【実施例1】
【0022】
以下、本発明の1実施例の撮像装置の動作を示す
タイミングチャートの
図1Aと、本発明の1実施例の撮像装置の垂直画素加算動作を示す模式図の
図2とを用いて、本発明の1実施例を説明する。 合わせて本発明の別の実施例の撮像装置の動作を示すタイミングチャート
図1Bで、
図1Aとは別の手段について相違点を説明する。
【0023】
本発明の一実施例の撮像装置の動作を示すタイミングチャートの
図1Aにおいて、V1−V4は、IT−CCDにおける垂直転送路V1−V4の読み出し垂直転送との動作を表したものである。具体的には、PDからV1とV3への電荷の読み出しと、V2を用いた垂直画素加算と、V1−V4を一組とした垂直転送動作を示している。ここでは奇数フィールド映像の垂直画素加算を例に取って説明しているので、
図1Aには奇数フィールド映像の垂直画素加算しか存在していない。あるいは全てが同じ型の垂直画素加算であればV2の代わりにV4で垂直画素加算を行う偶数フィールド映像の垂直画素加算で構成することも出来て、タイミング上に奇数フィールド映像の垂直画素加算が存在しないことになる。奇数か偶数のどちらかに統一されて、毎回同じ垂直画素加算が行われるものである。
【0024】
0.5Hは水平半周期期間であり、
図1Aにおいてフィールド毎に1回存在する。 同様に
図1Bにも0.5Hは水平半周期期間であり、フィールド毎に1回存在する。
【0025】
図1Aにおいて、H2は、IT−CCDにおける水平転送路H1−H2の動作を表したもので、
図1AのH2と逆極性のH1と、
図1AのH2とを対とした水平転送動作を行うタイミングを示している。
図1Aにおいて、0.5Hは水平半周期転送停止期間でもあり、
図1において、フィールド毎に1回存在する。
図1Bでは、0.5Hは水平半周期転送切り上げ期間としている。
【0026】
図1Aにおいて、H Clumpは、IT−CCDの水平遮光画素(H−OB)の暗電流による映像信号をクランプして黒の基準とするパルスである。
図1Aにおいて、CL−BLは、H−OBの暗電流による映像信号をクランプしない期間である。
図1Bにおいて、V Clumpは、IT−CCDの垂直遮光画素(V−OB)の暗電流による映像信号をクランプして黒の基準とするパルスである。フィールド毎の垂直遮光画素で黒基準を保持できるシステムの場合は、
図1のCL−BLを用いる代わりに
図1BのV Clumpを用いる方法を取っても良い。 このV Clumpは0.5Hとは異なる水平周期に設定するため、
図1のCL−BLに相当する映像信号をクランプしない期間とすることは同様である。
【0027】
図1Aにおいて、0.5Hの水平半周期転送停止期間に転送を停止しているため、水平周期に合わせてクランプしてしまうと、オプティカルブラックでは無い部分を後段で黒として処理してしまい映像レベルの異常を引き起こすことになり、この防止のために0.5Hと同等のCL−BLのクランプ停止期間を用意する。
【0028】
撮像素子の特性によっては、0.5Hの水平半周期転送停止期間の次のタイミングのH−OBは、他のH−OBと異なる出力レベルになる可能性が有り、撮像素子の特性によっては、CL−BLのクランプ停止期間は水平半周期ではなく、水平1.5周期とする場合も有る。 0.5Hの水平半周期転送停止期間の次のタイミングのH−OBの出力レベル他のH−OBとが異なる可能性として考えられる要因は、0.5Hの水平半周期期間と次のタイミングの通常水平周期で垂直転送を2度行ったことにより、CCD水平転送路でオプティカルブラックの加算が行われレベル変動する可能性が有る。
【0029】
本発明の方式では、従来と同様な映像信号処理を行うためには、CL−BLのクランプ停止期間という概念を用いて、映像の黒レベルが変動しない条件で駆動する事が重要であり、その幅が水平半周期か、水平1.5周期かは、撮像素子を利用して撮像装置などを設計する段階で決めることとなる。出力から削除される部分の映像の黒レベル変動を無視できる映像信号処理ならCL−BLのクランプ停止期間は不要になる。
