(58)【調査した分野】(Int.Cl.,DB名)
前記複数のストレージデバイスは、ソリッドステートストレージデバイスであり、該ソリッドステートストレージデバイスの各々は、読み込み要求を相対的に短いレイテンシで処理し、書き込み要求を相対的に長いレイテンシで処理する、
ことを特徴とする請求項1に記載のコンピュータシステム。
前記ストレージコントローラは、所与の状態を検出したことに応答して、前記第1のタイプに対応する要求の処理を直ちに停止し、前記第2のタイプに対応するキューに入れられた要求の処理を開始するように構成される、
ことを特徴とする請求項1に記載のコンピュータシステム。
前記状態は、特定数の前記第2のタイプの要求がキューに入ったこと、前記第2のタイプの要求が処理されてからある時間が経過したこと、及び一定の時間にわたって新たな要求が受け取られなかったことのうちの少なくとも1つを含む、
ことを特徴とする請求項7に記載のコンピュータシステム。
【発明を実施するための形態】
【0012】
本発明は様々な修正及び代替形態が可能であるが、図面には特定の実施形態を一例として示し、本明細書ではこれらについて詳細に説明する。しかしながら、図面及びこれらに対する詳細な説明は、開示する特定の形態に本発明を限定することを意図するものではなく、むしろ添付の特許請求の範囲によって定められる本発明の思想及び範囲内にある全ての修正物、同等物及び代替物を含むことを意図するものであると理解されたい。
【0013】
以下の説明では、本発明を完全に理解できるように数多くの具体的な詳細を示す。しかしながら、当業者であれば、これらの具体的な詳細を伴わずに本発明を実施できると認識するであろう。いくつかの例では、本発明を曖昧にしないように、周知の回路、構造、信号、コンピュータプログラム命令及び技術については詳細に示していない。
【0014】
図1を参照すると、ネットワークアーキテクチャ100の1つの実施形態の汎用ブロック図を示している。後述するように、ネットワークアーキテクチャ100の1つの実施形態は、ネットワーク180を介して互いに、及びデータストレージアレイ120a〜120bに相互接続されたクライアントコンピュータシステム110a〜110bを含む。ネットワーク180は、スイッチ140を介して第2のネットワーク190に結合することができる。このネットワーク190を介して、クライアントコンピュータシステム110cが、クライアントコンピュータシステム110a〜110b及びデータストレージアレイ120a〜120bに結合される。また、ネットワーク190は、スイッチ150を介してインターネット160又はその他の外部ネットワークに結合することもできる。
【0015】
なお、代替の実施形態では、クライアントコンピュータ及びサーバ、スイッチ、ネットワーク、データストレージアレイ及びデータストレージデバイスの数及びタイプが、
図1に示すものに限定されない。1又はそれ以上のクライアントは、様々な時点でオフラインで動作することができる。また、動作中、ユーザがネットワークアーキテクチャ100への接続、切断及び再接続を行うと、個々のクライアントコンピュータの接続タイプは変化することがある。さらに、本説明では、一般にネットワーク接続されたストレージについて検討するが、本明細書で説明するシステム及び方法は、直接接続されたストレージシステムに適用することもでき、説明する方法の1つ又はそれ以上の態様を実行するように構成されたホストオペレーティングシステムを含むこともできる。数多くのこのような代替案が可能であり、企図される。
図1に示す構成要素の各々のさらなる説明を手短に行う。まず、データストレージアレイ120a〜120bにより提供される機能のいくつかの概要について説明する。
【0016】
ネットワークアーキテクチャ100では、データストレージアレイ120a〜120bの各々を、クライアントコンピュータシステム110a〜110cなどの異なるサーバ及びコンピュータ間のデータの共有に使用することができる。また、データストレージアレイ120a〜120bを、ディスクのミラーリング、バックアップ及び復元、保存データの保管及び検索、並びにストレージデバイス間のデータ移行に使用することもできる。代替の実施形態では、クラスタを形成するために、1又はそれ以上のクライアントコンピュータシステム110a〜110cを、高速ローカルエリアネットワーク(LAN)を介して互いにリンクさせることができる。このようなクライアントは、データストレージアレイ120a〜120bの1つに存在するクラスタ共有ボリュームなどのストレージリソースを共有することができる。
【0017】
データストレージアレイ120a〜120bの各々は、データ記憶のためのストレージサブシステム170を含む。ストレージサブシステム170は、複数のストレージデバイス176a〜176mを含むことができる。これらのストレージデバイス176a〜176mは、クライアントコンピュータシステム110a〜110cにデータ記憶サービスを提供することができる。ストレージデバイス176a〜176mの各々は、データ記憶を行うための特定の技術及び機構を使用する。これらのストレージデバイス176a〜176mの各々で使用されるタイプの技術及び機構を少なくとも部分的に使用して、ストレージデバイス176a〜176mの各々との間の読み込み及び書き込み動作の制御及びスケジュールに使用するアルゴリズムを決定することができる。これらのアルゴリズムで使用されるロジックを、基本オペレーティングシステム(OS)116、ファイルシステム140、ストレージサブシステムコントローラ174内の1又はそれ以上のグローバルI/Oスケジューラ178、又はストレージデバイス176a〜176mの各々における制御ロジックなどのうちの1又はそれ以上に含めることができる。また、本明細書で説明するロジック、アルゴリズム及び制御機構は、ハードウェア及び/又はソフトウェアを含むことができる。
【0018】
ストレージデバイス176a〜176mの各々は、読み込み及び書き込み要求を受け取るとともに、各々をアレイ内の行及び列としてアドレス指定可能な複数のデータス記憶位置を含むように構成することができる。1つの実施形態では、ストレージデバイス176a〜176m内のデータ記憶位置を、論理的で冗長なストレージコンテナ又はRAIDアレイ(低価格/独立ディスク冗長アレイ)内に配置することができる。いくつかの実施形態では、ストレージデバイス176a〜176mの各々が、従来のハードディスクドライブ(HDD)とは異なる技術をデータ記憶に利用することができる。例えば、ストレージデバイス176a〜176mの1又はそれ以上は、永続データを記憶するための固体メモリから成るストレージを含み、又はこれにさらに結合することができる。他の実施形態では、ストレージデバイス176a〜176mの1又はそれ以上が、スピン注入法、磁気抵抗メモリ(MRAM)法、シングルディスク、メモリスタ、相変化メモリ又はその他の記憶技術などの他の技術を使用するストレージを含み、又はこれにさらに結合することができる。これらの異なる記憶方法及び技術により、ストレージデバイス間で異なるI/O特性が生じ得る。
【0019】
1つの実施形態では、含まれる固体メモリが、ソリッドステートドライブ(SSD)技術を含む。通常、SSD技術は、フラッシュメモリセルを利用する。当業で周知のように、フラッシュメモリセルは、フローティングゲート内に捕捉され蓄積された電子の範囲に基づく二進値を保持する。完全に消去されたフラッシュメモリセルは、フローティングゲート内に電子を全く又は最低数しか蓄積していない。消去されたフラッシュメモリセルには、シングルレベルセル(SLC)フラッシュの二進1などの特定の二進値が関連付けられる。マルチレベルセル(MLC)フラッシュでは、消去されたフラッシュメモリセルに二進値11が関連付けられる。フラッシュメモリセル内の制御ゲートに所与の閾値電圧よりも高い電圧を印加した後、このフラッシュメモリセルは、フローティングゲート内に所与の範囲の電子を捕捉する。従って、プログラムされた(書き込まれた)フラッシュメモリセルには、SLCフラッシュの二進0などの別の特定の二進値が関連付けられる。MLCフラッシュセルでは、制御ゲートに印加された電圧に応じて、プログラムされたメモリセルに複数の二進値の1つを関連付けることができる。
【0020】
