(58)【調査した分野】(Int.Cl.,DB名)
190℃における溶融張力〔MTγ(g)〕と、前記エチレン系重合体(α)の溶融張力〔MTα(g)〕、前記エチレン系重合体(β)の溶融張力〔MTβ(g)〕、前記WαおよびWβとが、下記関係式(Eq-1-1)を満たすことを特徴とする、請求項1に記載のエチレン系重合体組成物(γ)。
1.2<MTγ/(MTα×Wα+MTβ×Wβ)≦3.0 …(Eq-1-1)
【発明を実施するための形態】
【0022】
以下、本発明に係るエチレン系重合体組成物(γ)について、その構成成分であるエチレン系重合体(α)およびエチレン系重合体(β)とともに具体的に説明する。
【0023】
<構成成分>
エチレン系重合体(α)
本発明に係るエチレン系重合体(α)は、エチレンと炭素数4以上10以下のα-オレフィン、好ましくはエチレンと炭素数6〜10のα-オレフィンとの共重合体である。炭素数4のα-オレフィンを使用する場合には、炭素数6〜10のα-オレフィンもあわせて使用することが好ましい。エチレンとの共重合に用いられる炭素数4〜10のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンなどが挙げられる。
【0024】
エチレン系重合体(α)は下記要件(1)〜(5)に示す特性を有している。
【0025】
(1)190℃における2.16kg荷重でのメルトフローレート(MFR)が0.1g/10分以上30g/10分以下である。下限は好ましくは0.5g/10分、より好ましくは1.0g/10分であり、上限は好ましくは10g/10分、より好ましくは5.0g/10分である。メルトフローレート(MFR)が上記下限値以上の場合、エチレン重合体組成物(γ)においてせん断粘度が高すぎず、成形性が良好である。メルトフローレート(MFR)が上記上限値以下の場合、エチレン重合体組成物(γ)の引張強度やヒートシール強度などの機械的強度が良好になる。
【0026】
メルトフローレート(MFR)は分子量に強く依存しており、メルトフローレート(MFR)が小さいほど分子量は大きく、メルトフローレート(MFR)が大きいほど分子量は小さくなる。また、エチレン系重合体の分子量は、重合系内における水素とエチレンとの組成比(水素/エチレン)により決定されることが知られている(例えば、曽我和雄他編、「Catalytic Olefin Polymerization」、講談社サイエンティフィク、1990年、p.376)。このため、水素/エチレンを増減させることで、エチレン系重合体(α)のメルトフローレート(MFR)を増減させることが可能である。
【0027】
メルトフローレート(MFR)は、ASTM D1238-89に従い、190℃、2.16kg荷重の条件下で測定される。
【0028】
なお、エチレン系重合体(α)についての上記MFRは、後述するエチレン系重合体(β)についてのMFRとの区別のため、「MFRα」と呼ぶ場合がある。
【0029】
(2)密度が875kg/m
3以上945kg/m
3以下である。下限は好ましくは885kg/m
3、より好ましくは900kg/m
3であり、上限は好ましくは935kg/m
3、より好ましくは930kg/m
3である。密度が上記下限値以上の場合、エチレン重合体組成物(γ)から成形されたフィルムの表面べたつきが少なく耐ブロッキング性に優れ、密度が上記上限値以下の場合、エチレン重合体組成物(γ)から成形されたフィルムの衝撃強度が良好となり、ヒートシール強度、破袋強度などの機械的強度が良好である。
【0030】
密度はエチレン系重合体のα-オレフィン含量に依存しており、α-オレフィン含量が少ないほど密度は高く、α-オレフィン含量が多いほど密度は低くなる。また、エチレン系重合体中のα-オレフィン含量は、重合系内におけるα-オレフィンとエチレンとの組成比(α-オレフィン/エチレン)により決定されることが知られている(例えば、Walter Kaminsky, Makromol.Chem. 193, p.606(1992))。このため、α-オレフィン/エチレンを増減させることで、上記範囲の密度を有するエチレン系重合体を製造することができる。
【0031】
密度の測定は、JIS K7112に準拠し、MFR測定時に得られるストランドを100℃で1時間熱処理し、更に室温で1時間放置した後に密度勾配管法で測定した。
【0032】
(3)
13C−NMRにより測定された炭素原子1000個当たりのメチル分岐数〔Me (/1000C)〕とエチル分岐数〔Et(/1000C)〕との和〔(Me+Et)(/1000C)〕が1.80以下、好ましくは1.30以下、より好ましくは0.80以下、さらにより好ましくは0.50以下である。なお、本発明で定義したメチル分岐数およびエチル分岐数は、後述するように1000カーボン当たりの数で定義される。
【0033】
エチレン系重合体中にメチル分岐、エチル分岐などの短鎖分岐が存在すると、短鎖分岐が結晶中に取り込まれ、結晶の面間隔が広がってしまうため、樹脂の機械的強度が低下することが知られている(例えば、大澤善次郎他監修、「高分子の寿命予測と長寿命化技術」、(株)エヌ・ティー・エス、2002年、p.481)。そのため、メチル分岐数とエチル分岐数との和(A+B)が1.8以下の場合、エチレン重合体組成物(γ)の機械的強度が良好である。
【0034】
エチレン系重合体中のメチル分岐数、エチル分岐数はエチレン系重合体の重合方法に強く依存し、高圧ラジカル重合により得られたエチレン系重合体は、チーグラー型触媒を用いた配位重合により得られたエチレン系重合体に比べ、メチル分岐数、エチル分岐数が多い。配位重合の場合、エチレン系重合体中のメチル分岐数、エチル分岐数は、重合系内におけるプロピレン、1−ブテンとエチレンとの組成比(プロピレン/エチレン、1−ブテン/エチレン)に強く依存する。このため、1−ブテン/エチレンを増減させることで、エチレン系重合体のメチル分岐数とエチル分岐数の和(A+B)を増減させることが可能である。
【0035】
13C-NMRにより測定されたメチル分岐数およびエチル分岐数は下記のように決定される。
【0036】
測定は日本電子(株)製ECP500型核磁気共鳴装置(
1H:500MHz)を用い、積算回数1万〜3万回にて測定した。なお、化学シフト基準として主鎖メチレンのピーク(29.97ppm)を用いた。直径10mmの市販のNMR測定石英ガラス管中に、サンプル250〜400mgと和光純薬工業(株)製特級o−ジクロロベンゼン:ISOTEC社製ベンゼン-d6=5:1(体積比)の混合液3mlを入れ、120℃にて加熱、均一分散させることにより行った。NMRスペクトルにおける各吸収の帰属は、化学領域増刊141号 NMR−総説と実験ガイド[I]、p.132〜133に準じて行った。1,000カーボン当たりのメチル分岐数、すなわち、エチレン系重合体の重合体鎖を構成する炭素原子1000個当たりのメチル分岐数は、5〜45ppmの範囲に現れる吸収の積分総和に対する、メチル分岐由来のメチル基の吸収(19.9ppm)の積分強度比より算出する。また、エチル分岐数は、5〜45ppmの範囲に現れる吸収の積分総和に対するエチル分岐由来のエチル基の吸収(10.8ppm)の積分強度比より算出する。
【0037】
(4)200℃におけるゼロせん断粘度〔η
0(P)〕と、GPC-粘度検出器法(GPC-VISCO)により測定された重量平均分子量の6.8乗(Mw
6.8)の比、η
0/Mw
6.8が、0.03×10
-30以上7.5×10
-30以下である。すなわち、本発明で用いられるエチレン系重合体(α)では、η
0とMwが下記式(Eq-2)
0.03×10
-30≦η
0/Mw
6.8≦7.5×10
-30 --------(Eq-2)
を満たす。ここで、下限値は好ましくは0.05×10
-30、より好ましくは0.8×10
-30であり、上限値は好ましくは5.0×10
-30、より好ましくは3.0×10
-30である。
【0038】
η
0/Mw
6.8が、0.03×10
-30以上7.5×10
-30以下であることは、η
0とMwを両対数プロットした際に、log(η
0)とlogMwが下記式(Eq-2')で規定される領域に存在することと同義である。
【0039】
6.8Log(Mw) -31.523≦Log(η
0)≦6.8Log(Mw) -29.125 --------(Eq-2')
重量平均分子量(Mw)に対してゼロせん断粘度〔η
0(P)〕を両対数プロットしたとき、長鎖分岐がなく直鎖状で、伸長粘度がひずみ硬化性を示さないエチレン系重合体は、傾きが3.4のべき乗則に則る。一方、比較的短い長鎖分岐を数多く有し、伸長粘度がひずみ速度硬化性を示すエチレン系重合体は、べき乗則よりも低いゼロせん断粘度〔η
0(P)〕を示し、さらにその傾きは3.4よりも大きな値となることが知られており(C Gabriel, H.Munstedt, J.Rheol., 47(3), 619(2003)、H. Munstedt, D.Auhl, J. Non-Newtonian Fluid Mech. 128, 62-69, (2005) )、傾き6.8は経験的に選択しうる。η
0とMw
6.8との比をとることについては特開2011-1545号公報にも開示されている。
【0040】
エチレン系重合体(α)の200℃におけるゼロせん断粘度〔η
0(P)〕が
7.5×10-30×Mw
6.8以下の場合、エチレン系重合体組成物(γ)において引取サージングの発生が抑制される。
【0041】
さらに、η
0/Mw
6.8が上記範囲の場合、エチレン系重合体(α)から得られるフィルム、およびエチレン系重合体組成物(γ)から得られるフィルムの耐ブロッキング性が極めて優れるという効果がある。このような効果が発現する理由は次のように推測される。
【0042】
フィルム表面に微小な凹凸を形成することで、耐ブロッキング性は著しく向上することが知られている。溶融樹脂がダイスに流入すると、伸張流によって伸張応力が発生する。この伸張応力が臨界値を越えると脆性的に破断が生じ、メルトフラクチャーと呼ばれるダイス出口での不安定流動が発生し、成形体表面に微小な凹凸が形成される(F.N. Cogswell, Polymer Melt Rheology, Wiley, 1981)。
【0043】
η
0/Mw
6.8がクレーム範囲にあると、一般的な成形加工でのひずみ速度において伸張応力が大きくなり、メルトフラクチャーが発生する。このメルトフラクチャーによりフィルム表面に微小な凹凸が形成されるため、得られるフィルムの耐ブロッキング性が極めて優れる。
【0044】
伸張応力は長鎖分岐の数と長さの影響を強く受けることが知られており、数が多いほど、長さが長いほど伸張応力は大きくなる。η
0/Mw
6.8が上限値を超えると長鎖分岐の数が不足する傾向となり、下限値を下回ると長鎖分岐の長さが不足する傾向となっていると考えられる。
【0045】
ゼロせん断粘度〔η
0(P)〕と重量平均分子量(Mw)との関係は、エチレン系重合体中の長鎖分岐の含量および長さに依存していると考えられ、長鎖分岐含量が多いほど、また長鎖分岐の長さが短いほどゼロせん断粘度〔η
0(P)〕は請求範囲下限に近い値を示し、長鎖分岐含量が少ないほど、また長鎖分岐の長さが長いほどゼロせん断粘度〔η
0(P)〕は請求範囲上限に近い値を示すと考えられる。
【0046】
ここで、長鎖分岐とはエチレン系重合体中に含まれる絡み合い点間分子量(Me)以上の長さの分岐構造と定義され、長鎖分岐の導入によりエチレン系重合体の溶融物性、及び成形加工性は著しく変化することが知られている(例えば、松浦一雄他編、「ポリエチレン技術読本」、工業調査会、2001年、p.32, 36)。後述のように本発明に係るエチレン系重合体(α)は、例えば、後記「エチレン系重合体(α)製造用触媒」の項で後述する成分(A)、成分(B)、成分(C)を含むオレフィン重合用触媒の存在下、エチレンと、炭素数4以上10以下のα-オレフィンとを重合することによって製造することができる。
【0047】
本発明のエチレン系重合体が生成する機構において、本発明者らは、成分(A)と成分(C)、ならびに必要に応じて、後記「エチレン系重合体(α)製造用触媒」の項で後述する固体状担体(S)を含むオレフィン重合用触媒成分の存在下で、エチレンと炭素数4以上10以下のα−オレフィンとを共重合させることによって数平均分子量4000以上20000以下、好ましくは4000以上15000以下の末端ビニルを有する重合体である「マクロモノマー」を生成させ、次いで、成分(B)と成分(C)、ならびに必要に応じて固体状担体(S)を含むオレフィン重合用触媒成分により、エチレンおよび炭素数4以上10以下のα−オレフィンの重合と競争的に該マクロモノマーを共重合させることにより、エチレン系重合体(α)中に長鎖分岐が生成すると推定している。
【0048】
