(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5944192
(24)【登録日】2016年6月3日
(45)【発行日】2016年7月5日
(54)【発明の名称】タンタル挿入層を使用したTMRセンサ薄膜及びそのシステム
(51)【国際特許分類】
G11B 5/39 20060101AFI20160621BHJP
H01L 43/08 20060101ALI20160621BHJP
H01L 43/10 20060101ALI20160621BHJP
【FI】
G11B5/39
H01L43/08 Z
H01L43/10
【請求項の数】19
【全頁数】17
(21)【出願番号】特願2012-64368(P2012-64368)
(22)【出願日】2012年3月21日
(65)【公開番号】特開2012-221549(P2012-221549A)
(43)【公開日】2012年11月12日
【審査請求日】2015年3月4日
(31)【優先権主張番号】13/082,098
(32)【優先日】2011年4月7日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】503116280
【氏名又は名称】エイチジーエスティーネザーランドビーブイ
(74)【代理人】
【識別番号】100091096
【弁理士】
【氏名又は名称】平木 祐輔
(74)【代理人】
【識別番号】100102576
【弁理士】
【氏名又は名称】渡辺 敏章
(74)【代理人】
【識別番号】100153903
【弁理士】
【氏名又は名称】吉川 明
(72)【発明者】
【氏名】佐藤 雅重
(72)【発明者】
【氏名】駒垣 幸次郎
【審査官】
斎藤 眞
(56)【参考文献】
【文献】
特開2007−173809(JP,A)
【文献】
特開2008−300840(JP,A)
【文献】
特開2009−152333(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11B 5/39
H01L 43/00−43/14
(57)【特許請求の範囲】
【請求項1】
トンネル磁気抵抗(TMR)ヘッドであって、
基板上部のリード層と
前記リード層上部のシード層と、
前記シード層上部の反強磁性(AFM)層と、
前記AFM層上部の第1強磁性層と、
前記第1強磁性層上部の第2強磁性層と、
前記第1及び第2強磁性層の間の結合層であって、前記第2強磁性層の磁化を前記第1強磁性層の磁化に結合させる結合層と、
前記第2強磁性層上部の固定層と、
前記固定層に隣接した又は前記固定層の内部の挿入層と、
前記固定層上部のバリア層と、
前記バリヤ層上部の自由層と、
前記自由層上部のキャップ層と、
を含み、
前記TMRヘッドはさらに、前記固定層の上部且つ前記バリア層の下部に第3強磁性層を有し、前記第3強磁性層は、NiFe及びCoFeのうちの少なくとも1つを含む、
TMRヘッド。
【請求項2】
トンネル磁気抵抗(TMR)ヘッドであって、
基板上部のリード層と
前記リード層上部のシード層と、
前記シード層上部の反強磁性(AFM)層と、
前記AFM層上部の第1強磁性層と、
前記第1強磁性層上部の第2強磁性層と、
前記第1及び第2強磁性層の間の結合層であって、前記第2強磁性層の磁化を前記第1強磁性層の磁化に結合させる結合層と、
前記第2強磁性層上部の固定層と、
前記固定層に隣接した又は前記固定層の内部の挿入層と、
前記固定層上部のバリア層と、
前記バリヤ層上部の自由層と、
前記自由層上部のキャップ層と、
を含み、
前記固定層は、非晶質の強磁性材料を含み、且つ、約0.5nm〜約2.0nmの範囲の厚さを有する、
TMRヘッド。
【請求項3】
トンネル磁気抵抗(TMR)ヘッドであって、
基板上部のリード層と
前記リード層上部のシード層と、
前記シード層上部の反強磁性(AFM)層と、
前記AFM層上部の第1強磁性層と、
前記第1強磁性層上部の第2強磁性層と、
前記第1及び第2強磁性層の間の結合層であって、前記第2強磁性層の磁化を前記第1強磁性層の磁化に結合させる結合層と、
前記第2強磁性層上部の固定層と、
前記固定層に隣接した又は前記固定層の内部の挿入層と、
前記固定層上部のバリア層と、
前記バリヤ層上部の自由層と、
前記自由層上部のキャップ層と、
を含み、
前記TMRヘッドはさらに、前記固定層の上部且つ前記バリア層の下部に第3強磁性層を有し、
前記挿入層は、前記固定層と前記第3強磁性層の境界面よりも前記固定層と前記第2強磁性層の境界面の近くにおいて前記固定層の内部に配置される、
TMRヘッド。
【請求項4】
トンネル磁気抵抗(TMR)ヘッドであって、
基板上部のリード層と
前記リード層上部のシード層と、
前記シード層上部の反強磁性(AFM)層と、
前記AFM層上部の第1強磁性層と、
前記第1強磁性層上部の第2強磁性層と、
前記第1及び第2強磁性層の間の結合層であって、前記第2強磁性層の磁化を前記第1強磁性層の磁化に結合させる結合層と、
前記第2強磁性層上部の固定層と、
前記固定層に隣接した又は前記固定層の内部の挿入層と、
前記固定層上部のバリア層と、
前記バリヤ層上部の自由層と、
前記自由層上部のキャップ層と、
を含み、
前記TMRヘッドはさらに、前記固定層の上部且つ前記バリア層の下部に第3強磁性層を有し、
前記挿入層は、前記固定層と前記第2強磁性層の境界面から前記固定層と前記第3強磁性層の境界面までの略等距離において前記固定層の内部に配置される、