HDD技術とSDD技術の間の技術及び機構の違いにより、データストレージデバイス176a〜176mの入力/出力(I/O)特性に違いが生じることがある。一般的に言えば、SSD技術では、読み込みアクセスレイテンシタイムがHDD技術よりも短い。しかしながら、一般にSSDの書き込みパフォーマンスは、その読み込みパフォーマンスよりも遅く、SSD内の自由なプログラマブルブロックの利用可能性によって大きく影響を受けることがある。SSDの書き込みパフォーマンスは、SSDの読み込みパフォーマンスに比べて大幅に遅いので、読み込みと同様のレイテンシを予想する特定の機能又は動作に関する問題が生じることがある。また、長い書き込みレイテンシが読み込みレイテンシに影響を与えることにより、スケジューリングがより困難になる場合がある。従って、データストレージアレイ120a〜120bの各々では、I/Oスケジューリングに異なるアルゴリズムが使用されることがある。
【0021】
1つの実施形態では、読み込み動作及び書き込み動作などの異なるタイプの動作のレイテンシが異なる場合、I/Oスケジューリングのアルゴリズムが、これらの動作を分離して、スケジューリングのためにこれらを別個に処理することができる。例えば、ストレージデバイス176a〜176mの1又はそれ以上において、デバイス自体が書き込み動作を内部キャッシュに記憶することなどによってバッチ処理することができる。これらのキャッシュが所与の占有率閾値に達した時に、又は他の何らかの時点で、対応するストレージデバイス176a〜176mが、キャッシュをフラッシュすることができる。一般的には、これらのキャッシュフラッシュにより、予測できない時点で読み込み及び/又は書き込みに追加のレイテンシが加わることがあり、これにより動作を効果的にスケジュールするのが困難になる。従って、I/Oスケジューラは、このようなキャッシュフラッシュがいつ発生し得るかを予測するために、キャッシュのサイズ又は測定したアイドル時間などのストレージデバイスの特性を利用することができる。1又はそれ以上のストレージデバイス176a〜176mの各々の特性が分かると、より効果的なI/Oスケジューリングを行うことができる。1つの実施形態では、グローバルI/Oスケジューラ178が、ストレージデバイス176a〜176mの1又はそれ以上のうちの所与のデバイスが予想外の時点でI/O要求に対して長い応答時間を示していることを検出することができる。これに応答して、グローバルI/Oスケジューラ178は、この所与のデバイスに予想される挙動を再開させるために、このデバイスに所与の動作をスケジュールすることができる。1つの実施形態では、このような動作を、キャッシュフラッシュコマンド、トリムコマンド、又は消去コマンドなどとすることができる。以下、入出力スケジューリングに関するさらなる詳細について説明する。
【0022】
ネットワークアーキテクチャの構成要素
繰り返すが、図示のように、ネットワークアーキテクチャ100は、ネットワーク180及び190を介して互いに及びデータストレージアレイ120a〜120bに相互接続されたクライアントコンピュータシステム110a〜110cを含む。ネットワーク180及び190は、無線接続、直接ローカルエリアネットワーク(LAN)接続、インターネットなどの広域ネットワーク(WAN)接続、ルータ、ストレージエリアネットワーク及びイーサネット(登録商標)などを含む様々な技術を含むことができる。ネットワーク180及び190は、1又はそれ以上のLANを含むことができ、これらは無線であってもよい。ネットワーク180及び190は、リモートダイレクトメモリアクセス(RDMA)ハードウェア及び/又はソフトウェア、伝送制御プロトコル/インターネットプロトコル(TCP/IP)ハードウェア及び/又はソフトウェア、ルータ、リピータ、スイッチ及び/又はグリッドなどをさらに含むことができる。ネットワーク180及び190内では、ファイバチャネル、ファイバチャネルオーバーイーサネット(FCoE)及びiSCSIなどのプロトコルを使用することができる。スイッチ140は、ネットワーク180及び190の両方に関連するプロトコルを利用することができる。ネットワーク190は、伝送制御プロトコル(TCP)及びインターネットプロトコル(IP)、すなわちTCP/IPなどの、インターネット160に使用される通信プロトコルの組と整合することができる。スイッチ150は、TCP/IPスイッチとすることができる。
【0023】
クライアントコンピュータシステム110a〜110cは、デスクトップパソコン(PC)、サーバ、サーバファーム、ワークステーション、ラップトップ、ハンドヘルドコンピュータ、サーバ、携帯情報端末(PDA)及びスマートフォンなどのあらゆる数の固定又はモバイルコンピュータを表す。一般的に言えば、クライアントコンピュータシステム110a〜110cは、1又はそれ以上のプロセッサコアを備えた1又はそれ以上のプロセッサを含む。各プロセッサコアは、所定の汎用命令セットに従って命令を実行するための回路を含む。例えば、x86命令セットアーキテクチャを選択することができる。或いは、Alpha(登録商標)、PowerPC(登録商標)、SPARC(登録商標)又はその他のいずれの汎用命令セットアーキテクチャを選択してもよい。プロセッサコアは、データ及びコンピュータプログラム命令を求めてキャッシュメモリサブシステムにアクセスすることができる。キャッシュサブシステムは、ランダムアクセスメモリ(RAM)及びストレージデバイスを含む記憶階層に結合することができる。
【0024】
クライアントコンピュータシステム内の各プロセッサコア及び記憶階層は、ネットワークインターフェイスに接続することができる。クライアントコンピュータシステム110a〜110cの各々は、ハードウェア構成要素に加え、記憶階層内に記憶された基本オペレーティングシステム(OS)を含むことができる。この基本OSは、例えば、MS−DOS(登録商標)、MS−WINDOWS(登録商標)、OS/2(登録商標)、UNIX(登録商標)、Linux(登録商標)、Solaris(登録商標)、AIX(登録商標)又はDARTなどの様々なオペレーティングシステムのいずれかを表すことができる。従って、基本OSは、エンドユーザに様々なサービスを提供するとともに、様々なプログラムの実行をサポートするソフトウェアフレームワークを提供することができる。また、クライアントコンピュータシステム110a〜110cの各々は、バーチャルマシン(VM)をサポートするために使用されるハイパーバイザを含むことができる。当業者には周知のように、デスクトップ及びサーバ内で仮想化を使用して、OSなどのソフトウェアをシステムのハードウェアから完全に又は部分的に分離することができる。仮想化により、エンドユーザに、各々が独自のリソースを有する同じ機械上で複数のOSが実行されているという錯覚を与え、データストレージアレイ120a〜120bの各々におけるストレージデバイス176a〜176m上に構築された論理記憶エンティティ(LUNなど)にアクセスできるようにすることができる。
【0025】
データストレージアレイ120a〜120bの各々は、クライアントコンピュータシステム110a〜110cなどの異なるサーバ間のデータの共有に使用することができる。データストレージアレイ120a〜120bの各々は、データを記憶するためのストレージサブシステム170を含む。ストレージサブシステム170は、複数のストレージデバイス176a〜176mを含むことができる。これらのストレージデバイス176a〜176mの各々は、SSDとすることができる。コントローラ174は、受け取った読み込み/書き込み要求を処理するためのロジックを含むことができる。例えば、少なくともコントローラ174において、手短に上述したアルゴリズムを実行することができる。受け取った書き込み要求などのバッチ動作には、ランダムアクセスメモリ(RAM)172を使用することができる。様々な実施形態では、書き込み動作(又はその他の動作)をバッチ処理する際に、不揮発性ストレージ(NVRAMなど)を使用することができる。
【0026】
記憶媒体130に記憶された基本OS132、ファイルシステム134、いずれかのOSドライバ(図示せず)及びその他のソフトウェアは、ファイルへのアクセスを可能にする機能を提供し、これらの機能を管理することができる。基本OS134及びOSドライバは、記憶媒体130上に記憶された、受け取った要求に対応する1又はそれ以上のメモリアクセス動作をストレージサブシステム170内で行うようにプロセッサ122により実行可能なプログラム命令を含むことができる。