重合系中のマクロモノマーとエチレンとの組成比([マクロモノマー]/[エチレン])が高いほど長鎖分岐含量が多くなる。オレフィン重合用触媒中の成分(A)の比率、すなわち、成分(A)および成分(B)の合計に対する、成分(A)のモル比([A]/[A+B])を高くすることで[マクロモノマー]/[エチレン]を高くできることから、([A]/[A+B])を高くすることで長鎖分岐含量は多くなる。また、重合系中の水素とエチレンとの組成比(水素/エチレン)を高くするとマクロモノマーの分子量が小さくなる為、エチレン系重合体中に導入される長鎖分岐の長さは短くなる。
【0049】
このことから、[A]/[A+B]、及び水素/エチレンを増減させることで、上記範囲のη
0/Mw
6.8を有するエチレン系重合体を製造することができる。
【0050】
これらのほか、長鎖分岐量を制御する重合条件について例えば国際公開第2007/034920号パンフレットに開示されている。
【0051】
200℃におけるゼロせん断粘度〔η
0(P)〕は以下のようにして求める。
【0052】
測定温度200℃におけるせん断粘度(η
*)の角速度〔ω(rad/秒)〕分散を0.01≦ω≦100の範囲で測定する。測定にはアントンパール社製粘弾性測定装置Physica MCR301を用いる。サンプルホルダーは25mmφのパラレルプレートを用い、サンプル厚みは約2.0mmとした。測定点はω一桁当たり5点とする。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーにならないよう、3〜10%の範囲で適宜選択する。せん断粘度測定に用いたサンプルは、神藤金属工業所製プレス成形機を用い、予熱温度190℃、予熱時間5分間、加熱温度190℃、加熱時間2分間、加熱圧力100kgf/cm
2、冷却温度20℃、冷却時間5分間、冷却圧力100kgf/cm
2の条件にて、測定サンプルを厚さ2mmにプレス成形することで調製する。
【0053】
ゼロせん断粘度η
0は、下記数式(Eq-3)のCarreauモデルを非線形最小二乗法により実測のレオロジー曲線〔せん断粘度(η
*)の角速度(ω)分散〕にフィッティングさせることで算出する。
【0054】
η
*=η
0〔1+(λω)
a〕
(n-1)/a --- (Eq-3)
ここで、λは時間の次元を持つパラメーター、nは材料の冪法則係数(power law index)を表す。なお、非線形最小二乗法によるフィッティングは下記数式(Eq-4)におけるdが最小となるよう行われる。
【0056】
ここで、η
exp(ω)は実測のせん断粘度、η
calc(ω)はCarreauモデルより算出したせん断粘度を表す。
【0057】
GPC-VISCO法による重量平均分子量(Mw)は、ウォーターズ社製GPC/V2000を用いて、以下のようにして測定する。
【0058】
ガードカラムにはShodex AT-Gを用い、分析カラムにはAT-806を2本使用し、検出器として示差屈折計および3キャピラリー粘度計を用いる。カラム温度は145℃とし、移動相には、酸化防止剤としてBHT0.3重量%含むo-ジクロロベンゼンを用い、流速を1.0ml/分とし、試料濃度は0.1重量%とする。標準ポリスチレンは、東ソー社製を用いる。分子量計算は、粘度計と屈折計から実測粘度を算出し、実測ユニバーサルキャリブレーションより重量平均分子量(Mw)を算出する。
【0059】
(5)135℃デカリン中で測定した極限粘度〔[η](dl/g)〕と、GPC-粘度検出器法(GPC-VISCO)により測定された重量平均分子量の0.776乗(Mw
0.776)の比、[η]/Mw
0.776が、0.90×10
-4以上1.65×10
-4以下である。すなわち、本発明で用いられるエチレン系重合体(α)では、[η]とMwが下記式(Eq-5)
0.90×10
-4≦[η]/Mw
0.776≦1.65×10
-4 --------(Eq-5)
を満たす。ここで、下限値は好ましくは0.95×10
-4、より好ましくは1.00×10
-4であり、上限値は好ましくは1.55×10
-4、より好ましくは1.45×10
-4である。
【0060】
[η]/Mw
0.776が、0.90×10
-4以上1.65×10
-4以下であることは、[η]とMwを両対数プロットした際に、log([η])とlog(Mw)が下記式(Eq-5')で規定される領域に存在することと同義である。
【0061】
0.776Log(Mw) -4.046≦Log([η])≦0.776Log(Mw) -3.783 --------(Eq-5')
エチレン系重合体中に長鎖分岐が導入されると、長鎖分岐の無い直鎖型エチレン系重合体に比べ、分子量の割に極限粘度[η](dl/g)が小さくなることが知られている(例えばWalther Burchard, ADVANCES IN POLYMER SCIENCE, 143, Branched PolymerII, p.137(1999))。
【0062】
また、Mark-Houwink-桜田式に基づき、ポリエチレンの[η]はMvの0.7乗、ポリプロピレンの[η]はMwの0.80乗、ポリ−4−メチル−1−ペンテンの[η]はMnの0.81乗に比例することが報告されている(例えばR. Chiang, J. Polym. Sci., 36, 91 (1959): P.94、R. Chiang, J. Polym. Sci., 28, 235 (1958): P.237、A. S. Hoffman, B. A. Fries and P. C. Condit, J. Polym. Sci. Part C, 4, 109 (1963): P.119 Fig. 4)。
【0063】
そして、エチレンと炭素数4以上10以下のα−オレフィンとの共重合体の代表的な指標としてMwの0.776乗を設定することとし、従来のエチレン系重合体に比べて分子量の割に[η]が小さいことを表したのが前記した要件(5)であり、この考え方は特許文献6に開示されている。
【0064】
よって、エチレン系重合体(α)の[η]/Mw
0.776が上記上限値以下、特に1.65×10
-4以下の場合は多数の長鎖分岐を有しており、エチレン系重合体組成物(γ)の成形性、流動性が優れる。
【0065】
前述のようにオレフィン重合用触媒中の成分(A)の比率([A]/[A+B])を高くすることで長鎖分岐含量は多くなることから、[A]/[A+B]を増減させることで、請求範囲の極限粘度[η]を有するエチレン系重合体(α)を製造することができる。
【0066】
なお、極限粘度[η] (dl/g)はデカリン溶媒を用い、以下のように測定した。
【0067】
サンプル約20 mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度η
spを測定する。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度η
spを測定する。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のη
sp/C値を極限粘度[η]とした。(下式(Eq-6)参照)
[η]=lim(η
sp/C) (C→0) ---------- (Eq-6)
エチレン系重合体(α)は、上記要件(1)〜(5)に加えて、下記要件(6)をさらに満たすことが好ましい。
【0068】
(6)190℃における溶融張力〔MTα(g)〕と、200℃、角速度1.0rad/秒におけるせん断粘度〔η
*(P)〕との比〔MTα/η
*(g/P)〕が1.0×10
-4以上7.0×10
-4以下である。すなわち、本発明で用いられるエチレン系重合体(α)では、MTαとη
*が下記式(Eq-7)
1.0×10
-4≦MTα/η
*≦7.0×10
-4 --------(Eq-7)
を満たすことが好ましい。ここで、上限値は好ましくは5.0×10
-4、より好ましくは3.0×10
-4である。
【0069】
〔MTα/η
*(g/P)〕は単位せん断粘度あたりの溶融張力を示し、この値が大きいと、せん断粘度の割に溶融張力が大きくなる。すなわち〔MTα/η
*(g/P)〕が下限値以上の場合、エチレン重合体組成物(γ)において押出特性とバブル安定性あるいはネックインとのバランスが良好となる。また、〔MTα/η
*(g/P)〕が上限値以下の場合、エチレン重合体組成物(γ)において高速成形性が良好となる。
【0070】
MT/η
*はエチレン系重合体の長鎖分岐含量に依存すると考えられており、長鎖分岐含量が多いほどMT/η
*は大きく、長鎖分岐含量が少ないほどMT/η
*は小さくなる傾向がある。
【0071】
前述のようにオレフィン重合用触媒中の成分(A)の比率([A]/[A+B])を高くすることで長鎖分岐含量は多くなることから、[A]/[A+B]を増減させることで、上記範囲のMTα/η
*を有するエチレン系重合体(α)を製造することができる。
【0072】
溶融張力(MT)は、以下の方法で測定したときの値である。
【0073】
溶融張力(MT)は、溶融されたポリマーを一定速度で延伸したときの応力を測定することにより決定される。測定には東洋精機製作所社製キャピラリーレオメーター:キャピログラフ1Bを用いた。条件としては、樹脂温度190℃、溶融時間6分、バレル径9.55mmφ、押し出し速度15mm/分、巻取り速度24m/分(溶融フィラメントが切れてしまう場合には、巻取り速度を5m/分ずつ低下させる)、ノズル径2.095mmφ、ノズル長さ8mmで行う。
【0074】
また、200℃、角速度1.0rad/秒におけるせん断粘度(η
*)は、測定温度200℃におけるせん断粘度(η
*)の角速度〔ω(rad/秒)〕分散を0.01≦ω≦100の範囲で測定する。測定にはアントンパール社製粘弾性測定装置Physica MCR301を用いる。サンプルホルダーは25mmφのパラレルプレートを用い、サンプル厚みは約2.0mmとする。測定点はω一桁当たり5点とする。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーにならないよう、3〜10%の範囲で適宜選択する。せん断粘度測定に用いたサンプルは、神藤金属工業所製プレス成形機を用い、予熱温度190℃、予熱時間5分間、加熱温度190℃、加熱時間2分間、加熱圧力100kgf/cm
2、冷却温度20℃、冷却時間5分間、冷却圧力100kgf/cm
2の条件にて、測定サンプルを厚さ2mmにプレス成形することで調製する。
【0075】
エチレン系重合体(α)は、下記要件(7)をさらに満たすことが好ましい。
【0076】
(7)GPC測定により得られた分子量分布曲線における最大重量分率での分子量(peak top M)が1.0×10
4.20以上1.0×10
4.60以下である。下限値は好ましくは1.0×10
4.30、上限値は好ましくは1.0×10
4.50である。
【0077】
エチレン系重合体の機械的強度には、低分子量成分が強く影響を及ぼすことが知られている。低分子量成分が存在すると、破壊の起点になると考えられている分子末端が増加するため、機械的強度が低下すると考えられている(松浦一雄・三上尚孝編著、「ポリエチレン技術読本」、株式会社工業調査会、2001年、p.45)。GPC測定により得られた分子量分布曲線における最大重量分率での分子量(peak top M)が1.0×10
4.20以上の場合、機械的強度に悪影響を及ぼす低分子量成分が少ないため、機械的強度に優れる。
【0078】
GPC測定により得られた分子量分布曲線における最大重量分率での分子量(peak top M)は、重合系内における水素とエチレンとの組成比(水素/エチレン)により決定されることが知られている(例えば、曽我和雄他編、「Catalytic Olefin Polymerization」、講談社サイエンティフィク、1990年、p.376)。このため、水素/エチレンを増減させることで、分子量分布曲線における最大重量分率での分子量(peak top M)を増減させることが可能である。
【0079】
分子量分布曲線における最大重量分率での分子量(peak top M)は、ウォーターズ社製ゲル浸透クロマトグラフ alliance GPC2000型(高温サイズ排除クロマトグラフ)を用い、以下のようにして算出する。
【0080】
[使用装置および条件]
解析ソフト:クロマトグラフィデータシステムEmpower(Waters社)
カラム:TSKgel GMH
6- HT×2+TSKgel GMH
6-HTL×2
(内径7.5mm×長さ30cm,東ソー社)
移動相:o−ジクロロベンゼン(和光純薬 特級試薬)
検出器:示差屈折計(装置内蔵)
カラム温度:140℃
流速:1.0mL/分
注入量:500μL
サンプリング時間間隔:1秒
試料濃度:0.15%(w/v)
分子量較正:単分散ポリスチレン(東ソー社)/分子量495〜分子量2060万
Z. Crubisic, P. Rempp, H. Benoit, J. Polym. Sci.,
B5, 753 (1967) に記載された汎用較正の手順に従い、ポリエチレン分子量換算として分子量分布曲線を作成する。この分子量分布曲線から最大重量分率での分子量(peak top M)を算出する。
【0081】
エチレン系重合体(β)
