、第3実施形態では、1列の凍土壁50、51、60〜63をフーチング10の一端部の直下に設けたが、これに限らず、凍土壁を柱4の直下に設けてもよい。
【0054】
また、上述の各実施形態では、基礎3の直下の地盤5の一部に壁状の凍土壁30A、30B、50、51、60〜63を形成したが、これに限らず、基礎3の直下の地盤5の全体を凍結させてもよい。
【0055】
また、上述の各実施形態では、本発明を杭のないべた基礎に適用したが、これに限らず、杭を有する杭基礎にも適用して、掘削時の杭耐力の不足を補うこともできる。
また、上述の各実施形態では、本発明を既存建物1に適用したが、これに限らず、擁壁などの構造物にも適用できる。