図1に示すシステムは、一般に1又はそれ以上のファイルサーバ及び/又はブロックサーバを含むことができる。
【0027】
データストレージアレイ120a〜120bの各々は、ネットワークインターフェイス124を使用してネットワーク180に接続することができる。1つの実施形態では、クライアントコンピュータシステム110a〜110cと同様に、ネットワークインターフェイス124の機能をネットワークアダプタカード上に含めることができる。ネットワークインターフェイス124の機能は、ハードウェア及びソフトウェアの両方を使用して実装することができる。ネットワークインターフェイス124のネットワークカードによる実装上には、ランダムアクセスメモリ(RAM)及び読み取り専用メモリ(ROM)の両方を含めることができる。1又はそれ以上の特定用途向け集積回路(ASIC)を使用して、ネットワークインターフェイス124の機能を提供することができる。
【0028】
1つの実施形態では、I/Oパフォーマンスを最適化しようと努めるデータストレージモデルを作成することができる。1つの実施形態では、このモデルが、ストレージシステム内のストレージデバイスの特性に少なくとも部分的に基づく。例えば、ソリッドステートストレージ技術を利用するストレージシステムでは、特定のデバイスの特性を使用してこのデバイスのためのモデルを作成し、このモデルが、対応するI/Oスケジューリングアルゴリズムを通知する機能を果たすことができる。例えば、使用中の特定のストレージデバイスが、読み込みレイテンシに比べて相対的に長い書き込みレイテンシを示す場合、スケジューリング動作においてこのような特性を考慮することができる。なお、相対的に長いと考えるか、それとも短いと考えるかは、特定のシステム、処理中のデータのタイプ、処理するデータの量、又はデータのタイミングなどによって異なることがある。一般的に言えば、システムは、短い又は長いレイテンシを構成するものが何であるか、及び/又はこれらの2つの有意な違いを構成するものが何であるかを判断するようにプログラム可能である。
【0029】
一般的に言えば、デバイス又はコンピューティングシステムのために開発されるあらゆるモデルが不完全となる。多くの場合、現実のシステムで所与のシステムを完全にモデル化するには、考慮すべき変数が単純に多すぎる。場合によっては、完全ではないが価値のあるモデルを開発することが可能な場合もある。以下でより詳細に説明するように、デバイスの特性に基づいてストレージデバイスをモデル化する実施形態を説明する。様々な実施形態では、デバイスがどのように挙動し得るかに関するいくつかの予測に基づいてI/Oスケジューリングが行われる。装置の挙動によっては、デバイスの特性の理解に基づいて、他の挙動より予測しやすいものもある。最適なI/Oパフォーマンスのための動作をより効果的にスケジュールするには、システムの挙動をより確実に制御することが望ましい。予想外の、又は予測できない装置の挙動は、動作のスケジューリングをより困難にする。従って、システム内の予測不能な又は予想外の挙動を最小化しようと努めるアルゴリズムを開発する。
【0030】
図2は、モデル化中のデバイス又はシステム、及びこのデバイス又はシステム内の予測不能な挙動を最小化するために使用する方法の概念図である。第1のブロック200に、理想的なシナリオを示す。ブロック200には、システム204及びこのシステムのモデル202を示している。1つの実施形態では、このシステムを、単一のデバイスのシステムとすることができる。或いは、このシステムは、多くのデバイス及び/又は構成要素を含むこともできる。上述したように、モデル202は、モデル化しようとするシステム204の完全なモデルではない場合もある。にもかかわらず、モデル202は、このモデルのために関心のある挙動を捕捉する。1つの実施形態では、モデル202が、コンピューティングストレージシステムをモデル化しようとすることができる。理想的なシナリオ200では、システム204の実際の挙動が、モデル202の挙動と「揃って」いる。換言すれば、一般に、システム204の挙動は、モデル202が捕捉しようとする挙動に適合する。システム挙動204がモデル202の挙動と一致している間は、このシステム挙動は、一般に予測しやすいと思われる。従って、システム内の動作(例えば、読み込み及び書き込み動作)のスケジューリングを、より効果的に行うことができる。
【0031】
例えば、読み込み応答時間を最適化することが望まれる場合、システムの他の挙動が比較的予測しやすい場合には、よりタイムリーに読み込みが行われるように読み込みをスケジュールすることが可能である。一方、システムの挙動が比較的予測しにくい場合には、必要時に結果を提供するように読み込みをスケジュールする能力の信頼度が低下する。ブロック210に、システム挙動(小さい方の円)がこのシステム(大きい方の円)のモデルの挙動と揃っていないシナリオを示す。この場合、このシステムは、モデルから外れる挙動を示している。従って、システム挙動の予測可能性が低くなり、動作をスケジューリングする効果が下がることがある。例えば、ストレージシステム内で固体メモリデバイスを使用し、これらのデバイスが、より長いレイテンシで要求を処理するアクションを開始し得る場合、そのデバイスに対してスケジュールされていたあらゆる動作が、より長い又は予想外のレイテンシを生じる可能性もある。このようなデバイス動作の1つの例に、内部キャッシュフラッシュがある。
【0032】
予想外の又は予定外のシステム挙動及び対応する可変パフォーマンスの問題に対処するために、作成するモデルは、システムを不確実性の少ない状態に復元するために行うことができるアクションを含むことができる。換言すれば、システムの挙動を予測するモデルの能力を低下させる挙動をシステムが示し始めた場合、このモデルは、特定の予想外の挙動が排除され又は起きにくくなる状態にシステムを復元するために行うことができるいくつかのアクションを構築する。図示の例では、より密接にモデルと揃った状態にシステムを「移動」させようとするアクション212を示している。アクション212は、モデルの外側にあるシステム挙動を検出することに応答して行われるので、「反応的」アクション又は動作と呼ぶことができる。アクション212を行った後に、より理想的な状態220を達成することができる。
【0033】
予測不能な挙動に反応してシステムをより理想的な状態に移行できるモデルを作成することが望ましいが、それらの予測不能な挙動が存在することにより、効果的なスケジューリング動作が妨げられたままになることもある。従って、予想外の挙動又はイベントの発生を最小化することが望ましいと考えられる。1つの実施形態では、予想外の挙動の発生を防止又は低減するように設計されたアクション又は動作を含むモデルを作成する。これらのアクションは、何らかの挙動又はイベントの発生を防ぎ、又は何らかの挙動又はイベントのタイミングを変化させるために事前対応的に行うことができるので、「事前対応」アクション又は動作と呼ぶことができる。
図2のブロック230に、システム挙動(小さい方の円)がそのモデル(大きい方の円)の挙動内に存在するシナリオを示す。にもかかわらず、このモデルは、システム挙動がモデル内に留まったまま、恐らくはより理想的に揃うようにシステム挙動を移動させるアクション232を行うことができる。ブロック230内のシステム挙動は、モデルの外部での挙動を示す状態に近づいているように見える。このような場合、モデルは、システムがこのような状態に近づいていると確信するための何らかの基準を有することができる。例えば、I/Oスケジューラが特定のデバイスにいくつかの書き込み動作を伝えた場合、スケジューラは、このデバイスが将来のある時点で内部キャッシュフラッシュ動作を行うかもしれないと予測することができる。スケジューラは、このようなイベントの発生を待つのではなく、スケジューラが選択した時点でキャッシュフラッシュが行われるように、このデバイスのキャッシュフラッシュ動作を事前対応的にスケジュールすることができる。これとは別に、又はこれに加えて、このような事前対応動作を不定期に行うこともできる。それでもキャッシュフラッシュは発生するが、その発生は予想外のものではなく、既にスケジューラが行う全体的なスケジューリングの一部になっており、より効果的かつ知的に管理することができる。システムは、この事前対応アクション232を行った後、一般的にはより予測しやすい状態240になることが分かる。この理由は、デバイス上でキャッシュフラッシュがスケジュールされて実行され、デバイスがデバイス自体で自発的に内部キャッシュフラッシュを開始する可能性が減少した(すなわち、そのキャッシュが既にフラッシュされた)からである。モデル内で反応的アクション又は動作と事前対応アクション又は動作を組み合わせることにより、システムの予測性を強化できるとともに、同様にスケジューリングの改善を達成することもできる。