TMRヘッド。
【請求項5】
前記リード層は、NiFe下地層の上部にCu及びTaが交互に重なった積層体を含む請求項1から4のいずれか1項記載のTMRヘッド。
【請求項6】
前記AFM層は、MnIr及びMnPtのうちの少なくとも1つを含む請求項1から4のいずれか1項記載のTMRヘッド。
【請求項7】
前記第1及び第2強磁性層は、NiFe及びCoFeのうちの少なくとも1つを含む請求項1から4のいずれか1項記載のTMRヘッド。
【請求項8】
前記第2強磁性層は、結晶質であり、且つ、約0.2nm〜約1.0nmの範囲の厚さを有する請求項1から4のいずれか1項記載のTMRヘッド。
【請求項9】
前記結合層は、約0.4nm〜約1.5nmの範囲の厚さを有し、且つ、Ru、Ir、Rh、Cr、Cu、及びHfのうちの少なくとも1つを含む請求項1から4のいずれか1項記載のTMRヘッド。
【請求項10】
前記固定層は、非晶質構造を有し、且つ、CoFeB及びCoFeHfのうちの少なくとも1つを含む請求項2記載のTMRヘッド。
【請求項11】
前記挿入層は、約0.05nm〜約0.3nmの範囲の厚さを有し、且つ、Ta、Ti、Hf、及びZrのうちの少なくとも1つを含む請求項1から4のいずれか1項記載のTMRヘッド。
【請求項12】
前記挿入層は、Taを含む請求項11記載のTMRヘッド。
【請求項13】
前記挿入層は、前記固定層と前記第2強磁性層の間に配置される請求項1から4のいずれか1項記載のTMRヘッド。
【請求項14】
前記自由層は、約4.0nm〜約8.0nmの範囲の厚さを有し、且つ、CoFe、CoFeB、及びCoFeHfからなる群から選択される強磁性材料を含む請求項1から4のいずれか1項記載のTMRヘッド。
【請求項15】
磁気媒体と、
前記磁気媒体との間において読み取り及び/又は書き込みを実行する請求項1から4のいずれか1項記載の少なくとも1つのTMRヘッドと、
前記少なくとも1つのTMRヘッドの上方において前記磁気媒体を通過させる駆動メカニズムと、
前記少なくとも1つのTMRヘッドの動作を制御するべく前記少なくとも1つのTMRヘッドに電気的に結合されたコントローラと、
を含む磁気データストレージシステム。
【請求項16】
トンネル磁気抵抗(TMR)ヘッドであって、
基板上部のリード層であって、第1端子として機能するリード層と、
前記リード層上部の反強磁性(AFM)層と、
前記AFM層上部の強磁性層と、
前記強磁性層上部の固定層と、
前記強磁性層と前記固定層の間の結合層であって、前記固定層の磁化を前記強磁性層の磁化に結合させる結合層と、
前記固定層に隣接した又は前記固定層の内部の挿入層であって、約0.05nm〜約0.3nmの範囲の厚さを有し、且つ、Ta、Ti、Hf、及びZrのうちの少なくとも1つを含む挿入層と、
前記固定層上部のバリア層と、
前記バリア層上部の自由層であって、CoFeBを含む自由層と、
前記自由層上部のキャップ層であって、第2端子として機能するキャップ層と、
を含み、
前記挿入層は、前記固定層と前記バリア層の境界面よりも前記固定層と前記結合層の境界面の近くにおいて前記固定層の内部に配置される、
TMRヘッド。
【請求項17】
トンネル磁気抵抗(TMR)ヘッドであって、
基板上部のリード層であって、第1端子として機能するリード層と、
前記リード層上部の反強磁性(AFM)層と、
前記AFM層上部の強磁性層と、
前記強磁性層上部の固定層と、
前記強磁性層と前記固定層の間の結合層であって、前記固定層の磁化を前記強磁性層の磁化に結合させる結合層と、
前記固定層に隣接した又は前記固定層の内部の挿入層であって、約0.05nm〜約0.3nmの範囲の厚さを有し、且つ、Ta、Ti、Hf、及びZrのうちの少なくとも1つを含む挿入層と、
前記固定層上部のバリア層と、
前記バリア層上部の自由層であって、CoFeBを含む自由層と、
前記自由層上部のキャップ層であって、第2端子として機能するキャップ層と、
を含み、
前記挿入層は、前記固定層と前記結合層の境界面から前記固定層と前記バリア層の境界面までの略等距離において前記固定層の内部に配置される、
TMRヘッド。
【請求項18】
前記挿入層は、前記固定層と前記結合層の間に配置される請求項16または17記載のTMRヘッド。
【請求項19】
磁気媒体と、
前記磁気媒体との間において読み取り/書き込みを実行する請求項16または17記載の少なくとも1つのTMRヘッドと、
前記少なくとも1つのTMRヘッドの上方において前記磁気媒体を通過させる駆動メカニズムと、
前記少なくとも1つのTMRヘッドの動作を制御するべく前記少なくとも1つのTMRヘッドに電気的に結合されたコントローラと、
を含む磁気データストレージシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気再生装置に関し、更に詳しくは、磁気媒体からデータを読み取るトンネル磁気抵抗(Tunnel MagnetoResistance:TMR)ヘッドに関し、このヘッドは、タンタル挿入層をその内部に有する。
【背景技術】
【0002】