【0030】
H−Counterは水平走査線カウンタを表し、駆動パルスを生成するTGの内部で動作しているものである。本発明の方式の動作中は、カウンタ値0からカウンタ値562までの範囲で動作しており、カウンタ値562をもって水平半周期を生成した後にカウンタ値0に戻している。カウンタ値4の時に、V1−V4に読み出しと奇数フィールド映像の垂直画素加算のタイミングを出力させる。毎フレームにおいてカウンタ値4で奇数フィールド映像の垂直画素加算のタイミングを用意するため、露光時間はフレーム周期の562.5ラインと等しく均一となる。この例で奇数フィールド映像の垂直画素加算のタイミングとH−Counterの関係は、通常の飛び越し走査で奇数フィールド映像の垂直画素加算のタイミングを与える水平走査線より2ライン早くしている。
【0031】
図5の撮像装置のブロック図で5の映像信号処理部に存在する走査線変換部には垂直方向に変換フィルタを持つことが多いが、背景技術の特許文献1に示されるように別の用途で有効に機能するので、
図1の走査線変換無映像では走査線変換を行う前の映像出力タイミングを別の用途で垂直方向に変換フィルタを通した場合に出力となるフィルタ中心の、映像出力タイミングを示している。フィールド1回はフレーム1回に等価であり、上部ブランキング18ラインと映像有効走査線540ラインと下部ブランキング4.5ラインの562.5ラインでフレーム1回を構成している。通常の跳び越し動作での奇数型フィールドの563ライン構成、上部ブランキング20ラインと映像有効走査線540ラインと下部ブランキング3ラインより2ライン早く、偶数型フィールドの562ライン構成、上部ブランキング20ラインと映像有効走査線540ラインと下部ブランキング2ラインより2.5ライン早い位置に映像出力している。
図1Aにおける映像A2の走査線変換後の映像出力タイミングと、
図3における映像B2の走査線変換後の映像出力タイミングは、同じ映像出力タイミングである。そして、
図3における映像B1が通常の跳び越し動作に相当する。そのため、
図1Aと
図3の両図を比べる事で、映像A1と通常の跳び越し動作のタイミングの差を確認できる。
【0032】
図1Aの走査線変換後映像は、走査線変換を行った後の映像出力タイミングである。フィールド1回はフレーム1回に等価であり、上部ブランキング25ラインと映像有効走査線720ラインと下部ブランキング5ラインの750ラインでフレーム1回を構成している。
図1Aの走査線変換無映像のタイミングとは、映像有効走査線の位置が走査線変換無の0.75ライン、走査線変換後の1ライン分のタイミング差であり、フレームメモリなどを用いず最短のタイミングで、毎フレーム同じ位置で走査線変換を行えている。
【0033】
図2は本発明の1実施例の撮像装置の垂直画素加算動作を示す模式図である。
図2の(a)はHDTV撮像素子の開口画素の1088の水平走査線の画素配列の光学位置を表している。
図2の(a)にはa−1からa1082までの1084ラインの垂直画素範囲を示しており、ここから1084ラインに相当する垂直画素範囲が、垂直画素加算で有効走査線542本の順次走査映像になり、
図2の(c)の走査線変換で
図2の(d)の走査線変換後の有効走査線720本の順次走査映像になる。
図2の(b)は本発明の垂直画素加算で有効走査線542本の順次走査映像を表している。
図1の本発明の一実施例の撮像装置の動作を示すタイミングチャートにおいて奇数フィールド映像の垂直画素加算タイミングを用いているので、奇数のラインをnとしてn+1ラインと垂直画素加算し、例えば、a3+a4と垂直画素加算した有効走査線540本の順次走査映像となっている。
【0034】
図2の(c)は走査線変換を表している。