【0034】
ここで
図3を参照すると、予想外の挙動を低減するようにI/Oスケジューリングを行う方法300の1つの実施形態を示している。一般に、上述したネットワークアーキテクチャ100及びデータストレージアレイ120a〜120b内で具体化される構成要素は、方法300に従って動作することができる。この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。
【0035】
ブロック302において、I/Oスケジューラが、1又はそれ以上のストレージデバイスの読み込み及び書き込み動作をスケジュールする。様々な実施形態では、I/Oスケジューラが、ストレージデバイス毎に別個のキューを(物理的又は論理的に)維持することができる。また、I/Oスケジューラは、対応するストレージデバイスによりサポートされる動作タイプ毎に別個のキューを含むことができる。例えば、I/Oスケジューラは、SSDのための少なくとも別個の読み込みキュー及び別個の書き込みキューを維持することができる。ブロック304において、I/Oスケジューラは、1又はそれ以上のストレージデバイスの挙動をモニタすることができる。1つの実施形態では、I/Oスケジューラが、対応するストレージデバイスのモデル(例えば、デバイスのモデルに少なくとも部分的に基づく挙動タイプモデル及び/又はアルゴリズム)を含み、このモデルに入力するための状態データをストレージデバイスから受け取ることができる。I/Oスケジューラ内のモデルは、ストレージデバイスの既知の及び/又は観察された特性を利用することにより、ストレージデバイスの挙動のモデル化及び予測の両方を行うことができる。
【0036】
I/Oスケジューラは、I/Oパフォーマンスに影響を与える又は影響を与え得る所与のストレージデバイスの特性を検出することができる。例えば、以下でさらに説明するように、デバイス及びI/Oトラフィックの様々な特性及び状態を維持することができる。I/Oスケジューラは、これらの特性及び状態を観察することにより、所与のデバイスが、長いI/Oレイテンシの挙動を示す状態にもうすぐ入るかもしれないと予測することができる。例えば、1つの実施形態では、I/Oスケジューラが、ストレージデバイスへの要求の応答時間に影響を与え得る内部キャッシュフラッシュがストレージデバイス内でまさに起きようとしていることを検出又は予測することができる。例えば、1つの実施形態では、一定時間にわたってアイドルのままであるストレージデバイスは、内部キャッシュをフラッシュする可能性がある。いくつかの実施形態では、所与のデバイスがアイドルであるかどうかが、デバイス外部の展望に基づくことができる。例えば、ある期間にわたってデバイスに動作がスケジュールされていない場合、このデバイスをほぼこの期間にわたってアイドルであると見なすことができる。このような実施形態では、このデバイスは、デバイス内の内部的に開始されたアクティビティに基づいて実際には稼働中の可能性がある。しかしながら、デバイスがアイドルであるかどうかを判断する際には、このような内部的に開始されたアクティビティは考慮されない。他の実施形態では、デバイスがアイドル中であるか、それとも稼働中であるか判断する際に、デバイスの内部的に開始されたアクティビティを考慮することができる。スケジューラは、デバイスの挙動を観察すること、及びこのデバイスが所与の時間にわたってアイドルであったと気付くことにより、いつ内部キャッシュフラッシュが発生し得るかを予測することができる。他の実施形態では、スケジューラが、デバイスの様々な状況又は状態を判断するためにデバイスにポーリングする能力を有することもできる。いずれにせよ、スケジューラは、予定外の挙動が発生するのを防ぐために、内部キャッシュフラッシュなどの予定外の挙動の可能性を判断して、事前対応動作を開始するように構成することができる。このようにして、スケジューラは、デバイス及びシステム内のイベントのタイミングを制御し、より良好に動作をスケジュールすることができる。
【0037】
デバイス挙動に関する予測を行うための基準として様々な特性を使用することができる。様々な実施形態では、スケジューラが、現在保留中の動作の状態及び/又はストレージデバイスに対応する最近の動作の履歴を維持することができる。いくつかの実施形態では、I/Oスケジューラが、デバイス内のキャッシュのサイズ及び/又はキャッシングポリシーを把握し、ストレージデバイスに送られる総書き込み要求数を維持することができる。他の実施形態では、デバイス内のキャッシュの状態を判断するために(デバイスへの直接ポーリングタイプのアクセスなどの)他の機構を利用可能にすることができる。また、I/Oスケジューラは、ストレージデバイスに送られる書き込み要求内のデータ量を追跡することもできる。その後、I/Oスケジューラは、書き込み要求数又はその書き込み要求に対応する総データ量がいつ所与の閾値に達したかを検出することができる。I/Oスケジューラは、このような状態(条件付きブロック306)を検出した場合、ブロック308において、デバイスの特定の動作をスケジュールすることができる。一般に、このような動作は、上述した事前対応動作に対応することができる。例えば、I/Oスケジューラは、対応するキュー内にキャッシュフラッシュコマンドを入れ込んで、スケジューラの選択時にストレージデバイスがキャッシュフラッシュを行うように強制することができる。或いは、I/Oスケジューラは、ストレージデバイス上のいずれかのキャッシュフラッシュが完了したかどうかを判断するために、キュー内にダミーの読み込み動作を入れ込むこともできる。さらに、スケジューラは、デバイスにクエリを行って(アイドル、稼働中などの)状態情報を取得することができる。上記の及びその他の特性及び動作が可能であり、企図される。また、様々な実施形態では、SSDを元の状態に戻す際に事前対応動作をスケジュールすることができる。このような実施形態では、SSDファームウェア及び/又はマッピングテーブルが、要求が滞った状態又は恒久的に減速した状態に入ることがある。このファームウェアの障害を取り除くには、ドライブを単純にリセットすること、又はドライブの電源を入れ直すことが可能である。しかしながら、状態が恒久的である(すなわち、ファームウェア内に、マッピングテーブルの現状に対処できないバグが存在する)場合、これを修復する別の方法は、ドライブを再フォーマットしてFTLを完全にクリーニング及びリセットし、その後データを再投入すること、又はこのFTLを何か他のデータに再利用することである。
【0038】
上述したアクションを行って、予想外の可変応答時間の発生を防ぎ、又はその回数を減少させることができる。同時に、I/Oスケジューラは、所与のストレージデバイスの予想外の時点におけるあらゆる可変的挙動の発生を検出することができる。I/Oスケジューラは、このような状態(条件付きブロック310)を検出した場合、ブロック312において、このストレージデバイスの対応するキュー内にある動作を入れ込むことができる。この場合、一般に、この動作は、上述した反応的動作に対応することができる。この動作を使用して、ストレージデバイスが可変的挙動を行う時間を短縮し、この可変的挙動の終了を検出することができる。様々な実施形態では、一般に、事前対応動作及び/又は反応的動作が、デバイスを(少なくとも部分的に)既知の状態に置くことができるあらゆる動作を含むことができる。例えば、キャッシュフラッシュ動作を開始することにより、デバイスのキャッシュ状態を空にすることができる。キャッシュが空のデバイスは、キャッシュが空でないデバイスよりも、内部キャッシュフラッシュを開始する可能性が低くなり得る。事前対応動作及び/又は反応的動作のいくつかの例として、キャッシュフラッシュ動作、消去動作、セキュアな消去動作、トリム動作、スリープ動作、休止動作、パワーオン及びオフ、並びにリセット動作が挙げられる。
【0039】
ここで