磁気ディスク装置に使用される磁気ヘッドには、通常、その内部に、1つ又は複数の記録媒体上に記録されたデータを読み取る再生ヘッドが設けられている。記録媒体上に記録された磁化信号に応答して変化する抵抗値を有する磁気抵抗効果薄膜を再生ヘッド内において使用し、磁気媒体から信号を読み取っている。磁気抵抗効果薄膜は、磁化方向が1つの方向に固定された磁化固定層と、磁化方向が、自由に変化し、且つ、媒体から発せられる磁界の影響を受けうる磁化自由層と、を含む。信号を読み取るべく、媒体の磁化信号の動きに起因した磁化自由層及び磁化固定層の個々の磁化方向の相対角の変化によって生じる磁気抵抗の変化を検出している。これは、磁気再生ヘッドの読み取り性能を改善するには、磁気抵抗の大きな変化を有する磁気抵抗効果薄膜及びこの薄膜が提供された素子が必要であることを意味している。
【0003】
磁気抵抗効果素子は、電流が磁気抵抗効果薄膜の面内を流れるCIP(Current−in−plane)素子であってもよく、或いは、電流が薄膜表面に対して垂直に流れるCPP(Current−Perpendicular−to−Plane)素子であってもよい。
図1は、ボトム型のトンネル磁気抵抗(TMR)効果素子の薄膜構造100の一例を示している。この磁気抵抗効果素子は、下地層111と、反強磁性層112と、磁化固定層113と、トンネルバリア層114と、磁化自由層115と、キャップ層116と、を含む。これらの層は、協働してトンネル磁気抵抗効果薄膜118を形成すると共に、下部シールド層110と上部シールド層117の間に形成されている。
【0004】
(特許文献1)に開示されているように、MgOをトンネルバリア層として利用したトンネル磁気抵抗効果素子は、非常に大きな磁気抵抗の変化比(TMR比)を有しており、且つ、(特許文献2)に開示されているように、特に、スパッタリングによって製造され、且つ、当産業界において広く使用されているCoFeB磁気層及びMgOバリア層を利用したCoFeB/Mgo/CoFeBトンネル磁気抵抗素子によれば、200%を超える大きなTMR比が実証されることが報告されている。
【0005】
CoFeB/MgO/CoFeBトンネル磁気抵抗素子によって大きなTMR比が実証される理由は、(非特許文献1)に記述されているように、薄膜形成の直後に、非晶質のCoFeB層が、(001)配向結晶を含むトンネルバリア層における熱処理において、体心立方(bcc)(001)配向の結晶化を経るためであると考えられる。
【0006】
再生ヘッドに使用されるTMR素子において、大きなTMR比、即ち、大きな再生出力を実現するには、(001)配向の結晶質絶縁層をトンネルバリア層として使用し、且つ、磁化固定層及び磁化自由層にCoFeB層を使用することが非常に有効である。
【0007】
更には、磁化固定層113は、通常、第1磁化固定層と、非磁気結合層と、第2磁化固定層と、を含む。通常、非磁気結合層には、Ruが使用され、且つ、第1磁化固定層及び第2磁化固定層は、非磁気結合層の厚さを調節することによって反強磁性的に結合される。この種の構造を採用することにより、固定層からの磁界漏洩の量を調節可能であると共に、外部磁界に対する固定層の抵抗を増大させることができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第4,082,711号公報
【特許文献2】特開2004−259280号公報
【非特許文献】
【0009】
【非特許文献1】J. Hayakawa et al., Jpn. J. Appl. Phys., 44 L587 (2005)
【発明の概要】
【発明が解決しようとする課題】
【0010】
近年、ハードディスクドライブ(Hard Disk Drive:HDD)の記録密度の増大に伴って、記録媒体上におけるビットサイズが益々小さくなっている。従って、記録媒体上に記録された磁気信号を更に正確に読み取るには、再生ヘッドの出力の増大と、信号対雑音比(SNR)の改善と、が有益であろう。又、(001)配向のCoFeB/MgO/CoFeB構造を形成する方式も、再生ヘッドの出力の改善に有用であろう。
【課題を解決するための手段】
【0011】
一実施形態において、トンネル磁気抵抗(TMR)ヘッドは、基板上部のリード層と、リード層上部のシード層と、シード層上部の反強磁性(AFM)層と、AFM層上部の第1強磁性層と、第1強磁性層上部の第2強磁性層と、第1及び第2強磁性層の間の結合層であって、第2強磁性層の磁化を第1強磁性層の磁化に結合させる結合層と、第2強磁性層上部の固定層と、固定層に隣接した又は固定層の内部の挿入層と、固定層上部のバリア層と、バリア層上部の自由層と、自由層上部のキャップ層と、を含む。
【0012】
別の実施形態において、TMRヘッドは、基板上部のリード層であって、第1端子として機能するリード層と、リード層上部のAFM層と、AFM層上部の強磁性層と、強磁性層上部の固定層と、強磁性層と固定層の間の結合層であって、固定層の磁化を強磁性層の磁化に結合させる結合層と、固定層に隣接した又は固定層の内部の挿入層であって、約0.05nm〜約0.3nmの範囲の厚さを有し、且つ、Ta、Ti、Hf、及びZrのうちの少なくとも1つを含む挿入層と、固定層上部のバリア層と、バリア層上部の自由層であって、CoFeBを含む自由層と、自由層上部のキャップ層であって、第2端子として機能するキャップ層と、を含む。
【0013】
これらの実施形態の任意のものを、磁気ヘッド、磁気ヘッドの上方において磁気媒体(例えば、ハードディスク)を通過させる駆動メカニズム、及び磁気ヘッドに電気的に結合されたコントローラを備えたディスクドライブシステムなどの磁気データストレージシステム内において実装可能である。