本発明に係るエチレン系重合体(β)は、エチレンと炭素数4以上10以下のα-オレフィン、好ましくはエチレンと炭素数6〜10のα-オレフィンとの共重合体である。炭素数4のα-オレフィンを使用する場合には、炭素数6〜10のα-オレフィンもあわせて使用することが好ましい。エチレンとの共重合に用いられる炭素数4〜10のα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンなどが挙げられる。
【0082】
エチレン系重合体(β)は下記要件(1')〜(3')に示す特性を有している。
【0083】
(1')190℃における2.16kg荷重でのメルトフローレート(MFR)が0.1g/10分以上10g/10分以下である。ここで、下限値は好ましくは0.5g/10分、より好ましくは1.0g/10分であり、上限値は好ましくは8.0g/10分、より好ましくは5.0g/10分である。メルトフローレート(MFR)が上記下限値以上の場合、エチレン重合体組成物(γ)から得られたフィルムのフィッシュアイが少なく外観が良好である。メルトフローレート(MFR)が上記上限値以下の場合、エチレン重合体組成物(γ)の溶融張力が高くバブル安定性等の成形性が良好になる。メルトフローレート(MFR)が上記上限値を越える場合、エチレン重合体組成物(γ)の溶融張力が低くバブル安定性等の成形性が悪化することがある。
【0084】
なお、エチレン系重合体(β)についての上記MFRは、上記エチレン系重合体(α)についてのMFRとの区別のため、「MFRβ」と呼ぶ場合がある。
【0085】
(2')
13C−NMRにより測定された炭素原子1000個当たりのメチル分岐数〔Me(/1000C)〕とエチル分岐数〔Et(/1000C)〕との和〔(Me+Et)(/1000C)〕が1.80以下、好ましくは1.30以下、より好ましくは0.80以下、さらにより好ましくは0.50以下である。メチル分岐数とエチル分岐数との和(A+B)が上記数値以下の場合、エチレン重合体組成物(γ)の機械的強度が良好である。
【0086】
(3')135℃デカリン中で測定した極限粘度〔[η](dl/g)〕と、GPC-粘度検出器法(GPC-VISCO)により測定された重量平均分子量の0.776乗(Mw
0.776)の比、[η]/Mw
0.776が、1.90×10
-4以上2.80×10
-4以下である。すなわち、本発明で用いられるエチレン系重合体(β)では、[η]とMwが下記式(Eq-8)
1.90×10
-4≦[η]/Mw
0.776≦2.80×10
-4 --------(Eq-8)
を満たす。
【0087】
[η]/Mw
0.776が、1.90×10
-4以上2.80×10
-4以下であることは、[η]とMwを両対数プロットした際に、log([η])とlog(Mw)が下記式(Eq-8')で規定される領域に存在することと同義である。
【0088】
0.776Log(Mw) -3.721≦Log([η])≦0.776Log(Mw) -3.553 --------(Eq-8')
前述のとおり、エチレン系重合体中に長鎖分岐が存在しないと、長鎖分岐を有するエチレン系重合体と比較して分子量の割に極限粘度[η](dl/g)が大きくなることが知られている。そのため、[η]/Mw
0.776が1.90×10
-4以上のエチレン系重合体は実質的に長鎖分岐の存在しない直鎖状のエチレン系重合体である。このようなエチレン系重合体を含む本発明では、エチレン系重合体組成物(γ)の溶融張力が向上し、バブル安定性に優れる。
【0089】
エチレン系重合体(β)は、上記要件(1')〜(3')に加えて、下記要件(4')をさらに満たすことが好ましい。
【0090】
(4')密度が875kg/m
3以上970kg/m
3以下である。ここで、下限値は好ましくは885kg/m
3であり、上限値は好ましくは950kg/m
3である。密度が上記下限値以上の場合、エチレン重合体組成物(γ)から成形されたフィルムの表面べたつきがさらに少なく耐ブロッキング性に優れ、密度が上記上限値以下の場合、エチレン重合体組成物(γ)から成形されたフィルムの衝撃強度がさらに良好となり、ヒートシール強度、破袋強度などの機械的強度が良好である。
【0091】
<エチレン系重合体組成物(γ)>
本発明に係るエチレン系重合体組成物(γ)は、
上記エチレン系重合体(α)と、上記エチレン系重合体(β)を含み、
前記エチレン系重合体(α)の重量分率〔Wα〕と前記エチレン系重合体(β)の重量分率〔Wβ〕との合計を1.0として、Wαが0.1以上0.9以下であり、Wβが0.1以上0.9以下である。ここで、Wαは、好ましくは0.2以上0.8以下、より好ましくは0.3以上0.7以下である。該範囲内において、エチレン系重合体組成物(γ)の機械的強度と成型加工性のバランスが優れる。
【0092】
また、エチレン系重合体組成物(γ)の190℃における溶融張力〔MTγ(g)〕と、前記エチレン系重合体(α)の溶融張力〔MTα(g)〕、前記エチレン系重合体(β)の溶融張力〔MTβ(g)〕、前記WαおよびWβとが、下記式(Eq-1-1)を満たすことが好ましい。
【0093】
1.2<MTγ/(MTα×Wα+MTβ×Wβ)≦3.0 …(Eq-1-1)
ここで、前記WαおよびWβは、下記式(Eq-1-2)を満たすことが、より好ましく、
1.2<MTγ/(MTα×Wα+MTβ×Wβ)≦2.8 …(Eq-1-2)
下記式(Eq-1-3)を満たすことが、さらに好ましい。
【0094】
1.2<MTγ/(MTα×Wα+MTβ×Wβ)≦2.5 …(Eq-1-3)
上記式(Eq-1-1)〜(Eq-1-3)は、いずれも、本発明の好適な態様において、エチレン系重合体組成物(γ)の溶融張力(MTγ)は、溶融張力(MT)について重量分率による加成性が成立すると仮定して各構成成分のMTから求められる値の1.2倍よりも大きくなることを示している。MTγが大きいとバブル安定性に優れる傾向がある。一方、MTγが上記上限値を超すと、フィルム成形において引取速度が低くなり生産性が劣る傾向がある。
【0095】
また、成分βのMFRが成分αのMFRに対して小さいほど、すなわち、MFRβ/MFRαが小さいほど、(MTα×Wα+MTβ×Wβ)に対するMTγの値が大きくなる傾向が認められる。MFRβ/MFRαは0.01以上10以下であることが好ましい。ここで、下限値はより好ましくは0.1、さらに好ましくは0.2、上限値はより好ましくは7.0、さらに好ましくは5.0である。MFRβ/MFRαが上記下限値以上の場合、エチレン重合体組成物(γ)から得られたフィルムのフィッシュアイが少なく外観が良好である。メルトフローレート(MFR)が上記上限値以下の場合、エチレン重合体組成物(γ)の溶融張力が高くバブル安定性等の成形性が良好になる。
【0096】
MTは伸張変形における分子鎖の緩和に強く影響を受けることが知られており、分子鎖が緩和しにくいほどMTは大きくなる傾向となる。
【0097】
前述のとおり、エチレン系重合体(α)は、[η]とMwとが特定の関係を満たし、長鎖分岐を有していると考えられる。本願発明者らは、エチレン系重合体(α)がエチレン系重合体(β)と共存することなく単独で存在している場合、エチレン系重合体(α)において長鎖分岐を有する分子鎖同士の強固な絡み合いは立体的障害のため形成されないと考えている。代わりに、長鎖分岐を有する分子鎖同士の緩い絡み合いや、長鎖分岐を有する分子鎖と当該長鎖分岐を有する分子鎖と共に含まれているであろう長鎖分岐を有さない低分子量体(MFR≧100g/10分)との絡み合いが主として形成され、これらがエチレン系重合体(α)において最も緩和しにくい成分になっていると考えている。
【0098】
そして、エチレン系重合体(α)に特定のMFRを有するエチレン系重合体(β)をブレンドすると、エチレン系重合体(α)の長鎖分岐を有する分子鎖と、エチレン系重合体(β)の直鎖状の分子鎖との絡み合いが新たに形成され、これが最も緩和しにくい成分となり、このため、エチレン系重合体組成物(γ)のMTは、驚くべきことに、溶融張力についての加成性に基づいてエチレン系重合体(α)のMTとエチレン系重合体(β)のMTから求められる値よりも著しく大きくなると考えられる。エチレン系重合体(α)にも、エチレン系重合体(β)を構成する直鎖状の重合体成分と同様の成分が共存している可能性を否定するには到らないものの、その割合は比較的低く、長鎖分岐を有する分子鎖と直鎖状の分子鎖との絡み合いによる上記の効果が顕在化しにくいと考えられる。
【0099】
さらに驚くべきことには、エチレン系重合体(α)にエチレン系重合体(β)をブレンドしたエチレン系重合体組成物(γ)から得られるフィルムの耐ブロッキング性は、エチレン系重合体(α)から得られるフィルムの耐ブロッキング性と同等あるいはそれ以上に優れる。これは、特定の構造を有するエチレン系重合体(α)とエチレン系重合体(β)の分子鎖同士の絡み合いが影響していると考えられる。
【0100】
また、本発明に係るエチレン系重合体組成物(γ)は、実質的に上記エチレン系重合体(α)および上記エチレン系重合体(β)のみからなるものであっても良いが、これに限られるものではなく、上記エチレン系重合体(α)および上記エチレン系重合体(β)に加えて、上記エチレン系重合体(α)および上記エチレン重合体(β)のいずれでもない熱可塑性樹脂(以下、「他の熱可塑性樹脂」)を含むことができる。上記エチレン系重合体(α)および上記エチレン系重合体(β)に対して「他の熱可塑性樹脂」をブレンドすることにより熱可塑性樹脂組成物として得られるエチレン系重合体組成物(γ)は、成形性に優れ、かつ機械的強度に優れる。上記エチレン系重合体(α)および上記エチレン系重合体(β)の合計と、「他の熱可塑性樹脂」とのブレンド比率は、99.9/0.1〜0.1/99.9、好ましくは90/10〜10/90、さらに好ましくは70/30〜30/70である。
【0101】
他の熱可塑性樹脂
上記エチレン系重合体組成物(γ)においてブレンドしうる「他の熱可塑性樹脂」としては、ポリオレフィン、ポリアミド、ポリエステルおよびポリアセタールなどの結晶性熱可塑性樹脂;ポリスチレン、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリカーボネート、ポリフェニレンオキサイド、ポリアクリレートなどの非結晶性熱可塑性樹脂が用いられる。また、ポリ塩化ビニルも好ましく用いられる。
【0102】
上記ポリオレフィンとして具体的には、エチレン系重合体、プロピレン系重合体、ブテン系重合体、4-メチル-1-ペンテン系重合体、3-メチル-1-ブテン系重合体、ヘキセン系重合体などが挙げられる。なかでも、エチレン系重合体、プロピレン系重合体、4-メチル-1-ペンテン系重合体が好ましく、エチレン系重合体である場合は本発明に係るエチレン系重合体であっても従来のエチレン系重合体であってもよく、エチレン・極性基含有ビニル共重合体であってもよいが、従来のエチレン系重合体がより好ましい。
【0103】
上記ポリエステルとして具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートなどの芳香族系ポリエステル;ポリカプロラクトン、ポリヒドロキシブチレートなどが挙げられる。
【0104】
上記ポリアミドとして具体的には、ナイロン−6、ナイロン−66、ナイロン−10、ナイロン−12、ナイロン−46などの脂肪族ポリアミド、芳香族ジカルボン酸と脂肪族ジアミンより製造される芳香族ポリアミドなどが挙げられる。
【0105】
上記ポリアセタールとして具体的には、ポリホルムアルデヒド(ポリオキシメチレン)、ポリアセトアルデヒド、ポリプロピオンアルデヒド、ポリブチルアルデヒドなどを挙げることができる。中でも、ポリホルムアルデヒドが特に好ましい。
【0106】
上記ポリスチレンは、スチレンの単独重合体であってもよく、スチレンとアクリロニトリル、メタクリル酸メチル、α-メチルスチレンとの二元共重合体であってもよい。
【0107】
上記ABSとしては、アクリロニトリルから誘導される構成単位を20〜35モル%の量で含有し、ブタジエンから誘導される構成単位を20〜30モル%の量で含有し、スチレンから誘導される構成単位を40〜60モル%の量で含有するABSが好ましく用いられる。
【0108】
上記ポリカーボネートとしては、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタンなどから得られるポリマーが挙げられる。なかでも、2,2-ビス(4-ヒドロキシフェニル)プロパンから得られるポリカーボネートが特に好ましい。
【0109】
上記ポリフェニレンオキシドとしては、ポリ(2,6-ジメチル-1,4-フェニレンオキシド)を用いることが好ましい。
【0110】
上記ポリアクリレートとしては、ポリメチルメタクリレート、ポリブチルアクリレートを用いることが好ましい。
【0111】
上記のような熱可塑性樹脂は、単独で用いてもよく、また2種以上組み合わせて用いてもよい。特に好ましい熱可塑性樹脂はポリオレフィンであって、エチレン系重合体がより特に好ましい。
【0112】
その他の配合成分