図4を参照すると、ストレージデバイスに発行された動作を分離する方法400の1つの実施形態を示している。この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。様々な実施形態では、スケジューリングのために、第1のタイプの動作を第2のタイプの動作から分離することができる。例えば、1つの実施形態では、第1のタイプの動作に、第2のタイプの動作よりも高いスケジューリング上の優先度を与えることができる。このような実施形態では、第1のタイプの動作の処理を相対的に早くスケジュールし、第2のタイプの動作を後で処理する(事実上、動作の処理を延期する)ようにキューに入れることができる。先にキューに入れた(第2のタイプの)動作が処理されている間、任意の時点で第1のタイプの動作の処理を中断することができる。その後、第1のタイプの動作に処理優先度が戻されている間、第2の動作タイプの処理を再び中断することができる。1つのタイプの処理をいつ停止し、別のタイプの処理をいつ開始するかは、期間、蓄積されたデータ、トランザクションの頻度、利用可能なリソース(例えば、キューの利用)、これらのあらゆる組み合わせ、又はあらゆる所望の状態に基づくことができる。
【0040】
通常、SSDは、ランダムな読み込み及び書き込み要求に関しては、HDDよりも良好なパフォーマンスを示す。しかしながら、通常、SSDは、その特性に起因して、ランダム書き込み要求に関して示すパフォーマンスの方が読み込み要求よりも悪い。HDDとは違って、読み込み要求と書き込み要求の相対的レイテンシは全く異なり、通常、フラッシュメモリセルのプログラムには、その読み込みよりも時間が掛かるので、書き込み要求には読み込み要求よりも大幅に長い時間が掛かる。また、書き込み動作のレイテンシは、書き込みの一部として行う必要がある追加動作が原因で極めて可変的となり得る。例えば、既に修正済みのフラッシュメモリセルでは、書き込み又はプログラム動作の前に消去動作が行われることがある。また、消去動作は、ブロック単位で行われることがある。このような場合、ブロック(消去セグメント)内のフラッシュメモリセルは、全部まとめて消去される。1つのブロックは比較的大きく、複数のページを含むので、動作には比較的長い時間が掛かることがある。或いは、FTLが、あるブロックを既に消去された消去ブロックにリマップすることがある。いずれの場合にも、書き込み動作を行うことに関連する追加動作により、書き込みレイテンシのばらつきが著しく大きくなるとともに、読み込みよりもレイテンシが大幅に長くなる。他のストレージデバイスタイプは、要求のタイプに基づいて異なる特性を示すことがある。これらに加え、ストレージデバイスによっては、読み込み要求と書き込み要求が混在している場合にパフォーマンス劣り、及び/又は可変的になるものもある。従って、様々な実施形態では、パフォーマンスを向上させるために、読み込み要求と書き込み要求を分離することができる。なお、この説明では、特に読み込み及び書き込み動作について一般的に言及するが、本明細書で説明するシステム及び方法を同様にその他の動作に適用することもできる。このような他の実施形態では、他の比較的長い及び短いレイテンシの動作をこのように識別し、これらをスケジューリングのために分離することができる。また、いくつかの実施形態では、読み込み及び書き込みを第1のタイプの動作として分類し、キャッシュフラッシュ及びトリム動作などのその他の動作を第2のタイプの動作に対応するものとして分類することができる。様々な組み合わせが可能であり、様々な企図が実現する。
【0041】
ブロック402において、I/Oスケジューラは、1又はそれ以上のストレージデバイスのうちの所与のストレージデバイスに関するI/O要求を受け取ってバッファすることができる。ブロック404において、一般にレイテンシの短いI/O要求をレイテンシの長い要求よりも優先してストレージデバイスに発行することができる。例えば、ストレージデバイスが使用するストレージ技術に依存して、読み込み要求のレイテンシの方が書き込み要求及びその他のコマンドタイプのレイテンシよりも短いことがあり、これを初めに発行することができる。この結果、書き込み要求を蓄積できる一方で、読み込み要求に発行優先度が与えられる(すなわち、書き込み要求よりも早くデバイスに伝えられる)。I/Oスケジューラは、ある時点でデバイスに読み込み要求を発行するのを中断して書き込み要求を発行し始める。1つの実施形態では、書き込み要求を複数の書き込みストリームとして発行することができる。従って、書き込み要求に伴うオーバヘッドを複数の書き込み要求にわたって償却することができる。このように、レイテンシの長い要求(書き込み要求など)とレイテンシの短い要求(読み込み要求など)を分離して別個に処理することができる。
【0042】
ブロック406において、I/Oスケジューラは、レイテンシの長い要求を(単複の)デバイスに伝えるべき旨を示す特定の状態が存在するかどうかを判定することができる。例えば、1つの実施形態では、このような状態の検出が、一定数のレイテンシの長いI/O要求、又は対応するデータの量が蓄積されて所与の閾値に達したことを検出することを含むことができる。或いは、受け取ったレイテンシの長い要求の割合が何らかの閾値に達することもある。数多くのこのような状態が可能であり、企図される。1つの実施形態では、このレイテンシの長い要求を、書き込み要求とすることができる。このような状態が生じた(条件付きブロック408)場合、ブロック410において、I/Oスケジューラは、所与のストレージデバイスにレイテンシの長いI/O要求を発行し始めることができる。このような発行される要求の数は、所与のアルゴリズムによって異なることがある。この数は、一定の又はプログラム可能な書き込み数又はデータ量に対応することもできる。或いは、一定期間にわたって書き込みを発行することもできる。例えば、この期間は、特定の状態が存在しなくなる(例えば、受け取った書き込みの割合が下がる)まで、又は特定の状態が生じるまで継続することができる。或いは、デバイスに対するレイテンシの長い要求の発行をいつ開始すべきか、又はいつ停止すべきかを判断する際に、上記のいずれかの組み合わせを使用することができる。いくつかの実施形態では、書き込み要求ストリーム後の第1の読み込み要求が、他の読み込み要求と比較して相対的に遅いことがある。書き込み要求ストリームの直後に発行スロット内に「本物」の読み込み要求をスケジュールすることを避けるために、I/Oスケジューラを、書き込み要求ストリーム後に自動的に「ダミー」の読み込みをスケジュールするように構成することができる。この文脈では、「本物」の読み込みとは、ユーザ又はアプリケーションがデータが要求する読み込みのことであり、「ダミー」の読み込みとは、データを単純に破棄できる人工的に創出された読み込みのことである。様々な実施形態では、ダミーの読み込みが完了したものとして検出されるまで、書き込み要求が完了したと判断されない場合がある。また、様々な実施形態では、書き込みストリームの後にキャッシュフラッシュが続き、これを使用して書き込みがいつ完了したかを判断することができる。
【0043】
ここで
図5を参照すると、ストレージサブシステム内のストレージデバイスの挙動を特徴付けるモデルを作成する方法500の1つの実施形態を示している。この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。
【0044】
ブロック502において、ストレージサブシステム内で使用する1又はそれ以上のストレージデバイスを選択することができる。ブロック504において、キャッシュサイズ、典型的な読み込み及び書き込み応答時間、ストレージトポロジ、デバイス寿命などの、各デバイスの様々な特性を識別することができる。ブロック506において、所与のストレージデバイスのI/Oパフォーマンスに影響を与える1又はそれ以上の特性を識別することができる。
【0045】
ブロック508において、所与のデバイスの特性のタイミング及び/又は発生に影響を与える1又はそれ以上のアクションを特定することができる。一例として、キャッシュフラッシュ、及びSSDの消去動作などの所与の動作の実行を挙げることができる。例えば、キャッシュフラッシュなどの強制動作は、予想外の時点におけるSSDの可変応答時間の発生を低減することができる。ブロック510において、対応する特性及びアクションに基づいて、1又はそれ以上の選択されたデバイスの各々に関するモデルを作成することができる。このモデルは、ストレージコントローラ内のI/Oスケジューラ内などのソフトウェア内で使用することができる。