【0014】
本発明のその他の態様及び利点については、本発明の原理を添付図面との関連において一例として示す以下の詳細な説明から明らかとなろう。
【0015】
本発明の特性及び利点、並びに、好適な使用の形態について更に十分に理解するべく、添付図面との関連において以下の詳細な説明を参照されたい。
【図面の簡単な説明】
【0016】
【
図1】従来技術によるボトム型のトンネル磁気抵抗(TMR)効果素子の薄膜構造を示す概略図である。
【
図3】一実施形態による、0.1nmのTa挿入層をTMR薄膜の固定層に導入した際の面積抵抗(Resistance Area:RA)と変化比MRの間の関係を示す。
【
図4】一実施形態によるTa挿入層の位置とMRの間の関係を示す。
【
図5】一実施形態による、挿入層を固定層の下部境界面において固定し、且つ、挿入層の厚さを変化させた際のMRの変化を示す。
【
図6】
図5に示されているサンプルを計測した交換結合飽和磁界Hp(Oe)の挿入層の厚さに対する依存性を示す。
【
図7】一実施形態による磁気データストレージシステムの概略構成図を示す。
【発明を実施するための形態】
【0017】
以下の説明は、本発明の全般的な原理を例示することを目的として提供するものであり、且つ、本明細書に記述されている発明の概念の限定を意味するものではない。更には、本明細書に記述されている個々の特徴は、様々な可能な組合せ及び置換のそれぞれにおいて、その他の記述されている特徴と組み合わせて使用することも可能である。
【0018】
以下に特記されない限り、すべての用語には、本明細書から含意される意味と、当業者によって理解されるおよび/又は辞書や条約などに規定されている意味と、を含むその最も広範な可能な解釈を付与される。
【0019】
又、本明細書及び添付の請求項において使用されている単数の形態「1つの(a)」、「1つの(an)」、及び「その(the)」は、特記されていない限り、複数の対象物をも含んでいることに留意されたい。
【0020】
一般的な一実施形態において、トンネル磁気抵抗(TMR)ヘッドは、基板上部のリード層と、リード層上部のシード層と、シード層上部の反強磁性(AFM)層と、AFM層上部の第1強磁性層と、第1強磁性層上部の第2強磁性層と、第1及び第2強磁性層の間の結合層であって、第2強磁性層の磁化を第1強磁性層の磁化に結合させる結合層と、第2強磁性層上部の固定層と、固定層に隣接した又は固定層の内部の挿入層と、固定層上部のバリア層と、バリア層上部の自由層と、自由層上部のキャップ層と、を含む。
【0021】
別の一般的な実施形態において、TMRヘッドは、基板上部のリード層であって、第1端子として機能するリード層と、リード層上部のAFM層と、AFM層上部の強磁性層と、強磁性層上部の固定層と、強磁性層と固定層の間の結合層であって、固定層の磁化を強磁性層の磁化に結合させる結合層と、固定層に隣接した又は固定層の内部の挿入層であって、約0.05nm〜約0.3nmの範囲の厚さを有し、且つ、Ta、Ti、Hf、及びZrのうちの少なくとも1つを含む挿入層と、固定層上部のバリア層と、バリア層上部の自由層であって、CoFeBを含む自由層と、自由層上部のキャップ層であって、第2端子として機能するキャップ層と、を含む。
【0022】
例示用の一実施形態によれば、TMR薄膜200は、
図2に示されている構造を有してもよい。このTMR薄膜200は、例示用の実施形態においては、マグネトロンスパッタリング装置を使用して形成した。但し、スパッタリング、鍍金、成長、プラズマ強化気相蒸着(Plasma Enhanced Vapor Deposition:PEVD)、及び化学気相蒸着(Chemical Vapor Deposition:CVD)などの、本説明を参照した際に当業者が理解するであろう任意の形成法及び装置を使用して、TMR薄膜200の任意の及び/又はすべての層を形成してもよい。一実施形態によるTMR薄膜200の構造が
図2に示されている。当然のことながら、その他の構造も可能であり、且つ、シールドや絶縁層などの、
図2に示されているものよりも更に多くの又は少ない数の層を含んでもよい。
【0023】
一実施形態によれば、TMRセンサ薄膜200は、強磁性層216と、結合層214と、固定層218と、を含む磁化固定層の構造を含んでもよい。Ta、Ti、Hf、Zrなどの少なくとも1つを含む非常に薄い挿入層230を結合層214の直接上部などの固定層218の下部境界面に挿入してもよい。固定層218が、(NiFe、CoFeなどの)結晶化した下部強磁性層216と、CoFeB及び/又はCoFeHfの上部層218と、を含む多層構造である場合には、挿入層230は、
図2に示されているように、結晶化した強磁性層216の上部に配設してもよい。
【0024】
前述の構造によれば、挿入層230の上部又は周辺に配置されたCoFeB/CoFeHf固定層218の非晶質特性を改善可能であり、且つ、その結果、いくつかの実施形態において、熱処理後の(MgO、Al
2O
3などの)バリア層222の結晶性及び境界面における(001)配向を改善可能であり、従って、大きなMR比を実現可能である。
【0025】