本発明のエチレン系重合体組成物(γ)において、上記「他の熱可塑性樹脂」に加えて、本発明の目的を損なわない範囲で、耐候安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、核剤、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤などの添加剤をさらに配合してもよい。
【0113】
これら「その他の配合成分」の総配合量は、エチレン系重合体組成物(γ)100重量部に対して、一般的には10重量部以下、好ましくは1重量部以下、より好ましくは0.5重量部以下である。
【0114】
次に、本発明におけるエチレン系重合体(α)、エチレン系重合体(β)およびエチレン系重合体組成物(γ)の製造方法に関して説明する。
【0115】
<エチレン系重合体(α)の製造方法>
本発明で用いられるエチレン系重合体(α)は、後述するエチレン系重合体製造用触媒の存在下、エチレンと炭素数4以上10以下のα−オレフィンとを重合することにより製造することができる。
【0116】
本発明では、溶解重合や懸濁重合などの液相重合法、または気相重合法などの重合方法が用いられるが、好ましくは懸濁重合法や気相重合法が用いられる。
【0117】
液相重合法で用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカンおよび灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサンおよびメチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエンおよびキシレンなどの芳香族炭化水素;ならびにエチレンクロリド、クロロベンゼンおよびジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などが挙げられる。また、α−オレフィン自身を溶媒として用いることもできる。
【0118】
エチレン系重合体(α)製造用触媒
本発明のエチレン系重合体(α)は、成分(A)、成分(B)および成分(C)を含む触媒の存在下、エチレンと炭素数4以上10以下のα−オレフィンとを重合することによって効率的に製造することができる。
【0119】
本発明で用いられるエチレン系重合体(α)製造用触媒は、以下に述べる成分(A)、成分(B)および成分(C)に加えて、固体状担体(S)ならびに成分(G)を含んでもよい。
【0120】
上記オレフィン重合用触媒で用いられる各成分について説明する。
【0121】
成分(A)
本発明で用いることができる成分(A)は、下記一般式(I)で表される架橋型メタロセン化合物である。
【0123】
一般式(I)中、Mは周期表第4族遷移金属原子を示し、具体的には、チタン、ジルコニウムおよびハフニウムから選ばれる遷移金属原子であり、好ましくはジルコニウムである。
【0124】
R
1〜R
8は、水素原子、炭素数1〜20の炭化水素基、ハロゲン含有基、酸素含有基、窒素含有基、ホウ素含有基、硫黄含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、およびスズ含有基から選ばれ、互いに同一でも異なっていてもよいが、すべてが同時に水素原子ではない。また、R
1〜R
8は、隣接する基が互いに結合して脂肪族環を形成してもよい。
【0125】
炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アリール基およびアリールアルキル基などが挙げられる。アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、n−オクチル基、ノニル基、ドデシル基およびエイコシル基などが挙げられる。シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基およびアダマンチル基などが挙げられる。アルケニル基としては、ビニル基、プロペニル基およびシクロヘキセニル基などが挙げられる。アリール基としては、フェニル、トリル、ジメチルフェニル、トリメチルフェニル、エチルフェニル、プロピルフェニル、ビフェニル、α−またはβ−ナフチル、メチルナフチル、アントラセニル、フェナントリル、ベンジルフェニル、ピレニル、アセナフチル、フェナレニル、アセアントリレニル、テトラヒドロナフチル、インダニルおよびビフェニリルが挙げられる。アリールアルキル基としては、ベンジル、フェニルエチルおよびフェニルプロピルなどが挙げられる。
【0126】
R
1〜R
8に好ましい基は、水素原子または炭素数1〜15のアルキル基であり、さらに好ましくは、R
1〜R
8の置換基のうち6つ以上が水素原子であり、特に好ましくは、R
1〜R
8の置換基のうち7つが水素原子であり、残りの1つが炭素数3〜15のアルキル基である。
【0127】
Q
1は二つの配位子を結合する二価の基であって、アルキレン基、置換アルキレン基およびアルキリデン基などの炭素数1〜20の炭化水素基、ハロゲン含有基、ケイ素含有基、ゲルマニウム含有基およびスズ含有基から選ばれる基であり、特に好ましくはケイ素含有基である。
【0128】
アルキレン基、置換アルキレン基およびアルキリデン基の具体例としては、メチレン、エチレン、プロピレンおよびブチレンなどのアルキレン基;イソプロピリデン、ジエチルメチレン、ジプロピルメチレン、ジイソプロピルメチレン、ジブチルメチレン、メチルエチルメチレン、メチルブチルメチレン、メチル−t−ブチルメチレン、ジヘキシルメチレン、ジシクロヘキシルメチレン、メチルシクロヘキシルメチレン、メチルフェニルメチレン、ジフェニルメチレン、ジトリルメチレン、メチルナフチルメチレン、ジナフチルメチレン、1−メチルエチレン、1,2−ジメチルエチレンおよび1−エチル−2−メチルエチレンなどの置換アルキレン基;シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、シクロヘプチリデン、ビシクロ[3.3.1]ノニリデン、ノルボルニリデン、アダマンチリデン、テトラヒドロナフチリデンおよびジヒドロインダニリデンなどのシクロアルキリデン基ならびにエチリデン、プロピリデンおよびブチリデンなどのアルキリデン基などが挙げられる。
【0129】
ケイ素含有基としては、シリレン、メチルシリレン、ジメチルシリレン、ジイソプロピルシリレン、ジブチルシリレン、メチルブチルシリレン、メチル−t−ブチルシリレン、ジシクロヘキシルシリレン、メチルシクロヘキシルシリレン、メチルフェニルシリレン、ジフェニルシリレン、ジトリルシリレン、メチルナフチルシリレン、ジナフチルシリレン、シクロジメチレンシリレン、シクロトリメチレンシリレン、シクロテトラメチレンシリレン、シクロペンタメチレンシリレン、シクロヘキサメチレンシリレンおよびシクロヘプタメチレンシリレンなどが挙げられ、特に好ましくは、ジメチルシリレン基およびジブチルシリレン基などのジアルキルシリレン基が挙げられる。
【0130】
Xは、それぞれ独立に、水素原子、ハロゲン原子、炭化水素基、ハロゲン含有炭化水素基、ケイ素含有基、酸素含有基、硫黄含有基、窒素含有基およびリン含有基から選ばれる原子または基であり、好ましくはハロゲン原子または炭化水素基である。ハロゲン原子としては、フッ素、塩素、臭素およびヨウ素が挙げられ、特に好ましくは塩素が挙げられる。炭化水素基としては、上述したR
1〜R
8の炭化水素基と同様のものが挙げられ、炭素数1〜20のアルキル基が特に好ましい。
【0131】
一般式(I)で表される成分(A)の好ましい化合物の具体例として、ジメチルシリレンビス(シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス(2-メチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス(3-メチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス(3-n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレン(シクロペンタジエニル)(3−エチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレン(シクロペンタジエニル)(3−n−プロピルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレン(シクロペンタジエニル)(3−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレン(シクロペンタジエニル)(3−n−オクチルシクロペンタジエニル)ジルコニウムジクロリド、ジブチルシリレン(シクロペンタジエニル)(3−n−プロピルシクロペンタジエニル)ジルコニウムジクロリド
、トリフルオロメチルブチルシリレン(シクロペンタジエニル)(3−n−プロピルシクロペンタジエニル)ジルコニウムジクロリド、トリフルオロメチルブチルシリレン(シクロペンタジエニル)(3−n−ブチルシクロペンタジエニル)ジルコニウムジクロリド、トリフルオロメチルブチルシリレン(シクロペンタジエニル)(3−n−オクチルシクロペンタジエニル)ジルコニウムジクロリドなどが挙げられ、より好ましい具体例として、ジメチルシリレン(シクロペンタジエニル)(3−n−プロピルシクロペンタジエニル)ジルコニウムジクロリドおよびジメチルシリレン(3−n−ブチルシクロペンタジエニル)(シクロペンタジエニル)ジルコニウムジクロリドなどが挙げられる。
【0132】
成分(B)
本発明で用いることができる成分(B)は、下記一般式(II)で表される架橋型メタロセン化合物である。
【0134】
一般式(II)中、Mは周期表第4族遷移金属原子を示し、具体的には、チタン、ジルコニウムおよびハフニウムから選ばれる遷移金属原子であり、好ましくはジルコニウムである。
【0135】
R
9〜R
20は、水素原子、炭化水素基、ハロゲン含有基、酸素含有基、窒素含有基、ホウ素含有基、硫黄含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基およびスズ含有基から選ばれ、互いに同一でも異なっていてもよく、また隣接する2個の基が互いに連結して環を形成してもよい。R
9〜R
20に好ましい基は、水素原子および炭化水素基であり、より好ましくはR
9〜R
12が水素原子であり、R
13〜R
20が水素原子または炭素数1〜20のアルキル基である。
【0136】
Q
2は、二つの配位子を結合する二価の基であって、アルキレン基、置換アルキレン基およびアルキリデン基などの炭素数1〜20の炭化水素基ならびにハロゲン含有基、ケイ素含有基、ゲルマニウム含有基およびスズ含有基から選ばれる基であり、好ましくは、アルキレン基、置換アルキレン基およびアルキリデン基などの炭素数1〜20の炭化水素基ならびにケイ素含有基であり、特に好ましくはアルキレン基、置換アルキレン基およびアルキリデン基などの炭素数1〜10の炭化水素基である。
【0137】
Xは、上記式(I)中のXと同様のものが挙げられる。
【0138】
一般式(II)で表される成分(B)の好ましい化合物の具体例として、イソプロピリデン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(3,6−ジ−t−ブチルフルオレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(オクタメチルオクタヒドリドジベンズフルオレニル)ジルコニウムジクロリド、ジブチルメチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジブチルメチレン(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)ジルコニウムジクロリド、ジブチルメチレン(シクロペンタジエニル)(3,6−ジ−t−ブチルフルオレニル)ジルコニウムジクロリド、ジブチルメチレン(シクロペンタジエニル)(オクタメチルオクタヒドリドジベンズフルオレニル)ジルコニウムジクロリド、シクロヘキシリデン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、シクロヘキシリデン(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)ジルコニウムジクロリド、シクロヘキシリデン(シクロペンタジエニル)(3,6−ジ−t−ブチルフルオレニル)ジルコニウムジクロリド、シクロヘキシリデン(シクロペンタジエニル)(オクタメチルオクタヒドリドジベンズフルオレニル)ジルコニウムジクロリド、ジメチルシリル(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、ジメチルシリル(シクロペンタジエニル)(2,7−ジ−t−ブチルフルオレニル)ジルコニウムジクロリド、ジメチルシリル(シクロペンタジエニル)(3,6−ジ−t−ブチルフルオレニル)ジルコニウムジクロリドおよびジメチルシリル(シクロペンタジエニル)(オクタメチルオクタヒドリドジベンズフルオレニル)ジルコニウムジクロリドが挙げられ、より好ましい具体例として、イソプロピリデン(シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドなどが挙げられる。