【0046】
図6を参照すると、ストレージサブシステムの1つの実施形態の汎用ブロック図を示している。図示の実施形態では、ストレージデバイス176a〜176mの各々を単一のデバイスグループ内に示している。しかしながら、他の実施形態では、1又はそれ以上のストレージデバイス176a〜176mを、デバイスグループ173a〜173mのうちの2又はそれ以上に区分化することができる。デバイスユニット600a〜600wには、各ストレージデバイスの1又はそれ以上の対応する動作キュー及びステータステーブルを含めることができる。これらのデバイスユニットは、RAM172に記憶することができる。デバイスグループ173a〜173mの各々には、対応するI/Oスケジューラ178を含めることができる。各I/Oスケジューラ178は、対応するデバイスグループ内のストレージデバイスの各々の状態データを追跡するモニタ610を含むことができる。スケジューリングロジック620は、対応するストレージデバイスにどの要求を発行すべきかを判断するとともに、要求を発行するタイミングを判断することができる。
【0047】
ここで
図7を参照すると、デバイスユニット600の1つの実施形態の汎用ブロック図を示している。デバイスユニット600は、デバイスキュー710及びテーブル720を含むことができる。デバイスキュー710は、読み込みキュー712、書き込みキュー714、及びその他の動作キュー716などの1又はそれ以上のその他のキューを含むことができる。各キューは、1又はそれ以上の対応する要求を記憶するための複数のエントリ730を含むことができる。例えば、対応するSSDのデバイスユニットは、少なくとも読み込み要求、書き込み要求、トリム要求及び消去要求などを記憶するためのキューを含むことができる。テーブル720は、1又はそれ以上の状態テーブル722a〜722bを含み、これらの各々は、状態データを記憶するための複数のエントリ730を含むことができる。様々な実施形態では、
図7に示すキューを、物理的に及び/又は論理的に別個のものとすることができる。また、キュー及びテーブルが特定数のエントリを含むように示しているが、必ずしもこれらのエントリ自体が互いに対応するわけではない。また、キュー及びテーブルの数は、図示のものと異なることもある。さらに、エントリには、所与のキュー内で又は複数のキューにわたって優先順位を付けることができる。例えば、読み込み要求は、デバイスに要求を発行する順序に影響を与える、高、中又は低の優先度を有することができる。また、このような優先度は、様々な状況に応じて変更することができる。例えば、一定の寿命に達する優先度の低い読み込みの優先度を上げることができる。当業者には、数多くのこのような優先順位付けスキーム及び技術が知られている。全てのこのような方法が企図されており、本明細書で説明するシステム及び方法に関連して使用することができる。
【0048】
ここで
図8を参照すると、
図7に示すような状態テーブルの1つの実施形態を示す汎用ブロック図を示している。1つの実施形態では、このようなテーブルが、所与のストレージデバイスの状態情報、エラー情報、摩耗レベル情報及びその他の情報に対応するデータを含むことができる。対応するI/Oスケジューラは、この情報にアクセスすることができ、これによりI/Oスケジューラは、ストレージデバイスへのI/O要求をより良好にスケジュールすることができる。1つの実施形態では、この情報が、デバイス寿命802、エラー率804、デバイス806上で検出された総エラー数、回復可能なエラー数808、回復不能なエラー数810、デバイスのアクセス速度812、記憶されたデータの寿命814、対応するキャッシュサイズ816、対応するキャッシュフラッシュアイドル時間818、1又はそれ以上の割り当て空間の割り当て状態820〜822、同時処理レベル824、及び様々な動作の(単複の)予想時間826のうちの少なくとも1つ又はそれ以上を含むことができる。割り当て状態は、使用中、空、及びエラーなどを含むことができる。所与のデバイスの同時処理レベルは、デバイスの複数の動作を同時に処理する能力に関する情報を含むことができる。例えば、あるデバイスが4つのフラッシュチップを有し、各々が一度に1つの転送を行うことができる場合、このデバイスは、最大4つの並行動作を行うことができる。特定の動作を並行して行うことができるか否かは、デバイス上にデータがどのようにレイアウトされていたかに依存することができる。例えば、デバイス内のデータが、要求によりアクセスされるデータが全て1つのチップ上に存在するようにレイアウトされている場合、このデータに関する動作を、異なるチップのデータにアクセスする要求と並行して進めることができる。しかしながら、要求によりアクセスされるデータが複数のチップにわたってストライプ状になっている場合、この要求が他の1つに干渉することがある。従って、デバイスは、最大N回(例えば、デバイスが4つのチップを有する上述の例では4回)の並行/同時動作を行うことができる。或いは、この最大同時処理レベルは、関与する動作のタイプに基づくこともできる。いずれにせよ、動作をスケジュールする時には、スケジューラは、同時処理レベルN及び未処理のトランザクション数Mを示す記憶情報を考慮することができる。
【0049】
ここで
図9を参照すると、データストレージサブシステム上における予想外の可変I/O応答時間を低減するようにI/Oスケジューリングを調整する方法900の別の実施形態を示している。ネットワークアーキテクチャ100及びデータストレージアレイ120a〜120b内で具体化される構成要素は、一般に方法900に従って動作することができる。説明を目的として、この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。
【0050】
ブロック902において、I/Oスケジューラは、ストレージデバイスの各々の挙動をモニタすることができる。条件付きブロック904〜908には、方法300の条件付きステップ306に関して上述したような、I/Oパフォーマンスに影響を与え得る所与のデバイスの特性を検出する1つの実施形態を示す。1つの実施形態では、I/Oスケジューラが、所与のデバイスが所与のアイドル時間を超えていることを検出した(条件付きブロック904)場合、又は対応するキャッシュが占有率閾値を超えていることを検出した(条件付きブロック906)場合、又はキャッシュデータがデータ寿命閾値を超えていることを検出した(条件付きブロック908)場合、ブロック910において、この所与のストレージデバイスに強制(事前対応)動作を発行することができる。このような場合、スケジューラは、直ちに及び予測できない時点で内部キャッシュフラッシュが発生するであろうと予測することができる。このようなイベントの発生を避けるために、I/Oスケジューラは、イベントを避ける動作を事前対応的にスケジュールする。
【0051】
なお、上述したイベントの回避とは、イベントが発生しないこと、或いは予想外又は予定外の時点で発生しないことを意味することができる。換言すれば、一般にスケジューラは、所与のイベントがスケジューラのタイミングに従って発生し、その他の場合には発生しないことを好む。この意味では、スケジューラがスケジュールしたことによって発生するレイテンシの長いイベントのほうが、このような予想外に発生するイベントよりもましである。少なくともこれらの検出を行うために、スケジューリングロジック620内のタイマ及びカウンタをモニタ610と組み合わせて使用することができる。特定のストレージデバイスに発行される強制的動作の一例として、キャッシュフラッシュを挙げることができる。強制的動作の別の例として、消去要求を挙げることもできる。強制的動作は、I/Oスケジューラから、対応するデバイスユニット600内のデバイスキュー710内の対応するキューにスケジューリングの一部として送ることができる。
【0052】
ここで
図10を参照すると、共有データストレージ上における相対的にレイテンシの短い読み込み動作を維持する方法1000の1つの実施形態を示している。ネットワークアーキテクチャ100及びデータストレージアレイ120a〜120b内に具体化される構成要素は、一般に方法1000に従って動作することができる。説明を目的として、この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。
