【実施例】
【0076】
(実施例1)
図4、
図5に示す結晶製造装置を用いて、窒化ガリウム結晶を作製した。以下、その手順を詳説する。まず、アルゴン雰囲気のグローブボックス内で、内径φ70mmのルツボ14の底に種結晶基板(φ2インチのGaNテンプレート:サファイア上にGaN薄膜(厚さ5ミクロン)をMOCVD法で成膜したもの)を水平に配置した。
ここでGaN薄膜の表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、約8×10
8〜2×10
9/cm
2であった。
【0077】
次いで、金属ナトリウム15g、金属ガリウム10g、炭素39mg(Ga/Na比は18mol%、C/Na比は、0.5mol%)をルツボ14内に充填した。ルツボ14をステンレス製の内側器16内に入れ、さらに内容器16を外容器14内に入れ、外容器本体の開口を窒素導入パイプの付いた外容器蓋で閉じた。この外容器を、予め真空ベークしてある回転台の上に設置し、耐圧容器12に蓋をして密閉した。
【0078】
そして、耐圧容器内を真空ポンプにて0.1Pa以下まで真空引きした。続いて、上段ヒータ、中段ヒータ、下段ヒータ及び底部ヒータをそれぞれ860℃、860℃、870℃、870℃となるように調節して加熱空間の温度を865℃に加熱しながら、4.0MPaまで窒素ガスボンベから窒素ガスを導入し、外容器を中心軸周りに30rpmの速度でずっと時計回りに回転させた。加速時間a=1秒、保持時間b=15秒、減速時間c=1秒、停止時間d=0.5秒とした。そして、この状態で10時間保持した。その後、室温まで自然冷却したのち、耐圧容器の蓋を開けて中から坩堝を取り出し、坩堝にエタノールを投入し、金属ナトリウムをエタノールに溶かしたあと、成長した窒化ガリウム結晶板を回収した。この窒化ガリウム結晶板の大きさはφ2インチであり、種基板上に約0.1mm成長していた。従って、平均の結晶成長速度は約10μm/hと見積もることが出来る。
なお、融液の深さは約4mmであり、未飽和時間は約2時間である。
【0079】
成長した結晶の断面観察を行った結果を
図6に示し、
図17に2値化画像をしめす。図からわかるように、成長開始初期の30μmの領域に、大きさ数ミクロンのインクルージョンが存在することがわかった。このインクルージョンをSIMS分析したところ、ナトリウムとガリウムが検出された。また、各層におけるインクルージョン面積比率を表1に示す。なお、界面から50μmにおけるインクルージョン面積比率は約4%であり、それより上のインクルージョン欠乏層におけるインクルージョン面積比率は約0%である。
【0080】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
5〜10
6/cm
2台であり、種基板の欠陥密度よりも大幅に低減していた。
【0081】
次いで、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。具体的には、レーザー光源として波長355nmのNd:YAGの3次高調波を用いている。パルス幅は約30nsで、パルス周期は約50kHzとしている。レーザ光10を集光して約20μm径の円形状ビームとすることにより、1.0J/cm
2 程度の光密度を得ている。サファイアはレーザー光に対して透明である。
【0082】
得られた前記積層体をサファイア基板を上向きにしてXYステージ上に配置した。XYステージを30mm/秒で移動させながら、サファイア基板側からレーザー光を順次照射して種結晶膜を融解させ、積層体を約50℃に加熱してサファイア基板を除去した。13族元素窒化物膜にはクラックは見られなかった。
【0083】
(実施例2)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、回転方向は周期的に反転させた。また、加速時間=1秒、保持時間=15秒、減速時間=1秒、停止時間=15秒とし、反転を繰り返した。
成長した結晶の断面観察を行った結果を
図7に示し、
図18に2値化画像をしめす。図からわかるように、成長開始初期の50μmの領域に、大きさ数ミクロンのインクルージョンが存在することがわかった。このインクルージョンをSIMS分析したところ、ナトリウムとガリウムが検出された。各層におけるインクルージョン面積比率を表1に示す。また、界面から50μmにおけるインクルージョン面積比率は約8%であり、それより上のインクルージョン欠乏層におけるインクルージョン面積比率は約0%である。
【0084】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
5〜10
6/cm
2台であり、種基板の欠陥密度よりも大幅に低減していた。
【0085】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0086】
(実施例3)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、回転方向は周期的に反転させた。また、加速時間=1秒、保持時間=15秒、減速時間=1秒、停止時間=15秒とし、反転を繰り返した。回転速度は10rpmとした。
【0087】
成長した結晶の断面観察を行った結果を
図8に示し、
図19に2値化画像をしめす。図からわかるように、成長開始初期の50μmの領域に、大きさ数ミクロンのインクルージョンが存在することがわかった。このインクルージョンをSIMS分析したところ、ナトリウムとガリウムが検出された。各層におけるインクルージョン面積比率を表1に示す。また、界面から50μmにおけるインクルージョン面積比率は約2%であり、それより上のインクルージョン欠乏層におけるインクルージョン面積比率は約0%である。
【0088】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
5〜10
6/cm
2台であり、種基板の欠陥密度よりも大幅に低減していた。
【0089】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0090】
(実施例4)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、回転方向は時計回りのみとし、回転速度は30rpmとした。また、金属ナトリウム13.5g、金属ガリウム18g、炭素35mgとして、Ga/Na比を30mol%とした。
【0091】
成長した結晶の断面観察を行った結果を
図9に示し、
図20に2値化画像をしめす。図からわかるように、成長開始初期の20μmの領域に、大きさ数ミクロンのインクルージョンが存在することがわかった。このインクルージョンをSIMS分析したところ、ナトリウムとガリウムが検出された。各層におけるインクルージョン面積比率を表1に示す。また、界面から50μmにおけるインクルージョン面積比率は約7%であり、それより上のインクルージョン欠乏層におけるインクルージョン面積比率は約0%である。