【0139】
成分(C)
本発明で用いることができる成分(C)は、下記(c−1)〜(c−3)よりなる群から選ばれる少なくとも1種の化合物である。
【0140】
(c−1)下記一般式(III)、(IV)または(V)で表される有機金属化合物、
R
amAl(OR
b)
nH
pX
q・・・(III)
〔一般式(III)中、R
aおよびR
bは、炭素数が1〜15の炭化水素基を示し、互いに同一でも異なっていてもよく、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。〕
M
aAlR
a4・・・(IV)
〔一般式(IV)中、M
aはLi、NaまたはKを示し、R
aは炭素数が1〜15の炭化水素基を示す。〕
R
arM
bR
bsX
t・・・(V)
〔一般式(V)中、R
aおよびR
bは、炭素数が1〜15の炭化水素基を示し、互いに同一でも異なっていてもよく、M
bはMg、ZnまたはCdを示し、Xはハロゲン原子を示し、rは0<r≦2、sは0≦s≦1、tは0≦t≦1であり、かつr+s+t=2である。〕
(c−2)有機アルミニウムオキシ化合物、および、
(c−3)成分(A)および成分(B)と反応してイオン対を形成する化合物、
から選ばれる少なくとも1種の化合物である。
【0141】
一般式(III)、(IV)または(V)で表される有機金属化合物(c−1)の中では、一般式(III)で示されるものが好ましく、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウムおよびトリオクチルアルミニウムなどのトリアルキルアルミニウム;ならびにジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジイソプロピルアルミニウムハイドライド、ジ−n−ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドおよびジイソヘキシルアルミニウムハイドライドなどのアルキルアルミニウムハイドライドなどが挙げられる。これらは、1種単独または2種以上を組み合わせて用いられる。
【0142】
有機アルミニウムオキシ化合物(c−2)としては、トリアルキルアルミニウムまたはトリシクロアルキルアルミニウムから調製された有機アルミニウムオキシ化合物が好ましく、トリメチルアルミニウムまたはトリイソブチルアルミニウムから調製されたアルミノキサンが特に好ましい。このような有機アルミニウムオキシ化合物は、1種単独または2種以上を組み合わせて用いられる。
【0143】
成分(A)および成分(B)と反応してイオン対を形成する化合物(c−3)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報およびUS5321106などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物や、さらにはヘテロポリ化合物およびイソポリ化合物を制限無く使用することができる。
【0144】
固体状担体(S)
本発明で所要により用いることができる固体状担体(S)は、無機または有機の化合物であって、顆粒状または微粒子状の固体である。
【0145】
このうち無機化合物としては、多孔質酸化物、無機塩化物、粘土、粘土鉱物またはイオン交換性層状化合物が挙げられ、好ましくは多孔質酸化物が挙げられる。
【0146】
多孔質酸化物としては、SiO
2、Al
2O
3、MgO、ZrO、TiO
2、B
2O
3、CaO、ZnO、BaOおよびThO
2など、またはこれらを含む複合物または混合物、具体的には、天然または合成ゼオライト、SiO
2−MgO、SiO
2−Al
2O
3、SiO
2−TiO
2、SiO
2−V
2O
5、SiO
2−Cr
2O
3およびSiO
2−TiO
2−MgOなどが用いられる。これらのうち、SiO
2を主成分とするものが好ましい。
【0147】
このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明で用いられる固体状担体としては、粒径が通常0.2〜300μm、好ましくは1〜200μmであって、比表面積が通常50〜1200m
2/g、好ましくは100〜1000m
2/gの範囲にあり、細孔容積が通常0.3〜30cm
3/gの範囲にあるものが好ましい。このような担体は、必要に応じて、例えば、100〜1000℃、好ましくは150〜700℃で焼成して用いられる。
【0148】
成分(G)
本発明で所要により用いることができる成分(G)として、下記(g−1)〜(g−6)よりなる群から選ばれる少なくとも1種の化合物が挙げられる。
【0149】
(g−1)ポリアルキレンオキサイドブロック、
(g−2)高級脂肪族アミド、
(g−3)ポリアルキレンオキサイド、
(g−4)ポリアルキレンオキサイドアルキルエーテル、
(g−5)アルキルジエタノールアミン、および
(g−6)ポリオキシアルキレンアルキルアミン。
【0150】
本願発明において、このような成分(G)は、反応器内でのファウリングを抑制し、あるいは生成重合体の粒子性状を改善する目的で、エチレン系重合体(α)製造用触媒中に共存させることができる。成分(G)の中では、(g−1)、(g−2)、(g−3)および(g−4)が好ましく、(g−1)および(g−2)が特に好ましい。ここで、(g−2)の例として、高級脂肪酸ジエタノールアミドなどが挙げられる。
【0151】
エチレン系重合体(α)製造用触媒の調製方法
本発明で用いられるエチレン系重合体(α)製造用触媒の調製方法について記載する。
【0152】
上記エチレン系重合体(α)製造用触媒は、成分(A)、成分(B)および成分(C)を不活性炭化水素中または、不活性炭化水素を用いた重合系中に添加することにより調製することができる。
【0153】
各成分の添加順序は任意であるが、好ましい順序としては、例えば、
i)成分(A)と成分(B)を混合接触させた後に、成分(C)を接触させ、重合系中に添加する方法
ii)成分(A)と成分(C)を混合接触させた接触物および成分(B)と成分(C)を混合接触させた接触物を重合系内に添加する方法
iii)成分(A)、成分(B)および成分(C)それぞれを連続的に重合系中に添加する方法、
などが挙げられる。
【0154】
また固体状担体(S)を含む場合、成分(A)、成分(B)および成分(C)の少なくとも1つの成分と、固体状担体(S)とを不活性炭化水素中で接触させ、固体触媒成分(X)を調製することができる。各成分の接触順序は任意であるが、好ましい順序としては、例えば、
iv)成分(C)と固体状担体(S)とを接触させ、次いで成分(A)および成分(B)を接触させて固体触媒成分(X)を調製する方法
v)成分(A)、成分(B)および成分(C)を混合接触させた後に、固体状担体(S)を接触させて調製する方法
vi)成分(C)と固体状担体(S)とを接触させ、次いで成分(A)と接触させて調製した固体触媒成分(X1)と、成分(C)と固体状担体(S)とを接触させ、次いで成分(B)と接触させて調製した固体触媒成分(X2)とを用いる方法、
などが挙げられ、より好ましいのはiv)である。
【0155】
不活性炭化水素として、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカンおよび灯油などの脂肪族炭化水素;シクロペンタン、シクロヘキサンおよびメチルシクロペンタンなどの脂環族炭化水素;ベンゼン、トルエンおよびキシレンなどの芳香族炭化水素;ならびにエチレンクロリド、クロロベンゼンおよびジクロロメタンなどのハロゲン化炭化水素またはこれらの混合物などが挙げられる。
【0156】
成分(C)と固体状担体(S)との接触時間は、通常0〜20時間、好ましくは0〜10時間であり、接触温度は、通常−50〜200℃、好ましくは−20〜120℃である。また、成分(C)と固体状担体(S)との接触のモル比(成分(C)/固体状担体(S))は、通常0.2〜2.0、特に好ましくは0.4〜2.0である。
【0157】
成分(C)および固体状担体(S)の接触物と、成分(A)および成分(B)との接触時間は、通常0〜5時間、好ましくは0〜2時間であり、接触温度は、通常−50〜200℃、好ましくは−50〜100℃である。成分(A)と成分(B)との接触量は、成分(C)の種類と量に大きく依存し、成分(c−1)を使用する場合は、成分(A)および成分(B)中の全遷移金属原子(M)と、成分(c−1)とのモル比[(c−1)/M]が、通常0.01〜100000、好ましくは0.05〜50000となる量で用いられ、成分(c−2)を使用する場合は、成分(c−2)中のアルミニウム原子と、成分(A)および成分(B)中の全遷移金属原子(M)とのモル比[(c−2)/M]が、通常10〜500000、好ましくは20〜100000となる量で用いられ、成分(c−3)を使用する場合は、成分(c−3)と、成分(A)および成分(B)中の全遷移金属原子(M)とのモル比[(c−3)/M]が、通常1〜10、好ましくは1〜5となる量で用いられる。なお、成分(C)と、成分(A)および成分(B)中の全遷移金属原子(M)との比は、誘導結合プラズマ(ICP)発光分光分析法により求められる。
【0158】
成分(A)および成分(B)の使用量比は、エチレン系重合体の分子量および分子量分布から任意に決定できるが、好ましい範囲として、成分(A)から生成するポリマーと成分(B)から生成するポリマーとの比率(以下、「成分(A)および成分(B)由来のポリマー生成比率」ともいう。)[=成分(A)の生成ポリマー量/成分(B)の生成ポリマー量]が、通常40/60〜95/5、好ましくは50/50〜95/5、より好ましくは60/40〜95/5である。
【0159】
成分(A)および成分(B)由来のポリマー生成比率の算出方法について説明する。
【0160】
GPC測定により得られる、エチレン系重合体(α)の分子量分布曲線は、実質的に3つのピークから構成される。この3つのピークのうち、1番低分子量側のピークは成分(A)由来ポリマーに起因するピークであり、2番目のピークは成分(B)由来ポリマーに起因するピークであり、3番目のピーク、すなわち最も高分子側にあるピークは成分(A)および成分(B)の両方用いたときのみに生成するピークである。そして、成分(A)由来ポリマーに起因するピーク(すなわち、上記1番低分子量側のピーク)と成分(B)由来ポリマーに起因するピーク(すなわち、上記2番目のピーク)との比率[=成分(A)由来ポリマーに起因するピーク/成分(B)由来ポリマーに起因するピーク]を、成分(A)および成分(B)由来のポリマー生成比率[=成分(A)の生成ポリマー量/成分(B)の生成ポリマー量]として定義する。
【0161】
各ピークの比率は、
エチレン系重合体(α)の分子量分布曲線(G1)と、
成分(A)、成分(C)、固体状担体(S)からなる触媒(すなわち、成分(B)を含まない触媒)を用いたことを除き、エチレン系重合体(α)を得るときと同様の重合条件にて重合して得られたエチレン系重合体の分子量分布曲線(G2)と、
成分(B)、成分(C)、固体状担体(S)からなる触媒(すなわち、成分(A)を含まない触媒)を用いたことを除き、エチレン系重合体(α)を得るときと同様の重合条件にて重合して得られたエチレン系重合体の分子量分布曲線(G3)と
を用いて、下記の方法により実施した。なお、本明細書において、「分子量分布曲線」というときは、特に別の記載がない限り、微分分子量分布曲線を指していい、また、分子量分布曲線について「面積」というときは、分子量分布曲線とベースラインとの間に形成される領域の面積をいう。
【0162】
[1](G1)、(G2)、(G3)の各数値データにおいて、Log(分子量)を0.02間隔に分割し、さらに(G1)、(G2)、(G3)のそれぞれについて、面積が1となるように強度[dwt/d(log分子量)]を正規化する。
【0163】
[2](G2)と(G3)との合成曲線(G4)を作成する。このとき、各分子量における(G1)の強度と(G4)の強度との差の絶対値が概ね0.0005以下となるように、(G2)および(G3)の各分子量における強度を一定の比率で任意に変更する。なお、高分子量側では生成する第3ピークの影響により、(G1)の強度と(G4)の強度との差の絶対値が0.0005より大きくなってしまうため、より低分子量側で(G1)の強度と(G4)の強度との差の絶対値が0.0005以下となるように、(G2)および(G3)の強度を変更していく。
【0164】
[3](G1)における最大重量分率での分子量をピークトップとしたときに、当該ピークトップより高分子量側における(G1)と(G4)との重なり合わない部分、すなわち、(G1)と(G4)との差分曲線(G5)を作成したときに、当該差分曲線(G5)において、(G1)における最大重量分率での分子量より高分子量側に現れるピーク部分(P5)[(G1)−(G4)]を第3ピーク(すなわち、上記「3番目のピーク」)とする。
【0165】