【0053】
ブロック1002において、ストレージサブシステムのRAIDアーキテクチャ内の冗長性の量を、所与のデバイスグループ173内で使用すべきと判断することができる。例えば、4+2のRAIDグループでは、ストレージデバイスのうちの2つを使用して、パリティ情報などの消去訂正符号(ECC)情報を記憶することができる。この情報を、再構成読み込み要求の一部として使用することができる。1つの実施形態では、この再構成読み込み要求を通常のI/Oスケジューリング中に使用して、いくつかのストレージデバイスが可変I/O応答時間を示していることが検出されている間にデバイスグループのパフォーマンスを向上させることができる。ブロック1004において、デバイスグループ内の同時に使用中の、又は可変応答時間を示している可能性のあるデバイスの最大数を求める。この最大数は、目標数と呼ぶことができる。1つの実施形態では、ストレージデバイスが、書き込み要求、消去要求又はキャッシュフラッシュを実行することに起因して可変応答時間を示すことがあるSSDである。1つの実施形態では、目標数が、引き続き再構成読み込みを行うことができるように選択される。
【0054】
1つの実施形態では、I/Oスケジューラが、再構成読み込みがそれ以上効率的でなくなるレベルにまで目標数を引き上げることを保証する状態を検出することができる。例えば、所与のデバイスの未処理の書き込み要求数が、待機中閾値に達する(すなわち、書き込み要求がかなりの期間にわたって未処理のままであり、これらをこれ以上待機させるべきでないと判断する)ことがある。或いは、上述したように、後で発行されるように蓄積できない比較的優先度の高い一定数の書き込み要求を検出することができる。I/Oスケジューラは、このような状態(条件付きブロック1006)を検出した場合、ブロック1008において、1又はそれ以上の検出した状況に基づいて目標を増分又は減分することができる。例えば、適当な数の高優先度の書き込み要求が未処理である場合、又は他の何らかの条件が生じた場合、I/Oスケジューラは、サポートされる冗長性の量よりも目標が上回るようにすることができる。ブロック1010において、I/Oスケジューラは、デバイスグループ内のN個のストレージデバイスが可変I/O応答時間を示していると判断することができる。Nが目標を上回る場合(条件付きブロック1012)、ブロック1014において、Nを低減するようにストレージデバイスをスケジュールすることができる。そうでない場合、ブロック1016において、I/Oスケジューラは、パフォーマンスを向上させるように要求をスケジュールすることができる。例えば、I/Oスケジューラは、以下でさらに説明するような再構成読み込み要求の能力を利用することができる。
【0055】
ここで
図11を参照すると、可変I/O応答時間を示すストレージデバイスの数を低減する方法1100の1つの実施形態を示している。この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。
【0056】
ブロック1102において、I/Oスケジューラは、予想外の時点で可変応答時間を引き起こすレイテンシの長い動作を実行するストレージサブシステム内のストレージデバイスの数Nを低減すると判断することができる。ブロック1104において、I/Oスケジューラは、レイテンシの長い動作を実行する所与のデバイスを選択することができる。ブロック1106において、I/Oスケジューラは、この所与のデバイス上におけるレイテンシの長い動作の実行を中止させてNを減分することができる。例えば、I/Oスケジューラは、この所与のストレージデバイスに対する書き込み要求及び消去要求の発行を停止することができる。また、対応するI/Oスケジューラは、発行された書き込み要求及び消去要求の実行を中止させることもできる。ブロック1108において、I/Oスケジューラは、この所与のデバイス上で、読み込み要求などのレイテンシの短い動作の実行を開始することができる。これらの読み込み要求は、再構成読み込み要求を含むことができる。このようにして、デバイスは、レイテンシの長い応答状態を放置し、Nを低減する。
【0057】
ここで
図12を参照すると、共有データストレージ上における効率的なレイテンシによる読み込み動作を維持する方法の1つの実施形態を示している。ネットワークアーキテクチャ100及びデータストレージアレイ120a〜120b内に具体化される構成要素は、一般にこの方法に従って動作することができる。説明を目的として、この実施形態のステップを順番に示す。しかしながら、ステップによっては、図示のものとは異なる順序で行なうことができるもの、同時に行うことができるもの、他のステップと組み合わせることができるもの、及び別の実施形態には存在しないものもある。
【0058】
図12で説明する方法は、方法1000のステップ1016を行うために取られるステップの1つの実施形態を表すことができる。ブロック1201において、I/Oスケジューラは、可変応答時間挙動を示している第1のデバイスに向けられた最初の読み込み要求を受け取る。第1のデバイスは、特定のスケジュール動作を受け取ったことにより(すなわち、既知の理由)、又は何らかの未知の理由により可変応答時間を示していることがある。様々な実施形態では、所与の動作の予想されるレイテンシに少なくとも部分的に基づいて、可変応答時間と考えられるものを特定することができる。例えば、デバイスの特性及び/又は最近の動作履歴に基づいて、所与の読み込みに対する応答が一定期間内に発生すると予想することができる。例えば、許容可能な応答レイテンシの範囲を反映すると判断されるデルタを有するデバイスの平均応答レイテンシを特定することができる。このようなデルタは、トランザクションの99%又は他のいずれかの好適な数のトランザクションを考慮するように選択することができる。予想される期間内に応答が受け取られなかった場合、再構成読み込みの開始をトリガすることができる。
【0059】
一般的に言えば、再構成読み込みが模倣されるか否かは、再構成読み込みを行うことに関連するコストと、再構成読み込みの結果を取得する利点(見込み)とを比較する費用便益分析に基づくことができる。例えば、所与のデバイスにおける最初の読み込み要求に対する応答が一定時間内に受け取られない場合、このデバイスが、開始すべき再構成読み込みのレイテンシを上回るレイテンシを生じる動作を行っていると予測することができる。従って、再構成読み込みを開始することができる。このようなアクションは、(例えば)一定レベルの読み込みサービスパフォーマンスを維持するために行うことができる。なお、再構成読み込みを開始すべきかどうか判断する際には、現在の負荷、受け取られている要求のタイプ、要求の優先度、システム内の他のデバイスの状態、並びに
図7及び
図8で説明したような様々な特性などの他の要素を同様に考慮することができる。さらに、最初の読み込みの応答レイテンシが比較的長いという理由で再構成読み込みを開始することができるが、最初の読み込み要求は実際に完了することが予想される。実際には、最初の読み込み及び再構成読み込みがいずれも正常に完了して結果を提供することができる。従って、再構成読み込みは、最初の要求が処理されるようにするために必要なものではない。このことは、トランザクションが正常に完了しない(又はその可能性がある)ことを示すレイテンシ及び何らかのエラー表示を検出することなどの、エラー状態に起因するレイテンシとは対照的である。例えば、所与のストレージの場所を読み込めないことに起因するデバイスタイムアウトは、完了することが予想されない応答を表す。このような場合、要求を処理するために再構成読み込みが必要となり得る。従って、様々な実施形態では、システムが、所与のデバイスの少なくとも2つのタイムアウト状態を効果的に含むことができる。第1のタイムアウトは、それ以降、必ずしも必要でなくても再構成読み込みを開始できるようになる期間に対応する。このようにして、再構成読み込みを、非エラーに関連するスケジューリングプロセスの通常部分としてスケジューリングアルゴリズムに組み込むことができる。第1のタイムアウト後に発生する第2のタイムアウトは、それ以降、エラー状態が発生したと考えられる期間を表す。この場合、エラーを示すデバイスが最初の読み込みを処理しないと予想されることを理由として再構成読み込みを開始することもできる。