いくつかの方法によれば、Taを含む挿入層230は、結合層214を含むと想定される六方最密充填(hcp)Ru結晶構造を含む結晶質構造(結合層214及び/又は第2強磁性層216)上において形成の際に挿入される。その上部に配置されたCoFeB/CoFeHf固定層218の非晶質特性を改善することが可能であり、例えば、通常は、非晶質材料を結晶質材料上において成長させると、初期成長層が、その結晶の影響を受けることになり、従って、完全な非晶質とならず、且つ、低レベルの規則性(結晶性)を有することになる。しかしながら、本実施形態においては、下部のhcp又はfcc結晶の影響を受けることなしに、非晶質のCoFeB/CoFeHf固定層218を成長させることができる。
【0026】
この結果、バリア層222の熱処理後の境界面の結晶性及び(001)配向を改善可能であり、且つ、大きなMR比を実現可能である。これは、様々な実施形態に従って本明細書に記述されている技法及び構造を使用し、大出力の再生ヘッドを実現可能であることを意味している。
【0027】
一方法においては、シリコン(Si)ウエハを基板202として使用してもよいが、本説明を参照した際に当業者に明らかとなるように、任意の好適な材料を使用可能である。強磁性層216は、CoFeやNiFeなどを含んでもよく、且つ、一方法においては、約0.2nm〜約1.0nmの範囲の厚さ、例えば約0.5nmの厚さを有してもよい。結合層214を通じた交換結合を維持するべく、強磁性層216を結合層214上に形成してもよい。いくつかの実施形態においては、結合層214は、AFM結合層、交換結合層、反平行結合(AntiParallel Coupling:APC)層などであってもよく、或いは、本説明を参照した際に当業者によって理解される任意のその他のタイプの結合層であってもよい。
【0028】
更には、別の強磁性層220は、CoFe、NiFeなどを含んでもよく、且つ、一方法においては、約0.2nm〜約1.0nmの範囲の厚さ、例えば約0.5nmの厚さを有してもよく、且つ、様々な方法において、バリア層222と固定層218の間の境界面の酸化を抑制するべく、MgO、Al
2O
3、又は任意のその他の好適なトンネルバリア材料を含むことができるバリア層222の下部に形成してもよい。一方法によれば、リード層204は、NiFe又はこれに類似したものを含み、その上部にCu及びTaの複数の層を形成してもよい。リード層204は、約0.5Ω/sq±50%のシート抵抗を有する端子を構成可能であり、且つ、一方法においては、約50nm〜約200nmの範囲、例えば約80nmのシート厚さを有してもよい。キャップ層228は、TMR薄膜200の反対側の第2端子を形成可能であり、第2端子は、一方法においては、約1.5Ω/sq±50%のシート抵抗を有しており、且つ、キャップ層228は、当業者に既知の任意の好適な材料から形成してもよい。
【0029】
挿入層230は、固定層218の下部部分に配置された状態で示されているが、様々な実施形態によれば、挿入層は、強磁性層216内、固定層218内、又は強磁性層220内の任意の位置に形成してもよいことに留意されたい。例えば、挿入層230は、固定層218に隣接するか、又は固定層218の内部に位置してもよい。
【0030】
例示用の一実施形態においては、なんらの形態の限定をも意味するものではないが、構造の材料及びそれぞれの層の厚さは、以下の通りである。リード層204が80nmの(NiFe、Cu、Ta)であり、シード層構造232が、1.5nmのTa層206と、2nmのRu層208と、を有し、反強磁性(AFM)層210が5nmの(MnIr)であり、第1強磁性層212が2nmの(CoFe)であり、結合層214が0.8nmの(Ru)であり、第2強磁性層216が0.5nmの(CoFe)であり、挿入層230が0.1nmの(Ta)であり、固定層218が1nmの(CoFeB)であり、第3強磁性層220が0.5nmの(CoFe)であり、バリア層222が様々な厚さの(MgO)であり、自由層構造234が、0.9nmの(CoFe)である第4強磁性層224と、5nmの(CoFeB)である自由層226と、を有する。当然のことながら、本説明を参照した際に当業者には理解されるように、様々な実施形態に応じて、その他の材料及び厚さを前述の層の任意のものに使用可能である。
【0031】
TMR薄膜200には、熱処理炉を使用し、磁界中において熱処理を施すことができる。例示用の一実施形態においては、磁束密度は、5Tであり、熱処理温度は、260℃であり、且つ、処理時間は、4時間であった。製造されたTMR薄膜200の電気特性をTMR面内計測法を使用して評価した。複数の面積抵抗(RA)に対する特性を評価するべく、ウエハ面内分布(wafer in−plane distribution)を含むようにバリア層222を形成したことに留意されたい。
【0032】
図3は、0.1nmのTa挿入層(230、
図2)を固定層(218、
図2)内に挿入した際の面積抵抗(RA)と変化比MRの間の関係を示している。ケース1〜ケース6(
図3)は、それぞれ、第2強磁性層(216、
図2)からのTa挿入層の挿入位置を変化させたTMR薄膜に対応している。
図3に示されているように、5つの点の計測結果が、それぞれのTMR薄膜のウエハ面内にプロットされている。RAは、MgOバリア内における薄膜厚さ分布に起因して、約0.1Ωμm
2のレベルの幅を有していた。Ta挿入層を挿入しなかった際には、約70%のMR比が得られたが、これとは対照的に、MR比は、Ta挿入層の位置に起因して増大した。挿入層が存在しない場合と比べて、挿入位置に起因して大きなMRが実証されたことが、この例示用の実施形態から明らかである。