[4] 成分(A)由来ポリマーに起因するピークの比率Wa、成分(B)由来ポリマーに起因するピークの比率Wbを以下の通り算出する。
【0166】
Wa=S(G2)/S(G4)
Wb=S(G3)/S(G4)
ここで、S(G2)、S(G3)はそれぞれ強度を変更した後の(G2)、(G3)の面積であり、S(G4)は(G4)の面積である。
【0167】
たとえば、(G4)が、(G2)の強度をx倍したものに、(G3)の強度をy倍したものを加算することにより得られた場合、上記[1]で上述した正規化によって元の(G2)および(G3)の面積が共に1とされていることから、S(G2)、S(G3)、S(G4)は、それぞれx、y、(x+y)となる。したがって、上記WaおよびWbは、上記xおよびyを用いて、それぞれ以下のように表すことができる。
【0168】
Wa=x/(x+y)
Wb=y/(x+y)
成分(A)由来のポリマーの生成量が多い方が長鎖分岐を生成するのに有利であり、成分(A)および成分(B)の遷移金属化合物当たりのモル比は、生成ポリマーが上記の比率を満たす範囲内において任意に選ぶことができる。
【0169】
エチレン系重合体(α)の製造には、上記のような固体触媒成分(X)をそのまま用いることができるが、この固体触媒成分(X)にオレフィンを予備重合させ、予備重合触媒成分(XP)を形成してから用いることもできる。
【0170】
予備重合触媒成分(XP)は、上記固体触媒成分(X)の存在下、通常、不活性炭化水素溶媒中、オレフィンを導入させることにより調製することができ、回分式、半連続式および連続式のいずれの方法でも使用することができ、また減圧、常圧または加圧下のいずれでも行うことができる。この予備重合によって、固体状触媒成分(X)1g当たり、通常0.01〜1000g、好ましくは0.1〜800g、より好ましくは0.2〜500gの重合体を生成させる。
【0171】
不活性炭化水素溶媒中で調製した予備重合触媒成分は、懸濁液から分離した後、再び不活性炭化水素中に懸濁させ、得られた懸濁液中にオレフィンを導入してもよく、また、乾燥させた後オレフィンを導入してもよい。
【0172】
予備重合に際して、予備重合温度は、通常−20〜80℃、好ましくは0〜60℃であり、また予備重合時間は、通常0.5〜100時間、好ましくは1〜50時間である。
【0173】
予備重合に使用する固体触媒成分(X)の形態としては、すでに述べたものを制限無く利用することができる。また、必要に応じて成分(C)が用いられ、特に(c−1)中の上記式(III)に示される有機アルミニウム化合物が好ましく用いられる。成分(C)が用いられる場合は、該成分(C)中のアルミニウム原子(Al−C)と遷移金属化合物とのモル比(成分(C)/遷移金属化合物)で、通常0.1〜10000、好ましくは0.5〜5000の量で用いられる。
【0174】
予備重合系における固体触媒成分(X)の濃度は、固体触媒成分(X)/重合容積1リットル比で、通常1〜1000グラム/リットル、好ましくは10〜500グラム/リットルである。
【0175】
成分(G)は、上記エチレン系重合体(α)製造用触媒の調製におけるいずれの工程に共存させてもよく、接触順序も任意である。また予備重合によって生成した予備重合触媒成分(XP)に接触させてもよい。
【0176】
上記、エチレン系重合体(α)製造用触媒を用いて、エチレン、または、エチレンと炭素数4〜20のα−オレフィンとの重合を行うに際して、成分(A)および成分(B)は、反応容積1リットル当たり、通常10
-12〜10
-1モル、好ましくは10
-8〜10
-2モルになる量で用いられる。
【0177】
また、重合温度は、通常−50〜200℃、好ましくは0〜170℃、特に好ましくは60〜170℃の範囲である。重合圧力は、通常、常圧〜100kgf/cm
2、好ましくは常圧〜50kgf/cm
2の条件下であり、重合反応は、回分式、半連続式および連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うこともできる。
【0178】
得られるエチレン系重合体(α)の分子量は、重合系に水素を存在させるか、または重合温度を変化させることによって調節することができる。さらに重合系には、ファウリング抑制あるいは粒子性状改善を目的として、前記の成分(G)を共存させることができる。
【0179】
物性値のばらつきを抑制するため、重合反応により得られたエチレン系重合体(α)粒子および所望により添加される他の成分は、任意の方法で溶融され、混練、造粒などを施される。
【0180】
<エチレン系重合体(β)の製造方法>
本発明で用いられるエチレン系重合体(β)は、エチレンと炭素数4以上10以下のα-オレフィンとを重合することによって得ることができるが、上記要件を満たすものが得られる限りにおいて、用いる重合触媒や重合条件は特に限定されない。エチレン系重合体(β)としては、例えば、直鎖低密度ポリエチレンやエチレン−α−オレフィンコポリマーや高密度ポリエチレン等の市販品を用いることができる。具体的な例としては、プライムポリマー製LLDPEエボリュー(登録商標)やウルトゼックス(登録商標)等から要件を満たすものを選択することができる。
【0181】
<エチレン系重合体組成物(γ)の製造方法>
エチレン系重合体組成物(γ)は、上記エチレン系重合体(α)と上記エチレン系重合体(β)とを溶融混練することによって製造することができるし、あるいはエチレン系重合体(α)を造粒したペレットと、エチレン系重合体(β)のペレットとをドライブレンドすることによっても製造することができる。好適には、溶融混練により製造する方法を用いることができ、このとき、連続式押出機や密閉式混練機を用いることができる。例えば、一軸押出機、二軸押出機、ミキシングロール、バンバリーミキサー、ニーダー等の装置を挙げることができる。これらのうち、経済性、処理効率等の観点から一軸押出機及び/または二軸押出機を用いることが好ましい。
【0182】
ここで、上記溶融混練及びドライブレンドを行う際、上記エチレン系重合体(α)および上記エチレン系重合体(β)に加えて、上記「他の熱可塑性樹脂」をブレンドすることができる。また、「他の熱可塑性樹脂」に加えて、あるいは、「他の熱可塑性樹脂」に代えて、上記「その他の配合成分」をさらに配合してもよい。
【0183】
上記「他の熱可塑性樹脂」および上記「その他の配合成分」を加える順序は、特に限定されない。例えば、上記「他の熱可塑性樹脂」および上記「その他の配合成分」を、上記エチレン系重合体(α)および上記エチレン系重合体(β)のうちの一方または両方と同時にブレンドしてもよいし、あるいは、上記エチレン系重合体(α)と上記エチレン系重合体(β)とを混練してから加えてもよい。
【0184】
<成形体、フィルム、多層フィルム>
本発明に係るエチレン系重合体組成物(γ)を加工することにより、成形性に優れ、かつ機械的強度に優れた成形体、好ましくはフィルム、あるいは多層フィルムが得られる。
ここで、この多層フィルムは、少なくとも一方の表面層が上記エチレン系重合体組成物(γ)からなる層から形成されている。この多層フィルムにおいて、エチレン系重合体組成物(γ)からなる層は、片面のみに形成されていてもよく、両面に形成されていてもよい。この多層フィルムを構成する基材は、エチレン系重合体組成物(γ)からなるものであってもよく、あるいは、エチレン系重合体組成物(γ)以外の材料からなるものであってもよい。
【0185】
前記フィルムおよび多層フィルムは、いずれも、アンチブロッキング剤を含まずとも耐ブロッキング性に優れる。
【0186】
本発明のエチレン系重合体組成物(γ)は、一般のフィルム成形やシート成形、ブロー成形、インジェクション成形および押出成形等により加工される。フィルム成形では押出ラミネ−ト成形、Tダイフィルム成形、インフレ−ション成形(空冷、水冷、多段冷却、高速加工)などが挙げられる。得られたフィルムは単層でも使用することができるが、多層とすることでさらに様々な機能を付与することができる。その場合に用いられる方法として、前記各成形法における共押出法が挙げられる。一方押出ラミネ−ト成形やドライラミネ−ト法のような貼合ラミネ−ト成形法によって、共押出が困難な紙やバリアフィルム(アルミ箔、蒸着フィルム、コ−ティングフィルムなど)との積層が挙げられる。要するに、少なくとも一方の表面層が上記エチレン系重合体組成物(γ)からなる層から形成されている多層フィルムを得るにあたり、上記エチレン系重合体組成物(γ)からなる層を基材に積層する手段として、これらのような方法を用いうる。
【0187】
ブロー成形やインジェクション成形、押出成形での、共押出法による多層化での高機能製品の作製については、フィルム成形と同様に可能である。
【0188】
本発明のエチレン系重合体組成物(γ)を加工することにより得られる成形体としては、フィルム、シート、ブロー輸液バック、ブローボトル、ガソリンタンク、押出成形によるチューブ、パイプ、引きちぎりキャップ、日用雑貨品など射出成形物、繊維、回転成形による大型成形品などが挙げられる。
【0189】
さらに、本発明のエチレン系重合体組成物(γ)を加工することにより得られるフィルムとしては水物包装袋、液体スープ包袋、液体紙器、ラミ原反、特殊形状液体包装袋(スタンディングパウチなど)、規格袋、重袋、ラップフィルム、砂糖袋、油物包装袋、食品包装用などの各種包装用フィルム、プロテクトフィルム、輸液バック、農業用資材、バックインボックス、半導体材料、医薬品、食品などの包装に用いられるクリーンフィルムなどに好適である。このとき、エチレン系重合体組成物(γ)からなる層を1以上有するフィルムとして用いることもできるし、ナイロン、ポリエステル、ポリオレフィンフィルムなどからなる基材にエチレン系重合体組成物(γ)からなる層を積層した形態を有する多層フィルムとして用いることもできる。
【実施例】
【0190】
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0191】
[エチレン系重合体の測定]
エチレン系重合体の物性の測定方法を以下に示す。
【0192】
<メルトフローレート(MFR)>
ASTM D1238−89に従い、190℃、2.16kg荷重(kgf)の条件下で測定した。
【0193】
<密度(D)>
JIS K7112に準拠し、MFR測定時に得られるストランドを100℃で1時間熱処理し、更に室温で1時間放置した後に密度勾配管法で測定した。
【0194】
<溶融張力(MT)>
190℃における溶融張力(MT)(単位;g)は、一定速度で延伸したときの応力を測定することにより決定した。測定には東洋精機製作所社製キャピラリーレオメーター:キャピログラフ1Bを用いた。条件は樹脂温度190℃、溶融時間6分、バレル径9.55mmφ、押し出し速度15mm/分、巻取り速度24m/分(溶融フィラメントが切れてしまう場合には、巻取り速度を5m/分ずつ低下させる)、ノズル径2.095mmφ、ノズル長さ8mmとした。
【0195】
<せん断粘度(η
*)>
200℃、角速度1.0rad/秒におけるせん断粘度〔η
*(1.0)〕(P)は以下の方法により測定した。
【0196】
せん断粘度(η
*)は、測定温度200℃におけるせん断粘度(η
*)の角速度〔ω(rad/秒)〕分散を0.01≦ω≦100の範囲で測定する。測定にはアントンパール社製粘弾性測定装置Physica MCR301を用い、サンプルホルダーとして25mmφのパラレルプレートを用い、サンプル厚みを約2.0mmとした。測定点はω一桁当たり5点とした。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーにならないよう、3〜10%の範囲で適宜選択した。
【0197】
せん断粘度測定に用いたサンプルは、神藤金属工業所製プレス成形機を用い、予熱温度190℃、予熱時間5分間、加熱温度190℃、加熱時間2分間、加熱圧力100kgf/cm
2、冷却温度20℃、冷却時間5分間、冷却圧力100kgf/cm
2の条件にて、測定サンプルを厚さ2mmにプレス成形することにより作製した。
【0198】
<メチル分岐数およびエチル分岐数>
日本電子(株)製ECP500型核磁気共鳴装置(500MHz)を用い
13C−NMRスペクトルを測定することにより求めた。
【0199】
直径10mmの市販のNMR測定用石英ガラス管にエチレン系重合体250〜400mgと、o−ジクロロベンゼン(和光純薬工業(株)製特級)および重水素化ベンゼン(ISOTEC社製)の混合溶媒(o−ジクロロベンゼン:重水素化ベンゼン=5:1(v/v))3mlとを入れ、120℃で加熱して試料を均一分散させた。
【0200】
積算回数は1万〜3万回とした。
【0201】
NMRスペクトルにおける各吸収の帰属は、化学領域増刊141号 NMR−総説と実験ガイド[I]、p.132〜133に準じて行った。重合体鎖を構成する炭素原子1000個当たりのメチル分岐数は、5〜45ppmの範囲に現れる吸収の積分総和に対するメチル分岐由来のメチル基の吸収(19.9ppm)の積分強度比より算出した。また、エチル分岐数は、5〜45ppmの範囲に現れる吸収の積分総和に対するエチル分岐由来のエチル基の吸収(10.8ppm)の積分強度比より算出した。