図5の撮像装置のブロック図で5の映像信号処理部に存在する走査線変換部に相当し垂直方向に変換フィルタを持つ。ここでは説明のために簡略化しており、変換フィルタ係数の4/5、3/5、2/5、1/5を走査線変換座標に合わせて切り替えている。
図2の(d)は走査線変換後の有効走査線720本の順次走査映像であり、(3/5)*(a3+a4)+(2/5)*(a5+a6)の係数の加算でd3を算出している。d3は常に同一に算出され、毎フレーム同じ撮像素子の水平走査線の画素配列の光学位置が出力され、フレーム毎の合成の差異によるジッタが発生しないことを表している。
【実施例2】
【0035】
以下、本発明の他の1実施例の撮像装置の動作を示すタイミングチャートの
図3と、本発明の他の1実施例の撮像装置の垂直画素加算動作を示す模式図の
図4とを用いて、本発明の他の1実施例を説明する。 本発明の一実施例の撮像装置の動作を示すタイミングチャートの
図3において、V1−V4は、IT−CCDにおける垂直転送路V1−V4の読み出し垂直転送との動作を表したものである。具体的には、PDからV1とV3への電荷の読み出しと、V2を用いた奇数フィールド映像の垂直画素加算と、V4を用いた偶数フィールド映像の垂直画素加算と、V1−V4を一組とした垂直転送動作を示している。
図3において、奇数フィールドと偶数フィールドとでは期間が1H異なる。
【0036】
図3において、H2は、IT−CCDにおける水平転送路H1−H2の動作を表したもので、
図3のH2と逆極性のH1と、
図3のH2とを対とした水平転送動作を行うタイミングを示している。
図3において、H Clumpは、IT−CCDの水平遮光画素(H−OB)の暗電流による映像信号をクランプして黒の基準とするパルスである。
【0037】
H−Counterは水平走査線カウンタを表し、駆動パルスを生成するTGの内部で動作しているものである。本発明の方式の動作中は、カウンタ値0からカウンタ値1124までの範囲で動作しており、カウンタ値1124の後にカウンタ値0に戻している。カウンタ値6と568の時に、V1−V4に読み出しと垂直画素加算のタイミングを出力させる。カウンタ値6と568の時に読み出しと垂直画素加算のタイミングを用意するため、撮像素子の水平走査線の画素配列の光学位置が水平走査線分ずれる。 この例で垂直画素加算のタイミングとH−Counterの関係は、通常の飛び越し走査で動作している。尚、次に述べる変換フィルタを利用できるよう考慮したタイミングであり、撮像素子の持つタイミングチャートとは異なっている。
【0038】
図5の撮像装置のブロック図で5の映像信号処理部に存在する走査線変換部には垂直方向に変換フィルタを持つことが多いが、背景技術の特許文献1に示されるように別の用途で有効に機能するので、
図3の走査線変換無映像では走査線変換を行う前の映像出力タイミングを別の用途で垂直方向に変換フィルタを通した場合に出力となるフィルタ中心の、映像出力タイミングを示している。奇数型フィールドは上部ブランキング20ラインと映像有効走査線540ラインと下部ブランキング3ラインの563ライン構成、偶数型フィールドは上部ブランキング20ラインと映像有効走査線540ラインと下部ブランキング2ラインの562ライン構成で、フレーム1回は奇数型フィールドと偶数型フィールドのフィールド2回で構成された通常の飛び越し走査の出力となっている。
【0039】
図3の走査線変換後映像は、は走査線変換を行った後の映像出力タイミングである。
図3の走査線変換無映像のタイミングとは、映像有効走査線の位置が、奇数型フィールドの場合は走査線変換無の1.25ライン、走査線変換後の1.66ライン分の早く、偶数型フィールドの場合は走査線変換無の1.75ライン、走査線変換後の2.33ライン分の早いタイミング差であり、フレームメモリを用いずに走査線変換無映像と走査線変換後映像の共用を行うには、走査線変換後映像で変換フィルタに利用するライン数を減らす必要が有る。
【0040】
図4は本発明の他の1実施例の撮像装置の垂直画素加算動作を示す模式図である。