【0060】
上記に照らして、I/Oスケジューラは、最初の読み込みに対応する再構成読み込みを開始すべきかどうかを判断することができる(判断ブロック1202)。一般に、この再構成読み込みは、第1のデバイス以外のデバイスによって処理される1又はそれ以上の読み込みを伴う。再構成読み込みを開始すべきかどうかを判断する際には、多くの要因を考慮することができる。一般的に言えば、I/Oスケジューラは、コスト/利益分析を行って、第1のデバイスによって最初の読み込みを処理しようとする方が「良い」か、それとも再構成読み込みを発行することによって最初の読み込みを処理しようとする方が「良い」かを判断する。上述したように、再構成読み込みを開始すべきかどうかを判断する際には、いくつかの要素を考慮することができる。所与の状況においてどちらが「良い」かは異なることがあり、プログラム可能であり、動的に判断することができる。例えば、アルゴリズムを、常により高速な読み込み応答時間を重んじるようなものとすることができる。このような場合、最初のデバイスが最初の読み込みを処理する前に再構成読み込みの処理を完了できる(又は完了してもよい)かどうかを判断することができる。或いは、アルゴリズムが、ある時点でシステム負荷を低減することを優先すると判断することもできる。このような場合、I/Oスケジューラは、たとえ最初の読み込みよりも速く再構成読み込みを完了できる場合でも、追加のオーバヘッドを伴う再構成読み込みを開始しないことを選択することができる。さらに、このような判断では、速度とオーバヘッドの微妙なバランスを使用することができる。様々な実施形態では、アルゴリズムに、(例えば、負荷に関わらず常に速度を優先するなどの)初期重み付けをプログラムすることができる。このような重み付けは不変的なものであってもよく、又は様々な状況によって動的に変化するようにプログラム可能であってもよい。例えば、状況として、時刻、受け取ったI/O要求の速度、受け取った要求の優先度、特定のタスクが検出されたかどうか(例えば、現在バックアップ処理が行われているかどうか)、及び不具合の検出などを挙げることができる。
【0061】
スケジューラが、再構成読み込みを開始しないと決定した場合、元々対象になっていたデバイスが読み込みを処理することができる(ブロック1203)。或いは、再構成読み込みを開始することもできる(ブロック1204)。1つの実施形態では、再構成読み込みを処理するために選択される他のデバイスが、非可変的挙動を示すものとして識別されたものである。非可変的挙動(すなわち、より予測しやすい挙動)を示すデバイスを選択することにより、I/Oスケジューラは、再構成読み込みを処理するのにどれほどの時間が掛かるかをより良好に予測することができる。デバイスの所与の可変的/非可変的挙動に加え、I/Oスケジューラは、各デバイスの他の側面を考慮することもできる。例えば、再構成読み込みを処理するための特定のデバイスを選択する際に、I/Oスケジューラは、所与のデバイスに関する未処理要求の数(例えば、デバイスキューがどれほど埋まっているか)、所与のデバイスに関する現在保留中の要求の優先度、及びデバイス自体の予想処理速度(例えば、デバイスによっては、他のデバイスよりも古い又は本質的に別様に低速の技術を示すものもある)などを評価することもできる。さらに、スケジューラは、デバイスの各々からの対応する結果がほぼ同時に戻されるように再構成読み込みをスケジュールしたいと望むことができる。このような場合、スケジューラは、再構成読み込みを処理するための特定のデバイスの処理時間が他のデバイスとは有意に異なると予測される場合、たとえこのデバイスが他のデバイスよりも大幅に高速であるとしても、このデバイスの優先度を下げることができる。数多くのこのような考慮すべき要因及び条件が可能であり、企図される。
【0062】
1つの実施形態では、再構成読み込み要求が、最初の読み込み要求の優先度レベルを継承することができる。他の実施形態では、再構成読み込み要求が、最初の読み込み要求とは異なる優先度を有することができる。I/Oスケジューラは、対応する再構成読み込み要求を受け取る選択した第2の(他の)デバイスが現在可変応答時間挙動(条件付きブロック1205)を示していることを検出し、この第2のデバイスが、第1のデバイスが非可変的になると予測される後まで可変的状態に留まると予測される場合、ブロック1208において、第1のデバイスに最初の読み込み要求を発行することができる。1つの実施形態では、タイマを使用して、可変応答時間を示すストレージデバイスがいつ再び非可変応答時間を示すことができるかを予測することができる。方法1200の制御フローは、ブロック1208からブロックCを介して条件付きブロック1212に移行する。第2のデバイスが第1のデバイスよりも長く可変的状態に留まらない(条件付きブロック1206)と予測される場合、方法1200の制御フローはブロック1210に移行する。ブロック1210において、発行された再構成読み込み要求によって読み込み要求を処理する。
【0063】
I/Oスケジューラは、所与の可変的デバイスが非可変的になることを検出した(条件付きブロック1212)場合、ブロック1214において、この所与のデバイスに最初の読み込み要求を発行する。I/Oスケジューラは、この所与のデバイスを非可変的として指定し、N(可変I/O応答時間を示していることが検出されたストレージデバイスの数)を減分することができる。代替の再構成読み込み要求の前に最初の読み込み要求が終了した(条件付きブロック1216)場合、ブロック1218において、I/Oスケジューラは、最初の読み込み要求で読み込み要求に対応する。様々な実施形態では、スケジューラが、再構成読み込み要求を除去することができる。或いは、再構成読み込み要求を完了して、そのデータを単純に破棄することもできる。そうでない場合、ブロック1220において、I/Oスケジューラは、この読み込み要求を再構成読み込み要求で処理し、最初の読み込み要求を除去する(又はその戻されたデータを破棄する)ことができる。
【0064】
なお、上述の実施形態は、ソフトウェアを含むことができる。このような実施形態では、方法及び/又は機構を実装するプログラム命令をコンピュータ可読媒体で搬送し、又はこれに記憶することができる。プログラム命令を記憶するように構成された数多くのタイプの媒体が利用可能であり、これらは、ハードディスク、フロッピー(登録商標)ディスク、CD−ROM、DVD、フラッシュメモリ、プログラマブルROM(PROM)、ランダムアクセスメモリ(RAM)及び他の様々な形態の揮発性又は不揮発性ストレージを含む。
【0065】
様々な実施形態では、本明細書で説明した方法及び機構の1又はそれ以上の部分が、クラウドコンピューティング環境の一部を成すことができる。このような実施形態では、1又はそれ以上の様々なモデルにより、インターネットを介してリソースをサービスとして提供することができる。このようなモデルとして、インフラストラクチャ・アズ・ア・サービス(IaaS)、プラットホーム・アズ・ア・サービス(PaaS)、及びソフトウェア・アズ・ア・サービス(SaaS)を挙げることができる。IaaSでは、コンピュータインフラストラクチャがサービスとして配信される。このような場合、一般にサービスプロバイダがコンピュータ設備を所有し運営する。PaaSモデルでは、開発者がソフトウェアソリューションを開発するために使用するソフトウェアツール及び基本設備をサービスプロバイダがサービスとして供給しホストすることができる。通常、SaaSは、サービスプロバイダのライセンスソフトウェアをサービスオンデマンドとして含む。サービスプロバイダは、このソフトウェアをホストすることができ、又はこのソフトウェアを一定期間にわたって顧客に展開することができる。上記のモデルの数多くの組み合わせが可能であり、企図される。また、上記の説明はネットワーク化されたストレージ及びコントローラに焦点を当てたものであるが、上述の方法及び機構を、直接接続ストレージ及びホストオペレーティングシステムなどを有するシステムにおいて適用することもできる。
【0066】
以上、実施形態についてかなり詳細に説明したが、上記開示を完全に理解すると、当業者には数多くの変形及び修正が明らかになるであろう。以下の特許請求の範囲は、このような変形及び修正を全て含むと解釈すべきである。