【0202】
なお、主鎖メチレンのピーク(29.97ppm)を化学シフト基準とした。
【0203】
<ゼロせん断粘度(η
0)>
200℃におけるゼロせん断粘度(η
0)(P)は以下の方法により求めた。
【0204】
測定温度200℃にて、せん断粘度(η
*)の角速度ω(rad/秒)分散を0.01≦ω≦100の範囲で測定する。測定にはアントンパール社製粘弾性測定装置Physica MCR301を用い、サンプルホルダーとして25mmφのパラレルプレートを用い、サンプル厚みを約2.0mmとした。測定点はω一桁当たり5点とした。歪み量は、測定範囲でのトルクが検出可能で、かつトルクオーバーにならないよう、3〜10%の範囲で適宜選択した。
【0205】
せん断粘度測定に用いたサンプルは、神藤金属工業所製プレス成形機を用い、予熱温度190℃、予熱時間5分間、加熱温度190℃、加熱時間2分間、加熱圧力100kgf/cm
2、冷却温度20℃、冷却時間5分間、冷却圧力100kgf/cm
2の条件にて、測定サンプルを厚さ2mmにプレス成形することにより作製した。
【0206】
ゼロせん断粘度(η
0)は、下記式(Eq-3)のCarreauモデルを非線形最小自乗法により実測のレオロジー曲線〔せん断粘度(η
*)の角速度(ω)分散〕にフィッティングさせることで算出した。
【0207】
η
*=η
0〔1+(λω)
a〕
(n-1)/a (Eq-3)
ここで、λは時間の次元を持つパラメーター、nは材料の冪法則係数(power law index)を表す。なお、非線形最小自乗法によるフィッティングは下記式(Eq-4)におけるdが最小となるように行った。
【0208】
【数2】
【0209】
上記式(Eq-4)中、η
exp(ω)は実測のせん断粘度を表し、η
calc(ω)はCarreauモデルより算出したせん断粘度を表す。
【0210】
<数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、分子量分布(Mw/Mn、Mz/Mw)>
ウォーターズ社製GPC−粘度検出器(GPC−VISCO)GPC/V2000を用い、以下のように測定した。
【0211】
ガードカラムにはShodex AT−Gを用い、分析カラムにはAT−806を2本用い、検出器には示差屈折計および3キャピラリー粘度計を用い、カラム温度は145℃とし、移動相としては、酸化防止剤としてBHTを0.3重量%含むo−ジクロロベンゼンを用い、流速を1.0ml/分とし、試料濃度は0.1重量%とした。標準ポリスチレンには、東ソー社製のものを用いた。分子量計算は、粘度計および屈折計から実測粘度を計算し、実測ユニバーサルキャリブレーションより数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、分子量分布(Mw/Mn、Mz/Mw)を求めた。
【0212】
<分子量分布曲線>
分子量分布曲線は、ウォーターズ社製ゲル浸透クロマトグラフ alliance GPC2000型(高温サイズ排除クロマトグラフ)を用い、以下のように測定した。
【0213】
解析ソフト:クロマトグラフィデータシステムEmpower(Waters社)
カラム:TSKgel GMH
6− HT×2+TSKgel GMH
6−HTL×2(内径7.5mm×長さ30cm,東ソー社)
移動相:o−ジクロロベンゼン(和光純薬 特級試薬)
検出器:示差屈折計(装置内蔵)
カラム温度:140℃
流速:1.0mL/分
注入量:500μL
サンプリング時間間隔:1秒
試料濃度:0.15%(w/v)
分子量較正:単分散ポリスチレン(東ソー社)/分子量495〜2060万
Z. Crubisic, P. Rempp, H. Benoit, J. Polym. Sci.,
B5, 753 (1967)に記載された汎用較正の手順に従い、標準ポリエチレン分子量換算として分子量分布曲線を作成した。この分子量分布曲線から成分(A)および成分(B)から生成するポリマー比率ならびに最大重量分率での分子量(peak top M)を算出した。
【0214】
<極限粘度[η]>
測定サンプル約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度η
spを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度η
spを測定した。この希釈操作をさらに2回繰り返し、下記式(Eq-6)に示すように濃度(C)を0に外挿した時のη
sp/Cの値を極限粘度[η](単位;dl/g)として求めた。
【0215】
[η]=lim(η
sp/C) (C→0) -------- (Eq-6)
[エチレン系重合体組成物のインフレーション成形方法、フィルムの測定]
<成形方法、バブル安定性>
エチレン系重合体組成物ペレットを用い下記の成形条件で空冷インフレーション成形を行い、肉厚40μm、幅320 mmのフィルムを成形した。
【0216】
・成形機:モダンマシナリー製50mmφインフレーション成形機
・スクリュー:バリアタイプスクリュー
・ダイス:100 mmφ(径)、2.0 mm(リップ幅)
・エアーリング:2ギャップタイプ
・成形温度:190℃
・押出し量:28.8Kg/h
・引取速度:20 m/min
さらに、インフレーション成形にてフィルム成形を行っている際にバブルを目視にて確認し、
a) バブルが非常に安定していてゆれが見られないものを◎
b) バブルが安定していてゆれが少ないものを○
c) バブルの安定性がやや悪くゆれが見られるものを△
d) バブルの安定性がなくゆれが激しいものを×
とした。×から◎に近づくほど成形性がよく、好ましいことを示す。
【0217】
<ダート衝撃強度>
ASTM D1709に従って、以下条件にて測定した。
【0218】
試験片をエアークランプ方式で締め付け、半球径のダートを一定の高さの位置から落下させ、試験片が50%破壊する荷重をグラフから読み取る。一水準の落下回数は10回とし、A法を用いる。
【0219】
<外部ヘイズ>
外部ヘイズは以下の式により算出した。
【0220】
外部ヘイズ=全ヘイズ−内部ヘイズ
全ヘイズはASTM D1003に従って測定した。また、内部ヘイズは、シクロヘキサノールを充填したセルにフィルムを入れ、その後全ヘイズ同様にヘイズメーターを使用して測定を実施した。
【0221】
<ブロッキング係数>
ASTM D1893-67に従って、以下方法にて測定した。
【0222】
インフレーションフィルムの内面同士を二枚重ねした試験片を所定時間、温度と荷重をかけてエージングした後、インストロン型万能材料試験機に取り付けられたブロッキング測定治具にセットする。インストロン型万能材料試験機により二枚のブロッキングした試験片を引き離すのに必要な力を試験片の幅で除した値をブロッキング係数とする。
【0223】
・測定温度:23℃
・試験速度:200mm/min.
・試験片 厚み/幅:40μm/200mm
・エージング条件:50℃×10kgf×3日
<表面粗さ>
原子間力顕微鏡(キーエンス社製 Nanoscale Hybrid Microscope VN8010)を用いて、以下の条件にての10点平均表面粗さRzを測定した。なお、測定はインフレーションフィルムの外面に対して行い、フィルムの引取方向(MD)、及びMD方向に対して直交する方向(TD)それぞれについてRzを測定した。
【0224】
・カンチレバー:DFM/SS モードカンチレバー OP-75041
・スキャン範囲:50μm
・アスペクト比:1:1
・角度:0度
・スキャン感度:オートマチック
・温度:25℃
[製造例1:エチレン系重合体(α−1)]
固体触媒成分(X−1)の調製
内容積270リットルの攪拌機付き反応器に、窒素雰囲気下、固体状担体(S)として、富士シリシア株式会社製シリカ(SiO
2:平均粒径70μm、比表面積340m
2/g、細孔容積1.3cm
3/g、250℃焼成)10kgを77リットルのトルエンに懸濁させた後0〜5℃に冷却した。この懸濁液に成分(C)として、メチルアルミノキサンのトルエン溶液(Al原子換算で3.5mmol/mL)19.4リットルを30分間かけて滴下した。この際、系内の温度を0〜5℃に保った。引き続き0〜5℃で30分間反応させた後、約1.5時間かけて95〜100℃まで昇温して、引き続き95〜100℃で4時間反応させた。その後常温まで降温して、上澄み液をデカンテーションにより除去し、さらにトルエンで2回洗浄した後、全量115リットルのトルエンスラリーを調製した。得られたスラリー成分の一部を採取し濃度を調べたところ、スラリー濃度:122.6g/L、Al濃度:0.62mol/Lであった。
【0225】
この内、12.2リットルを内容積114リットルの撹拌機付き反応器に、窒素雰囲気下で装入し、全量が28リットルになるようトルエンを添加した。次に、5リットルのガラス製反応器に窒素雰囲気下、成分(A)として、ジメチルシリレン(3−n−ブチルシクロペンタジエニル)(シクロペンタジエニル)ジルコニウムジクロリド2.58g(Zr原子換算で6.61mmol)および、成分(B)として、イソプロピリデン(シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド16.40g(Zr原子換算で30.10mmol)を採取し(成分(A)/成分(B)のモル比=18/82)、トルエン5.0リットルに溶解させ、上記反応器に圧送した。圧送後、内温73〜76℃で2時間反応させ、上澄み液をデカンテーションにより除去し、さらにヘキサンを用いて3回洗浄した後、ヘキサンを加えて全量30リットルとし、固体触媒成分(X−1)のヘキサンスラリーを調製した。
【0226】
予備重合触媒成分(XP−1)の調製
引き続き、上記で得られた固体触媒成分(X−1)のヘキサンスラリーを10℃まで冷却した後、ジイソブチルアルミニウムヒドリド(DiBAl−H)3.7molを添加した。さらに常圧下でエチレンを系内に連続的に数分間供給した。この間系内の温度は10〜15℃に保持し、次いで1−ヘキセン0.10リットルを添加した。1−ヘキセン添加後、1.4kg/hでエチレン供給を開始し、系内温度32〜37℃にて予備重合を行った。予備重合を開始してから30分毎に計5回、1−ヘキセン0.06リットルを添加し、予備重合開始から190分後にエチレン供給が4.3kgに到達したところで、エチレン供給を停止した。その後、上澄み液をデカンテーションにより除去し、ヘキサンを用いて4回洗浄した後、ヘキサンを加えて全量を50リットルとした。
【0227】
次に、系内温度を34〜36℃にて、成分(G)として、三洋化成工業株式会社製ケミスタット2500(ヤシ脂肪酸ジエタノールアミド:60.8g)のヘキサン溶液を上記反応器に圧送し、引き続き、34〜36℃で2時間反応させた。その後、上澄み液をデカンテーションにより除去し、ヘキサンを用いて4回洗浄した。
【0228】
次に、内容積43リットルの撹拌機付き蒸発乾燥機に、窒素雰囲気下、ヘキサンスラリーを挿入した後、乾燥機内を約60分かけて−68kPaGまで減圧し、−68kPaGに到達したところで約4.3時間真空乾燥しヘキサンならびに予備重合触媒成分中の揮発分を除去した。さらに−100kPaGまで減圧し、−100kPaGに到達したところで8時間真空乾燥し、予備重合触媒成分(XP−1)6.1kgを得た。得られた予備重合触媒成分の一部を採取し、組成を調べたところ、予備重合触媒成分1g当たりZr原子が0.52mg含まれていた。
【0229】
エチレン系重合体(α−1)の製造
内容積1.7m
3の流動層型気相重合反応器において、予備重合触媒成分(XP−1)を用いて、エチレン・1−ヘキセン共重合体の製造を行った。
【0230】
表1に示す条件に従い、連続的に反応器内に予備重合触媒成分(XP−1)、エチレン、窒素、1−ヘキセンなどを供給した。重合反応物は反応器より連続的に抜き出し、乾燥装置にて乾燥し、エチレン系重合体(α−1)パウダーを得た。
【0231】
得られたエチレン系重合体(α−1)パウダーに耐熱安定剤としてスミライザーGP(住友化学社製)850ppm、ステアリン酸カルシウム(日東化成工業社製)210ppmを加え、株式会社東洋精機製作所製の二軸異方向20mmφ押出機を用い、設定温度200℃、スクリュー回転数100rpmの条件で溶融混練した後、ストランド状に押し出し、カットしてエチレン系重合体(α−1)のペレットを得た。得られたペレットを測定用試料として物性測定を行った。結果を表2に示す。
【0232】
[製造例2:エチレン系重合体(α−2)]
固体触媒成分(X−2)の調製
製造例1の固体触媒成分(X−1)の調製において、成分(A)および成分(B)のモル比を(A)/(B)=20/80に変更した以外は、固体触媒成分(X−1)の調製と同様にして固体触媒成分(X−2)のヘキサンスラリーを調製した。
【0233】
予備重合触媒成分(XP−2)の調製