【0092】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
5〜10
6/cm
2台であり、種基板の欠陥密度よりも大幅に低減していた。
【0093】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0094】
(実施例5)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、金属ナトリウム13.5g、金属ガリウム18g、炭素35mgとして、Ga/Na比を30mol%とした。
【0095】
成長した結晶の断面観察を行った結果を
図10に示し、
図21に2値化画像をしめす。図からわかるように、成長開始初期の50μmの領域に、大きさ数ミクロンのインクルージョンが存在することがわかった。このボイド部をSIMS分析したところ、ナトリウムとガリウムが検出された。各層におけるインクルージョン面積比率を表1に示す。また、界面から25μmにおけるインクルージョン面積比率は約8%であり、それより上のインクルージョン欠乏層におけるインクルージョン面積比率は約0%である。
【0096】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
5〜10
6/cm
2台であり、種基板の欠陥密度よりも大幅に低減していた。
【0097】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0098】
(比較例1)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、金属ナトリウム10g、金属ガリウム5g、炭素39mgとして、Ga/Na比を10mol%とした。また、回転を停止することなく、15時間の間、ずっと時計回りに30rpmで回転しながら育成を行った。この窒化ガリウム結晶板の大きさはφ2インチであり、種基板上に約0.1mm成長していた。従って、平均の結晶成長速度は約6.7μm/hと見積もることが出来る。
【0099】
成長した結晶の断面観察を行った結果を
図11に示し、
図22に2値化画像をしめす。図からわかるように、成長開始初期の50μmの領域にはインクルージョンが存在しないことがわかった。
【0100】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
7/cm
2台であり、種基板の欠陥密度よりも大幅に低減していたが、実施例1よりは欠陥が多かった。
【0101】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離したが、13族元素窒化物膜にクラックが見られた。
【0102】
(比較例2)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、回転を停止することなく、15時間の間、ずっと時計回りに30rpmで回転しながら育成を行った。この窒化ガリウム結晶板の大きさはφ2インチであり、種基板上に約0.1mm成長していた。
【0103】
成長した結晶の断面観察を行った結果を
図12に示し、
図23に2値化画像をしめす。図からわかるように、成長開始初期の50μmの領域にはインクルージョンが存在しないことがわかった。
【0104】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
7/cm
2台であり、種基板の欠陥密度よりも大幅に低減していたが、実施例1よりは欠陥が多かった。
【0105】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離したが、13族元素窒化物膜にクラックが見られた。
【0106】
(比較例3)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、金属ナトリウム13.5g、金属ガリウム18g、炭素35mgとして、Ga/Na比を30mol%とした。また、周期的な反転は行うが、回転速度は10rpmとした。この窒化ガリウム結晶板の大きさはφ2インチであり、種基板上に約0.1mm成長していた。
【0107】
成長した結晶の断面観察を行った結果を
図13に示し、
図24に2値化画像をしめす。図からわかるように、成長開始初期の50μmの領域に、大きなインクルージョンが存在することがわかった。このインクルージョンをSIMS分析したところ、ナトリウムとガリウムが検出された。また、界面から50μmにおけるインクルージョン面積比率は約20%であり、それより上の領域におけるインクルージョン面積比率は約20%である。
【0108】
この成長した領域を厚さ70μmとなるよう研磨加工し、基板全体の厚さは0.4mmとなるように調整した。表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
7/cm
2台であった。
【0109】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離したが、13族元素窒化物膜にクラックが見られた。
【0110】
(実施例6)
実施例1に記載のようにして、種結晶基板11上に13族元素窒化物膜を形成した。次いで、得られた13族元素窒化物単結晶膜上に、n型半導体層、発光境域、p型半導体層をそれぞれMOCVDによって形成する。また、n型電極、p型電極を所定個所に形成し、波長約460nmの青色LEDを試作する。
【0111】
Siドープのn型GaNを4μm、SiドープのInGaNを500Å積層し、続いて発光領域となる多重量子井戸の活性層として、(井戸層、障壁層)=(アンドープのInGaN、SiドープのGaN)をそれぞれの膜厚を(70Å、300Å)として井戸層が6層、障壁層が7層となるように交互に積層する。InGaN井戸層のIn組成は、約15モル%とした。この場合、最後に積層する障壁層はアンドープのGaNとしてもよい。多重量子井戸の活性層を積層後、p型半導体層として、MgドープのAlGaNを200Å、アンドープのGaNを1000Å、MgドープのGaNを200Å積層する。p型半導体層として形成するアンドープのGaN層は、隣接する層からのMgの拡散によりp型を示す。
【0112】
次にn電極を形成するために、MgドープのGaNからp型半導体層と活性層及びn型半導体層の一部までをエッチングし、SiドープのGaN層を露出させる。次にp型半導体層の表面全面にNi/Auからなる透光性のp電極を、さらに透光性のp電極上において、n型半導体層の露出面と対向する位置にAuからなるpパッド電極を形成し、n型半導体層の露出面にW/Al/Wからなるn電極およびPt/Auからなるnパッド電極を形成する。