図4の(a)はHDTV撮像素子の開口
画素の1088の水平走査線の画素配列の光学位置を表している。
図4の(a)にはa−2(k1)からa1085(k3)までの1088ラインの開口画素の垂直画素範囲を示しており、ここから、
図4の(b)の奇数フィールド映像の垂直画素加算で有効走査線542本の走査映像になり、
図4の(c)の偶数フィールド映像の垂直画素加算で有効走査線543本の走査映像になり、
図4の(d)の走査線変換で
図2の(e)と(g)と(h)との走査線変換後の有効走査線720本の順次走査映像になる。
図4の(b)は奇数フィールド映像の垂直画素加算タイミングを用いているので、奇数のラインをnとしてn+1ラインと垂直画素加算し、例えば、a3+a4と垂直画素加算した有効走査線542本の順次走査映像となっている。 それに対し、
図4の(c)は偶数フィールド映像との垂直画素加算タイミングを用いているので、偶数のラインをnとしてn+1ラインと垂直画素加算し、例えば、a2+a3と垂直画素加算した有効走査線543本の順次走査映像となっている。
【0041】
図4の(d)は走査線変換を表している。
図5の撮像装置のブロック図で5の映像信号処理部に存在する走査線変換部に相当し垂直方向に変換フィルタを持つ。ここでは説明のために簡略化しており、変換フィルタ係数の4/5、3/5、2/5、1/5を走査線変換座標に合わせて切り替えている。
図4の(e)と(g)と(h)とは走査線変換後の有効走査線720本の順次走査映像である。(3/5)*(a3+a4)+(2/5)*(a5+a6)の係数の加算平均でe3を算出し、(4/5)*(a4+a5)+(1/5)*(a2+a3)の係数の加算平均でg3を算出し、(5/20)*(a2+a3)+(3/5)*(a4+a5)+(3/20)*(a6+a7)の係数の加算平均でh3を算出している。
【0042】
図4の(g)は、奇数フィールドと偶数フィールドと異なる撮像素子の水平走査線の画素配列の光学位置が出力され、奇数フィールドと偶数フィールドとの差異によるジッタが発生することを表している。 それに対し、
図4の(h)は、偶数フィールド映像との垂直画素加算の順次走査映像の3走査線からの加算平均により、奇数フィールドに近似する撮像素子の水平走査線の画素配列の光学位置が出力され、奇数フィールドと偶数フィールドとの差異によるジッタが発生しないことを表している。
【0043】
図4の(h)を生成する方法には、撮像素子の水平走査線の画素配列の光学位置を近似したことで上下のジッタを軽減することができるが、偶数フィールド映像のために専用の変換フィルタが追加され、利用ライン幅も1ライン広くする必要が有った。走査線変換の前後におけるライン配置位相の相関に相似関係が見出せる場合は、奇数フィールドに用いる走査線変換用のフィルタを、ライン配置位相の相関に合わせて順序を変えて偶数フィールド用に用いることで、
図4の(h)と同等以上の効果を得ることができる。
図6を用いて相似関係を活かした走査線変換と、
図7を用いてフィールドの相似関係のみを活かした走査線変換を説明する。
【0044】
図6は本発明の他の1実施例の撮像装置の垂直画素加算動作における垂直位相関係を表した模式図である。
図6の(a)は撮像素子の画素配置を示しており、
図4の(a)に相当する。
【0045】
図6の(b)は飛越走査における奇数フィールドの走査線を示しており、
図4Aの(b)に相当し、奇数のnライン目にn+1ライン目を加算合成するため、例えばb3はa3とa4を合成したものであり、垂直位相関係を同一にして記している。
【0046】
図6の(c)は飛越走査における偶数フィールドの走査線を示しており、
図4の(c)に相当し、偶数のnライン目にn+1ライン目を加算合成するため、例えばc4はa4とa5を合成したものであり、垂直位相関係を同一にして記している。
【0047】
図6の(e)は奇数フィールドの飛越走査から変換された順次走査映像の走査線を示し、