【0033】
図4は、Ta挿入層の位置とMRの間の関係を示している。
図4の位置に関して、0は、第2強磁性層(216、
図2)との間における固定層(218、
図2)の下部境界面に対応しており、且つ、10は、第3強磁性層(220、
図2)との間における固定層(218、
図2)の上部境界面に対応している。更には、MRに関して、
図3に示されている5つの点のそれぞれからのデータの平均がプロットされている。これらの結果から明らかなように、この場合の各値は、挿入層を使用していない場合よりも大きい。これは、(
図2の固定層218などの)固定層が、CoFeB及び/又はCoFeHfを含み、且つ、結晶化したCoFe層(
図2の強磁性層216など)の上部において成長した際には、固定層は、通常、下部のCoFe層の結晶性の影響をある程度受けることになり、従って、CoFeB/CoFeHfが結晶体として成長するという事実に起因している。しかしながら、(
図2のTa、Ti、Hf、及び/又はZrを含む挿入層230などの)非常に薄い挿入層を(
図2の第2及び第3強磁性層216、220などの)2つのCoFe層の間のいずれかの位置に挿入した際には、なんらかの結晶性における影響が観察される可能性が低くなり、従って、固定層の非晶質特性を、劣化ではなく、更に改善することが可能である。(
図2の挿入層230などの)挿入層の挿入位置が固定層の(
図2のバリア層などの)バリア層側に近づくのに伴って、MR比は減少し、これにより、挿入層を使用しない場合よりも低いMR比しか得ることができなくなる。これは、挿入層がバリア層との境界面に近過ぎる場合には、挿入層の材料が不純物として機能し、これにより、TMR効果が妨げられることに起因したものであろう。
【0034】
更には、
図5は、挿入層を下部境界面の位置に固定した状態において、挿入層の厚さを変化させている点を除いて、同一の構成を使用した際のMRの変化を示している。約0.05nmの厚さを有する挿入層を挿入した際にも、効果が、依然として明白であり、且つ、MRは、約0.1nmの厚さにおいて飽和している。従って、挿入層の厚さは、好ましくは、約0.05nm以上である。更には、挿入層の厚さを、例えば、約0.5nm超などのように、更に大きくしても、MRは大きく減少しなかった。
【0035】
その一方で、挿入層が厚過ぎる際には、(
図2の固定層218などの)固定層及びこれを囲む(
図2の第2及び第3強磁性層216及び220などの)強磁性層が磁気的に分割されることになり、これは、望ましくないものと考えられる。
図6は、交換結合飽和磁界Hp(Oe)の挿入層の厚さに対する依存性を示しており、同図において、
図5に示されているサンプルをVSMによって測定した。交換結合磁界は、挿入される挿入層の厚さを大きくするのに伴って、徐々に減少した。挿入層を約0.4nmまで厚くした際に、Ru層を通じた交換結合の著しい降下が発生した。これは、CoFe層とCoFeB層の強磁性結合が挿入層によって分割されたためであると考えらえる。
【0036】
様々な実施形態における挿入層の適切な厚さの範囲は、約0.05〜約0.3nmの範囲である。前述のように、上方のCoFeB層と下方のCoFe層の間に適切な厚さの挿入層を挿入することにより、MR比を増大させることができる。本明細書における説明においては、例示用の実施形態は、Taを含む挿入層を含んでいるが、MR比は、Ti、Hf、及び/又はZrを含む挿入層の追加によっても、増大させることが可能である。
【0037】
図2を再度参照すれば、一実施形態によれば、TMRヘッド200は、基板202上部のリード層204と、リード層204上部のシード層構造232と、シード層構造232上部のAFM層210と、AFM層210上部の第1強磁性層212と、第1強磁性層212上部の第2強磁性層216と、第1及び第2強磁性層212、216の間の結合層214であって、第2強磁性層216の磁化を第1強磁性層212の磁化に結合させる結合層214と、第2強磁性層216上部の固定層218(TMRヘッドは、第2強磁性層216なしに固定層218を有してもよく、この場合には、結合層214は、固定層218の磁化を第1強磁性層212の磁化に結合させる)と、オプションで固定層218上部の第3強磁性層220と、固定層218に隣接した又は固定層218の内部の挿入層230と、固定層218及び/又は第3強磁性層220上部のバリア層222と、バリア層222上部の1つ又は複数の層を含む自由層構造234と、自由層構造234上部のキャップ層228と、を含む。当然のことながら、様々な実施形態に応じて、更に多くの又は少ない数の層がTMRヘッド200内に存在してもよい。例えば、いくつかの実施形態においては、前述の層のいくつかを組み合わせることが可能であり、例えば、更なる実施形態においては、更なる層を構造内に含んでもよい。
【0038】
一実施形態においては、リード層204は、約80nm±50%の合計厚さを有するNiFeの下地層上部にCu及びTaの交互に変化する層の積層体を含んでもよい。別の実施形態によれば、シード層構造232は、約1.5nm±50%の厚さを有するTaの層206の上部に約2.0nm±50%の厚さを有するRuの層208を含んでもよい。
【0039】
別の方法においては、AFM層210は、約5.0nm±50%の厚さを有してもよく、且つ、MnIr及びMnPtのうちの少なくとも1つを含んでもよい。別の方法によれば、第1強磁性層212は、約2.0nm±50%の厚さを有してもよく、且つ、NiFe、CoFe、及びこれらの組合せなどの任意の強磁性材料を含んでもよい。