【0113】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜およびその上の発光構造31を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にクラックが見られなかった。
【0114】
次いで得られた発光素子について、内部量子効率をShockley-Read-Hall法で算出したところ、約90%と高い値が得られた。サファイア基板上に同じLEDを形成した場合の内部量子効率は約60%である。
【0115】
【表1】
【0116】
【表2】
【0117】
次に、インクルージョン分布層の厚さとインクルージョン欠乏層の厚さとの比率を種々変更し、膜の反りとの関係を調べた。
ただし、反りとは、膜の裏面からレーザー干渉計で高さ分布を測定し、最も高いところと最も低いところの差を「反り」とした。表面が凸形状のものが正の反り形状となり、表面が凹形状のものが負の反り形状となる。以下の実施例、比較例では、いずれも、膜表面が凸形状であった。
【0118】
(実施例7)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、保持時間を12時間にして育成を行った。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.125mm成長していた。
【0119】
成長した結晶の断面観察を行った結果、成長開始初期の25μmの領域に、インクルージョン分布層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは4となる。また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、130μm反っていることがわかった。
【0120】
サファイア側にワックスを塗布して、研磨定盤にプレスして貼り付けたところ、ワックス厚さバラツキは10μmに抑えることができ、GaNの厚さが70μmとなるよう研磨加工し、その後、サファイア側も研磨加工し、全体の厚さが0.9mmとなるように調整してウェハーとした。ウェハーの反りは50μmであった。また、GaN表面の欠陥密度をCL(カソードルミネッセンス)測定により評価したところ、10
5〜10
6/cm
2台であり、種基板の欠陥密度よりも大幅に低減していた。
【0121】
このウェハーにMOCVD法により、青色LEDを作製した。具体的には、n−GaN層2μm成膜後、InGaN厚さ3nm、GaN厚さ5nmを1周期とする量子井戸構造を7周期作製し、その上に厚さ50nmのp−GaN層を成膜した。このウェハーのp−GaN側をメタルボンディングによって、厚さ0.3mmの導電性のシリコンウェハーと接合し、市販のレーザーリフトオフ装置を用いて、サファイア側からレーザー光を照射し、サファイア基板をGaNから分離した。分離したGaNはN面が露出している。N面を光取りだし率向上のためのモスアイ加工を施した後、n電極を取り付け、その後、1mm角に切断し、LEDチップを作製した。このLEDチップをヒートシンクに実装し、蛍光体を塗布し、350mAで駆動したところ、100ルーメン/W以上の高効率で発光することを確認した。
【0122】
(実施例8)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、上段ヒータ、中段ヒータ、下段ヒータ及び底部ヒータをそれぞれ880℃、880℃、890℃、890℃となるように調節して加熱空間の温度を885℃に加熱し、この状態で4時間保持した。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.025mm成長していた。
【0123】
成長した結晶の断面観察を行った結果、成長開始初期の3μmの領域にインクルージョン分布層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは、22/3となる。
【0124】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、38μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0125】
(実施例9)
実施例8と同様にして窒化ガリウム膜を形成した。ただし、保持時間は10時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.105mm成長していた。
【0126】
成長した結晶の断面観察を行った結果、成長開始初期の5μmの領域に、インクルージョンが存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは20となる。
【0127】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、155μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0128】
(実施例10)
実施例8と同様にして窒化ガリウム膜を形成した。ただし、保持時間は12時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.127mm成長していた。
成長した結晶の断面観察を行った結果、成長開始初期の7μmの領域にインクルージョン分布層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは17となる。
【0129】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、180μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0130】
(実施例11)
実施例4と同様にして窒化ガリウム膜を形成した。ただし、保持時間は6時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.030mm成長していた。
【0131】
成長した結晶の断面観察を行った結果、成長開始初期の20μmの領域に、インクルージョン含有層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは0.5となる。
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、70μm反っていることがわかった。
【0132】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0133】