図6の(g)は偶数フィールドの飛越走査から変換された順次走査映像の走査線を示しており、それぞれ
図4の(e)と
図4の(g)に相当する。この順次走査画像は
図6の(e)と
図6の(g)が、走査線変換前の飛越走査画像のフィールド毎に、繰り返し交互に現れるものとなるため、垂直位相関係を同一にして記している。
【0048】
図6の(k)は奇数フィールドからの走査線変換の垂直位相を示している。走査線変換の位相として4点の位相を用いる例を示しており、b1の重心であるb1+0/8の位相から、上下等間隔に1/8位相ずつ位相を用意すると8点の位相が考えられるが、分子が奇数になる−3/8、−1/8、+1/8、+3/8の4点の位相に対して変換フィルタが用意され、他の4点の位相である−2/8、+0/8、+2/8、+4/8は利用しない。 変換位相4点を重心の+0/8をあえて外して用意するのは、同時に利用する位相の中に+4/8すなわち2つのライン重心から中点となる1/2位相が含まれないようにする工夫と、準備する変換フィルタに最大限の対照性を持たせて種類を減らし各変換フィルタの周波数特性を合わせやすくするためである。1/2位相が含まれないようにする理由については
図7に別の一実施例を示して後述する。
図6の(k)’は順次走査の重心となる奇数フィールドからの走査線変換の垂直位相を示している。順次走査の重心となる垂直位相には、−1/8、−3/8、+3/8、+1/8が繰り返し現れ、この4点しか存在していないことが図示されている。
【0049】
図6の(p)は奇数フィールドから2ラインを用いた走査線変換フィルタと対応画素の影響比率を示している。e3は
図6の(k)’で走査線変換前から+3/8の垂直位相に相当し、b3*(3/5)+b5*(2/5)の変換フィルタを用いて、画素配置のa3とa4が3/5、a5とa6が2/5の比率で影響することになる。
図6の(p)の走査線変換フィルタの計算式を見ると、走査線変換前から+3/8の垂直位相にあたるe3に用いる変換フィルタと、走査線変換前から−3/8の垂直位相にあたるe6に用いる変換フィルタは係数の(3/5)と(2/5)が上下対照になっており、同じ周波数特性のフィルタとなる。同様に走査線変換前から+1/8の垂直位相にあたるe4に用いる変換フィルタと、走査線変換前から−1/8の垂直位相にあたるe5に用いる変換フィルタは係数の(4/5)と(1/5)が上下対照になっており、同じ周波数特性のフィルタとなる。つまり4つの垂直位相に対して2種類の周波数特性のフィルタのみで構成できる。
図6の(e)では異なる特性のフィルタが走査線のライン毎に切り替わるので、フィルタの周波数特性を最大限合わせておかなければ映像出力にモアレを引き起こす。本方式では変換フィルタの種類を減らすために垂直位相の対照性に着目し、変換フィルタの種類で異なる周波数特性を最大限近似させることでライン毎のモアレを低減する。周波数特性の近似に関しては、偶数フィールドの説明に合わせe3とg3の関係で後述する。
【0050】
図6の(p)’は奇数フィールドから4〜3ラインを用いた走査線変換フィルタと対応画素の影響比率を示している。走査線変換フィルタの周波数特性を向上するには、計算に用いる変換前の走査線のライン数と係数の分解能を増やす。ライン数を増やすことで、変換フィルタの係数の中には0になって実質使われないラインやマイナスの値となるものが有る。
図6の(p)’の走査線変換フィルタでは、走査線変換前から+1/8の垂直位相にあたるe4に用いる変換フィルタと、走査線変換前から−1/8の垂直位相にあたるe5に用いる変換フィルタに係数が0/16で0になって実質使われないラインが存在している。+1/8の垂直位相と−1/8の垂直位相は走査線変換前の重心+0/8の垂直位相に近く、重心に来るラインと上下の3ライン、+3/8の垂直位相と−3/8の垂直位相は上下に2ラインずつで4ラインを用いて走査線変換している。
図6の(p)の走査線変換フィルタと