【0040】
別の実施形態によれば、第2強磁性層216及び/又は第3強磁性層220は、それぞれ、約0.5nm±50%の厚さを有してもよく、且つ、NiFe、CoFe、及びこれらの組合せなどの任意の強磁性材料を含んでもよい。
【0041】
更なる実施形態においては、結合層214は、約0.4nm〜約1.5nmの範囲の厚さを有してもよく、且つ、Ru、Ir、Rh、Cr、Cu、Hf、及びこれらの組合せなどの任意の好適な材料を含んでもよい。更なる実施形態においては、結合層214は、約0.8nmの厚さを有してもよく、且つ、Ruを含んでもよい。
【0042】
更なる方法によれば、固定層218は、非晶質の強磁性材料を含んでもよく、且つ、約0.5nmと約2.0nmの間の厚さを有してもよい。更なる方法においては、固定層218は、約1.0nm±50%の厚さと、非晶質構造と、を有してもよく、且つ、CoFeB、CoFeHf、及びこれらに類似したもののうちの少なくとも1つを含んでもよい。
【0043】
更なる実施形態においては、挿入層230は、約0.05nm〜0.3nmの範囲の厚さを有してもよく、且つ、Ta、Ti、Hf、Zr、これらの組合せ、及びこれらに類似したものなどの任意の好適な材料を含んでもよい。更なる実施形態においては、挿入層230は、約0.1nm±50%の厚さを有してもよく、且つ、Taを含んでもよい。
【0044】
前述のように、挿入層230は、様々な実施形態に応じて、固定層218の上部側と下部側の間の固定層218内のどこかに、又は固定層218のいずれかの側に隣接して、配置可能である。一実施形態においては、挿入層230は、固定層218と第2強磁性層216の間に配置可能である。別の実施形態においては、挿入層230は、固定層218と第3強磁性層220の境界面よりも固定層218と第2強磁性層216の境界面に近い位置において固定層218内に配置可能である。別の実施形態においては、挿入層230は、固定層218と第2強磁性層216の境界面から固定層218と第3強磁性層220の境界面までの略等距離の位置において固定層218内に配置可能である。
【0045】
当然のことながら、
図2に示されているすべての層が、TMRヘッドが動作及び機能するのに必要であるわけではない。例えば、一実施形態においては、第2強磁性層216又は第3強磁性層220を含まないTMRヘッドにおいて、挿入層230は、固定層218と結合層214の間に配置可能である。別の実施形態においては、挿入層230は、固定層218とバリア層222の境界面よりも固定層218と結合層214の境界面に近い位置において固定層218内に配置可能である。更に別の実施形態によれば、挿入層230は、固定層218と結合層214の境界面から固定層218とバリア層222の境界面までの略等距離の位置において固定層218内に配置可能である。当然のことながら、本説明を参照した際に当業者には理解される本明細書に明示的に記述されていないその他の場所も、界面層230には可能である。
【0046】
一方法においては、バリア層222は、MgO、Al
2O
3、又はこれらに類似のものを含んでもよい。
【0047】
別の方法においては、自由層構造234は、強磁性材料を含んでもよく、且つ、約4.0nm〜約8.0nmの範囲の厚さを有してもよい。更なる方法においては、自由層構造234は、約6.0nm±50%の厚さを有してもよく、且つ、CoFe、CoFeB、及びCoFeHfのうちの少なくとも1つを含んでもよい。
【0048】
別の方法によれば、自由層構造234は、複数の層を含んでもよく、これらの複数の層は、約0.9nm±50%の厚さを有するCoFe層224の上部に約5.0nm±50%の厚さを有するCoFeB層226を含む。
【0049】
次に、
図7を参照すれば、一実施形態による磁気データストレージシステム700が示されている。磁気データストレージシステム700は、磁気媒体712と、磁気媒体712との間において読み取り及び書き込みを実行するためのいずれかの実施形態に従って本明細書に記述されているTMRセンサ薄膜を使用する少なくとも1つの磁気ヘッド721と、少なくとも1つの磁気ヘッド721の上方において磁気媒体712を通過させる駆動メカニズム718と、少なくとも1つの磁気ヘッド721の動作を制御する少なくとも1つの磁気ヘッド721に電気的に結合されたコントローラ729と、を含む。
【0050】
図7を再度参照すれば、更に一般的な実施形態によるディスクドライブなどの磁気データストレージシステム700が示されている。
図7に示されているように、少なくとも1つの回転可能な磁気ディスク712は、スピンドル714上において支持されており、且つ、ディスクドライブモーター718によって回転する。それぞれのディスク上における磁気記録は、通常、ディスク712上における同心データトラック(図示されてはいない)の環状パターンの形態を有する。
【0051】