(実施例12)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、保持時間は12時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.110mm成長していた。
成長した結晶の断面観察を行った結果、成長開始初期の30μmの領域に、インクルージョン含有層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは、8/3となる。
【0134】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、130μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0135】
(実施例13)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、保持時間は20時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.220mm成長していた。
成長した結晶の断面観察を行った結果、成長開始初期の20μmの領域に、インクルージョン含有層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは10となる。
【0136】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、320μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0137】
(実施例14)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、上段ヒータ、中段ヒータ、下段ヒータ及び底部ヒータをそれぞれ870℃、870℃、880℃、880℃となるように調節して加熱空間の温度を875℃に加熱し、この状態で10時間保持した。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.100mm成長していた。
【0138】
成長した結晶の断面観察を行った結果、成長開始初期の10μmの領域に、インクルージョン含有層が存在することがわかった。従って、インクルージョン分布層の厚さを1としたとき、インクルージョン欠乏層の厚さは9となる。
【0139】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、130μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離し、13族元素窒化物膜にはクラックは見られなかった。
【0140】
(比較例4)
比較例1と同様にして窒化ガリウム膜を形成した。ただし、保持時間は15時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.150mm成長していた。
成長した結晶の断面観察を行った結果、成長初期50μmの領域にはインクルージョンが存在しないことがわかった。
【0141】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、250μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離したが、13族元素窒化物膜にクラックが見られた。
【0142】
(比較例5)
比較例1と同様にして窒化ガリウム膜を形成した。ただし、保持時間は5時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.050mm成長していた。
成長した結晶の断面観察を行った結果、成長初期50μmの領域にはインクルージョンが存在しないことがわかった。
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、85μm反っていることがわかった。
【0143】
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離したが、13族元素窒化物膜にクラックが見られた。
【0144】
(比較例6)
比較例1と同様にして窒化ガリウム膜を形成した。ただし、保持時間は20時間とした。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.200mm成長していた。
成長した結晶の断面観察を行った結果、成長初期50μmの領域にはインクルージョンが存在しないことがわかった。
【0145】
また、この窒化ガリウム結晶板の反り形状を裏面のサファイア側から測定したところ、340μm反っていることがわかった。
次いで、実施例1と同様にして、種結晶基板の背面側からレーザー光を照射することによって、13族元素窒化物膜を基板から剥離させた。この結果、サファイア基板は剥離したが、13族元素窒化物膜にクラックが見られた。
【0146】
(比較例7)
実施例1と同様にして窒化ガリウム膜を形成した。ただし、上段ヒータ、中段ヒータ、下段ヒータ及び底部ヒータをそれぞれ850℃、850℃、860℃、860℃となるように調節して加熱空間の温度を855℃に加熱し、この状態で10時間保持した。この窒化ガリウムの大きさはφ2インチであり、種基板上に約0.100mm成長していた。
【0147】
成長した結晶の断面観察を行った結果、成長開始初期の50μmの領域だけでなく、50〜60μmの領域にもインクルージョン分布層が存在することがわかった。界面から50μmにおけるインクルージョン面積比率は約4%であり、50〜60μmの領域におけるインクルージョン面積比率は約3%である。
【0148】
また、この窒化ガリウム結晶板を用いてLED構造を成膜したところ、インクルージョン含有部は凹凸成長してしまい、LEDを作製することが出来なかった。
【0149】
(評価)
比較例4、比較例5及び比較例6で形成した窒化ガリウム膜の厚みと反りの関係を示したグラフを
図25に示す。図よりインクルージョン分布層がない場合は厚みと反りが比例関係にあることがわかり、任意の窒化ガリウム膜の厚さにおける反りの大きさが予測される。
【0150】
さらに、実施例7から実施例14で形成された窒化ガリウム膜の反りの値(A)と、それぞれ同じ厚さでインクルージョン分布層がない場合に予想される反りの値(B)の差をBで除した比に100を掛けた値を反り低減率(%)とし、インクルージョン分布層の厚みと反り低減率の関係を示したグラフを
図26に示す。この図より、インクルージョン分布層が存在すると反り低減率として約10%〜40%得られ、反り低減の効果があることがわかった。
【0151】
本発明の特定の実施形態を説明してきたけれども、本発明はこれら特定の実施形態に限定されるものではなく、請求の範囲の範囲から離れることなく、種々の変更や改変を行いながら実施できる。