図6の(p)’の走査線変換フィルタは説明用に簡略化したもので、実際には係数の分解能を増やした上で、フラットな周波数特性を持たせるために6〜5ライン程度や、周波数高域を維持するには10ライン程度を用いて走査線変換を行うことがある。垂直位相に対する変換フィルタの対象性は
図6の(p)を用いての説明と変わらない。
図6の(m)は偶数フィールドからの走査線変換の垂直位相を示している。走査線変換の位相として4点の位相を用いる例を示しており、c2の重心であるc2+0/8の位相から、上下等間隔に1/8位相ずつ位相を用意すると8点の位相が考えられるが、分子が奇数になる−3/8、−1/8、+1/8、+3/8の4点の位相に対して変換フィルタが用意され、他の4点の位相である−2/8、+0/8、+2/8、+4/8は利用しない。
図6の(m)’は順次走査の重心となる偶数フィールドからの走査線変換の垂直位相を示している。順次走査の重心となる垂直位相には、+3/8、+1/8、−1/8、−3/8が繰り返し現れ、この4点しか存在していないことが図示されている。
【0051】
図6の(q)は偶数フィールドから2ラインを用いた走査線変換フィルタと対応画素の影響比率を示している。g3は
図6の(m)’で走査線変換前から−1/8の垂直位相に相当し、c2*(1/5)+c4*(4/5)の変換フィルタを用いて、画素配置のa2とa3が1/5、a4とa5が4/5の比率で影響することになる。
図6の(q)の偶数フィールドからの走査線変換フィルタの計算式を、
図6の(p)の奇数フィールドからの走査線変換フィルタの計算式と比べると、利用する順序が異なるが、走査線変換前の垂直位相の−1/8、−3/8、+3/8、+1/8に対する変換フィルタは全く同じ構成になっており、奇数フィールドでの2種類4位相のフィルタと共用できることが示されている。
【0052】
図6の(q)’は偶数フィールドから4〜3ラインを用いた走査線変換フィルタと対応画素の影響比率を示している。
図6の(q)’の偶数フィールドからの走査線変換フィルタの計算式を、
図6の(p)’の奇数フィールドからの走査線変換フィルタの計算式と比べると、利用する順序が異なるが、走査線変換前の垂直位相の−1/8、−3/8、+3/8、+1/8に対する変換フィルタは全く同じ構成になっており、奇数フィールドでの2種類4位相のフィルタと共用できることが示されている。
図6の(e)の奇数フィールドの飛越走査から変換された順次走査映像の走査線におけるe3は、
図6の(g)は偶数フィールドの飛越走査から変換された順次走査映像の走査線のg3と同じ走査線にあたり、飛越走査側のフィールド毎に順次走査側にe3とg3が交互に現れる。
【0053】
図6の(p)の奇数フィールドからの走査線変換フィルタの対応画素はe3に対してa4とa5を中心にa3からa6(まで)を用いているが、
図6の(q)の偶数フィールドからの走査線変換フィルタの対応画素はg3に対してa4とa5の比率が大きいものの上側のa2とa3を用いて下側に広がりは無い。このため
図6の(p)の奇数フィールドからの走査線変換フィルタと
図6の(q)の偶数フィールドからの走査線変換フィルタには上下のジッタが存在し順次走査映像にフリッカが残る。
図6の(p)’の奇数フィールドからの走査線変換フィルタの対応画素はe3に対してa4とa5を中心にa1からa8を用いており、
図6の(q)’の偶数フィールドからの走査線変換フィルタの対応画素はg3に対してa4とa5を中心にa2からa7を用いており、上下に広がる裾野に差異は有るものの、利用範囲の形状がより近似している。このため
図6の(p)’の奇数フィールドからの走査線変換フィルタと
図6の(q)’の偶数フィールドからの走査線変換フィルタでは順次走査映像のフリッカが軽減される。複数有る走査線変換フィルタで利用する画素配置と合成比率の形状を近似させることは周波数特性を近似させると言い換えることができる。
【0054】
本方式では垂直位相の対照性と、フィールド毎に利用できる変換フィルタの共通性に着目し、変換フィルタ