少なくとも1つのスライダ713がディスク712の近傍に配置されており、それぞれのスライダ713は、1つ又は複数の磁気読み取り/書き込みヘッド721を支持している。ディスクが回転するのに伴って、スライダ713は、所望のデータが記録されていると共に/又は書き込まれることになるディスクの異なるトラックをヘッド721が横断することができるように、ディスク表面722の上方において半径方向を内向き及び外向きに運動する。それぞれのスライダ713は、サスペンション715によってアクチュエータアーム719に装着されている。サスペンション715は、スライダ713をディスク表面722に対して付勢するわずかなスプリング力を供給している。それぞれのアクチュエータアーム719は、アクチュエータ727に装着されている。
図7に示されているアクチュエータ727は、ボイスコイルモーター(Voice Coil Motor:VCM)であってもよい。VCMは、固定磁界中において運動可能なコイルを有し、コイルの運動の方向及び速度は、コントローラ729によって供給されるモーター電流信号によって制御されている。
【0052】
ディスクストレージシステムの動作の際に、ディスク712の回転は、上向きの力又は揚力をスライダに対して印加するエアベアリングをスライダ713とディスク表面722の間に生成する。従って、エアベアリングは、通常動作においては、サスペンション715のわずかなスプリング力を相殺し、且つ、小さな実質的に一定の間隔だけ、ディスクから離隔し、且つ、そのわずかに上方において、スライダ713を支持する。いくつかの実施形態においては、スライダ713は、ディスク表面722に沿って摺動可能であることに留意されたい。
【0053】
ディスクストレージシステムの様々なコンポーネントは、アクセス制御信号及び内部クロック信号などの制御ユニット729によって生成される制御信号により、動作の際に制御される。通常、制御ユニット729は、論理制御回路、ストレージ(例えば、メモリ)、及びマイクロプロセッサを含む。制御ユニット729は、ライン723上の駆動モーター制御信号及びライン728上のヘッド位置及びシーク制御信号などの様々なシステム動作を制御するための制御信号を生成する。ライン728上の制御信号は、望ましい電流プロファイルを供給することにより、スライダ713をディスク712上の望ましいデータトラックに最適に移動させ、且つ、配置する。読み取り及び書き込み信号が、記録チャネル725を介して、読み取り/書き込みヘッド721との間において伝達される。
【0054】
一般的な磁気ディスクストレージシステムに関する以上の説明と、
図7の添付図面は、説明を目的としたものに過ぎない。ディスクストレージシステムは、多数のディスク及びアクチュエータを含んでもよく、且つ、それぞれのアクチュエータは、いくつかのスライダを支持可能であることが明らかであろう。
【0055】
又、当業者にはすべて理解されるように、データを送受信し、且つ、ディスクドライブの動作を制御すると共にディスクドライブの状態をホストに伝達するべく、ディスクドライブと(一体型の又は外部の)ホストの間の通信のためのインターフェイスを提供することも可能である。
【0056】
代表的なヘッドにおいては、誘導型の書き込みヘッドは、1つ又は複数の絶縁層(絶縁積層体)内に埋め込まれたコイル層を含み、この絶縁積層体は、第1及び第2ポールピース層(pole piece layers)の間に配置されている。第1及び第2ポールピース層の間には、書き込みヘッドのエアベアリング表面(Air Bearing Surface:ABS)におけるギャップ層により、ギャップが形成される。ポールピース層は、後方ギャップにおいて接続可能である。電流がコイル層を通じて伝導され、これらの電流がポールピース内に磁界を生成する。これらの磁界は、回転する磁気ディスク上の円形トラックなどの運動する媒体上のトラック内に磁界情報のビットを書き込むために、ABSにおけるギャップに跨って延在している。
【0057】
第2ポールピース層は、ABSからフレア地点に延在するポール先端部と、フレア地点から後方ギャップまで延在するヨーク部分と、を有する。フレア地点は、第2ポールピースが、ヨークを形成するべく、広がり(開き)始める場所である。フレア地点の配置は、記録媒体上に情報を書き込むために生成される磁界の大きさに対して直接的な影響を付与する。
【0058】
以上、様々な実施形態について説明したが、これらは、一例としてのみ提示されたものであり、限定を意図したものではないことを理解されたい。従って、本発明の実施形態の広さ及び範囲は、前述の例示用の実施形態のいずれによっても限定されるものではなく、添付の請求項及びその等価物よってのみ規定されるものである。
【符号の説明】
【0059】
100 薄膜構造
110 下部シールド層
111 下地層
112 反強磁性層
113 磁化固定層
114 トンネルバリア層
115 磁化自由層
116 キャップ層
117 上部シールド層
118 トンネル磁気抵抗効果薄膜
200 TMR薄膜
202 基板
204 リード層
206 Ta層
208 Ru層
210 反強磁性(AFM)層
212 第1強磁性層
214 結合層
216 第2強磁性層
218 固定層
220 第3強磁性層
222 バリア層
224 第4強磁性層
226 自由層
228 キャップ層
230 挿入層
232 シード層構造
234 自由層構造
700 磁気データストレージシステム
712 磁気媒体
713 スライダ
714 スピンドル
715 サスペンション
718 駆動メカニズム
719 アクチュエータアーム
721 磁気ヘッド
722 ディスク表面
723 ライン
725 記録チャネル
727 アクチュエータ
728 ライン
729 コントローラ