予備重合触媒成分(XP−1)の調製において、固体触媒成分(X−1)の代わりに固体触媒成分(X−2)を用いた以外は、予備重合触媒成分(XP−1)の調製と同様の方法にて予備重合触媒成分(XP−2)を得た。得られた予備重合触媒成分(XP−2)の組成を調べたところ、固体触媒成分1g当たり、Zr原子が0.54mg含まれていた。
【0234】
エチレン系重合体(α−2)の製造
製造例1のエチレン系重合体(α−1)の製造において、予備重合触媒成分および重合条件を表1に示す条件に変更した以外は、製造例1と同様にしてエチレン系重合体(α−2)パウダーを得た。
【0235】
得られたエチレン系重合体(α−2)パウダーを用い、製造例1と同様の方法で測定用試料を作製し、物性測定を行った。結果を表2に示す。
【0236】
[製造例3:エチレン系重合体(α−3)]
固体触媒成分(X−3)の調製
製造例1の固体触媒成分(X−1)の調製において、成分(A)および成分(B)のモル比を(A)/(B)=19/81に変更した以外は、固体触媒成分(X−1)の調製と同様にして固体触媒成分(X−3)のヘキサンスラリーを調製した。
【0237】
予備重合触媒成分(XP−3)の調製
予備重合触媒成分(XP−1)の調製において、固体触媒成分(X−1)の代わりに固体触媒成分(X−3)を用いた以外は、予備重合触媒成分(XP−1)の調製と同様の方法にて予備重合触媒成分(XP−3)を得た。得られた予備重合触媒成分(XP−3)の組成を調べたところ、固体触媒成分1g当たり、Zr原子が0.52mg含まれていた。
【0238】
エチレン系重合体(α−3)の製造
製造例1のエチレン系重合体(α−1)の製造において、予備重合触媒成分および重合条件を表1に示す条件に変更した以外は、製造例1と同様にしてエチレン系重合体(α−3)パウダーを得た。
【0239】
得られたエチレン系重合体(α−3)パウダーを用い、製造例1と同様の方法で測定用試料を作製し、物性測定を行った。結果を表2に示す。
【0240】
[製造例4:エチレン系重合体(α−4)]
エチレン系重合体(α−4)の製造
製造例1のエチレン系重合体(α−1)の製造において、反応器の内容積を1.0m
3、予備重合触媒成分および重合条件を表1に示す条件に変更した以外は、製造例1と同様にしてエチレン系重合体(α−4)パウダーを得た。
【0241】
得られたエチレン系重合体(α−4)パウダーを用い、製造例1と同様の方法で測定用試料を作製し、物性測定を行った。結果を表2に示す。
【0242】
[製造例5:エチレン系重合体(α−5)]
エチレン系重合体(α−5)の製造
製造例4のエチレン系重合体(α−4)の製造において、重合条件を表1に示す条件に変更した以外は、製造例4と同様にしてエチレン系重合体(α−5)パウダーを得た。
【0243】
得られたエチレン系重合体(α−5)パウダーを用い、製造例1と同様の方法で測定用試料を作製し、物性測定を行った。結果を表2に示す。
【0244】
[製造例6:エチレン系重合体(α−6)]
固体触媒成分(X−4)の調製
製造例1の固体触媒成分(X−1)の調製において、成分(A)および成分(B)のモル比を(A)/(B)=14/86に変更し、反応器内温20〜25℃で1時間反応させた以外は、固体触媒成分(X−1)の調製と同様にして固体触媒成分(X−4)のヘキサンスラリーを調製した。
予備重合触媒成分(XP−4)の調製
引き続き、上記で得られた固体触媒成分(X−4)のヘキサンスラリーを38〜40℃まで昇温した後、ジイソブチルアルミニウムヒドリド(DiBAl−H)3.7molを添加した。その後、常圧下にて1.4kg/hでエチレン供給を開始した。系内温度を38〜40℃に保持し、予備重合開始から240分後にエチレン供給が4.3kgに到達したところで、エチレン供給を停止した。その後、上澄み液をデカンテーションにより除去し、ヘキサンを用いて4回洗浄した後、ヘキサンを加えて全量を50リットルとした。
【0245】
次に、系内温度を38〜40℃にて、成分(G)として、花王株式会社製エマルゲン108(ポリオキシエチレンラウリルエーテル:30.4g)を上記反応器に圧送し、引き続き、38〜40℃で3時間反応させた。その後、上澄み液をデカンテーションにより除去し、ヘキサンを用いて4回洗浄した。
【0246】
次に、内容積43リットルの撹拌機付き蒸発乾燥機に、窒素雰囲気下、ヘキサンスラリーを挿入した後、乾燥機内を約60分かけて−68kPaGまで減圧し、−68kPaGに到達したところで約4.3時間真空乾燥しヘキサンならびに予備重合触媒成分中の揮発分を除去した。さらに−100kPaGまで減圧し、−100kPaGに到達したところで8時間真空乾燥し、予備重合触媒成分(XP−4)5.9kgを得た。得られた予備重合触媒成分の一部を採取し、組成を調べたところ、予備重合触媒成分1g当たりZr原子が0.53mg含まれていた。
エチレン系重合体(α−6)の製造
製造例1のエチレン系重合体(α−1)の製造において、反応器の内容積を1.0m
3、予備重合触媒成分および重合条件を表1に示す条件に変更した以外は、製造例1と同様にしてエチレン系重合体(α−6)パウダーを得た。
【0247】
得られたエチレン系重合体(α−6)パウダーを用い、製造例1と同様の方法で測定用試料を作製し、物性測定を行った。結果を表2に示す。
[エチレン系重合体(α−7)]
株式会社プライムポリマーより市販されているエチレン・1−ヘキセン共重合体(商品名:エボリュー SP2040)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表2に示す。
【0248】
[エチレン系重合体(α−8)、エチレン系重合体(β−7)]
三井・デュポンポリケミカル株式会社より市販されている高圧ラジカル重合法によるポリエチレン(商品名:ミラソン14P)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表2、3に示す。
【0249】
【表1】
【0250】
【表2】
【0251】
[エチレン系重合体(β−1)]
株式会社プライムポリマーより市販されているエチレン・1−ヘキセン共重合体(商品名:エボリュー SP1510)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表3に示す。
【0252】
[エチレン系重合体(β−2)]
株式会社プライムポリマーより市販されているエチレン・1−ヘキセン共重合体(商品名:エボリュー SP1520)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表3に示す。
【0253】
[エチレン系重合体(β−3)]
株式会社プライムポリマーより市販されているエチレン・1−ヘキセン共重合体(商品名:エボリュー SP1540)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表3に示す。
【0254】
[エチレン系重合体(β−4)]
内容積1Lの完全攪拌混合型連続重合反応容器に、乾燥したn−ヘキサンを5.5リットル/時間、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリドのヘキサン溶液(0.16ミリモル/L)を0.0104ミリモル/時間、メチルアルミノキサン(MMAO−3A:東ソー・ファインケム社製)のトルエン溶液(80ミリモル/L)を5.2ミリモル/時間、トリイソブチルアルミニウムのヘキサン溶液(12ミリモル/L)を1.8ミリモル/時間の割合で導入した。水素は導入しなかった。同時に重合反応容器内にエチレンを480g/時間、1−オクテンを0.87kg/hで連続供給し、重合器内が反応圧力6.9MPaとなるように重合器上部から重合溶液を連続的に抜き出し、重合温度150℃、で重合反応を行った。重合器から連続的に抜き出された重合溶液に失活剤として少量のイソプロピルアルコールを添加し、耐熱安定剤としてIrganox1076(チバスペシャリティケミカルズ社製)を500ppm加えた後、大気圧までフラッシュしてポリマーを析出させた。その後、N2流通下で真空乾燥器にて120℃で8時間乾燥した。この重合のエチレン転化率は87.1%、エチレン系重合体収量は0.546kg/hであった。
【0255】
得られたエチレン系重合体を凍結粉砕した後、耐熱安定剤としてスミライザー(登録商標)GP(住友化学株式会社製)850ppm、ステアリン酸カルシウム(日東化成工業社製)210ppmを加え、株式会社東洋精機製作所製の二軸異方向20mmφ押出機を用い、設定温度200℃、スクリュー回転数100rpmの条件で溶融混練した後、ストランド状に押し出し、カットしてエチレン系重合体(β−4)のペレットを得た。得られたペレットを測定用試料として物性測定を行った。結果を表3に示す。
【0256】
[エチレン系重合体(β−5)]
株式会社プライムポリマーより市販されているエチレン・4−メチル−1−ペンテン共重合体(商品名:ウルトゼックス 1520L)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表3に示す。
【0257】
[エチレン系重合体(β−6)]
株式会社プライムポリマーより市販されているエチレン・4−メチル−1−ペンテン共重合体(商品名:ウルトゼックス 15150J)を用いた。製品ペレットを測定試料とし、物性測定を行った結果を表3に示す。
【0258】
【表3】
【0259】
[実施例1]
スミライザー(登録商標)GP(住友化学株式会社製)850ppm、ステアリン酸カルシウム(日東化成工業社製)210ppmを添加したエチレン系重合体(α−1)パウダーとエチレン系重合体(β−1)とを80:20の重量比でブレンドし、株式会社東洋精機製作所製の二軸異方向20mmφ押出機を用い、設定温度200℃、スクリュー回転数100rpmの条件で溶融混練した後、ストランド状に押し出し、カットしてエチレン系重合体組成物(γ−1)のペレットを得た。得られたペレットを測定用試料として物性測定を行った結果を表4−1に示す。さらに、得られたペレットを用いてインフレーションフィルム成形を実施した。成形時の
バブル安定性、及びフィルム物性を表4−1に示す。
【0260】
[実施例2〜19]
実施例1において、エチレン系重合体(α)とエチレン系重合体(β)の種類、及びブレンド比を表4−1,4−2,4−3に示す条件に変更した以外は、実施例1と同様の方法にて、それぞれ、エチレン系重合体組成物(γ)であるエチレン系重合体組成物(γ−2)〜(γ−19)のペレット、及びインフレーションフィルムを得た。得られたペレットの物性、成形時のバブル安定性、フィルム物性を表4−1,4−2,4−3に示す。
【0261】
[比較例1,2]
実施例1において、エチレン系重合体(α)とエチレン系重合体(β)の種類、及びブレンド比を表4−4に示す条件に変更した以外は、実施例1と同様の方法にてエチレン系重合体組成物(γ−20)、エチレン系重合体組成物(γ−21)のペレット、及びインフレーションフィルムを得た。得られたペレットの物性、成形時のバブル安定性、フィルム物性を表4−4に示す。比較例1,2は、エチレン系重合体(β−6)のMFRが本発明で規定する要件(1')の上限値より大きい。このため、バブル安定性、ダート衝撃強度に劣る。
【0262】
[比較例3]
実施例1において、エチレン系重合体(α)とエチレン系重合体(β)の種類、及びブレンド比を表4−4に示す条件に変更した以外は、実施例1と同様の方法にてエチレン系重合体組成物(γ−22)のペレットを得た。得られたペレットの物性を表4−4に示す。比較例3は、エチレン系重合体(α−7)のη
0/Mw
6.8および[η]/Mw
0.776がそれぞれ本発明で規定する要件(4)および要件(5)の上限値よりも大きい。このため、成形性が劣り、インフレーションフィルム成形にてフィルムを得ることが出来なかった。
【0263】
[比較例4]
実施例1において、エチレン系重合体(α)とエチレン系重合体(β)の種類、及びブレンド比を表4−4に示す条件に変更した以外は、実施例1と同様の方法にてエチレン系重合体組成物(γ−23)のペレット、及びインフレーションフィルムを得た。得られたペレットの物性、成形時のバブル安定性、フィルム物性を表4−4に示す。比較例4は、エチレン系重合体(α−8)のメチル分岐数とエチル分岐数との和が本発明で規定する要件(3)の上限値より大きく、η
0/Mw
6.8および[η]/Mw
0.776がそれぞれ本発明で規定する要件(4)および要件(5)の下限値より小さい。このため、ダート衝撃強度、耐ブロッキング性に劣る。
【0264】
[比較例5]
実施例1において、エチレン系重合体(α)とエチレン系重合体(β)の種類、及びブレンド比を表4−4に示す条件に変更した以外は、実施例1と同様の方法にてエチレン系重合体組成物(γ−24)のペレット、及びインフレーションフィルムを得た。得られたペレットの物性、成形時のバブル安定性、フィルム物性を表4−4に示す。比較例5は、エチレン系重合体(β−7)のメチル分岐数とエチル分岐数との和が本発明で規定する要件(2')の上限値より大きい。このため、ダート衝撃強度に劣る。
【0265】
【表4-1】
【0266】
【表4-2】
【0267】
【表4-3】
【0268】
【表4-4】