の種類を減らし、変換フィルタの種類で異なる周波数特性を最大限近似させることでライン毎のモアレを低減するとともに、飛越走査のフィールド毎の順次走査映像のフリッカを軽減する。 尚、同時に利用する変換フィルタが4点だとしても、別の理由で変換位相を8点準備する場合、本方式では対照性と周波数特性の近似を重視するため、8点の周波数特性を合わせるには16分割の位相を想定して分子が奇数となる位相を用いる。これは周波数特性が悪く最も避けるべき+8/16垂直位相と、他の位相と同時に使うには周波数特性が良いため出来れば避ける+0/16垂直位相を外すためである。 更に走査線変換の整数比によっては同時に利用する変換フィルタの位相が奇数になる場合が想定されるが、本方式では対照性と周波数特性の近似を重視するため、+0垂直位相を含む奇数の点を用い、+0垂直位相の上下に対照性を持たせるとともに、周波数特性が悪く最も避けるべき+1/2垂直位相を外す。
【0055】
図7は本発明の他の1実施例の撮像装置の垂直画素加算動作における垂直位相関係を表した模式図である。
図7の(a)は撮像素子の画素配置を示しており、
図6の(a)や
図4の(a)に相当する。
図7の(b)は飛越走査における奇数フィールドの走査線を示しており、
図6Aや
図4Aに相当し、奇数のnライン目にn+1ライン目を加算合成するため、例えばb3はa3とa4を合成したものであり、垂直位相関係を同一にして記している。
図7の(c)は飛越走査における偶数フィールドの走査線を示しており、
図6Bや
図4Aに相当し、偶数のnライン目にn+1ライン目を加算合成するため、例えばc4はa4とa5を合成したものであり、垂直位相関係を同一にして記している。
【0056】
図7の(e)’は奇数フィールドの飛越走査から変換された順次走査映像の走査線を示し、b1の垂直位相の重心とe1の垂直位相の重心が等しくなる垂直位相関係になることを示し、
図7の(g)’は偶数フィールドの飛越走査から変換された順次走査映像の走査線を示しており、それぞれ
図4Bの(e)と
図4Cの(g)に相当する。この順次走査画像は
図7の(e)’と
図7の(g)’が、走査線変換前の飛越走査画像のフィールド毎に、繰り返し交互に現れるものとなるため、垂直位相関係を同一にして記している。
【0057】
図7の(k)”は奇数フィールドからの走査線変換の垂直位相を示している。走査線変換の位相として4点の位相を用いる例を示しており、b1の重心であるb1+0/4の位相から、上下等間隔に1/4位相ずつの位相である−1/4、+0/4、+1/4、+2/4に対して変換フィルタが用意されている。 利用する位相の中に+2/4すなわち2つのライン重心から中点となる1/2位相が含まれている。
図7の(k)”’は順次走査の重心となる奇数フィールドからの走査線変換の垂直位相を示している。順次走査の重心となる垂直位相には、+0/4、−1/4、+2/4、+1/4が繰り返し現れ、この4点しか存在していないことが図示されている。
【0058】
図7の(p)”は奇数フィールドから2ラインを用いた良好でない走査線変換フィルタと対応画素の影響比率を示している。e3は
図7の(k)”’で走査線変換前から+2/4の垂直位相に相当し、b3*(1/2)+b5*(1/2)の変換フィルタを用いて、画素配置のa3とa4とa5とa6が平均した比率で影響することになり、b3とb5が白と黒でも平均した灰色としてしか扱えない周波数特性が最悪となる垂直位相である。e5は走査線変換前から+0/4の垂直位相すなわち走査線変換前後で重心が等しい位相に相当し、2ラインのみを用いて変換フィルタを構成した場合はb7が比率の全てを占めて影響することになり、b7が白なら白、黒なら黒となる周波数特性が最良となる垂直位相だが、他の3点との違いが大きくなる。
図7の(p)”の走査線変換フィルタの計算式を見ると、走査線変換前から+2/4の垂直位相すなわち2つのライン重心から中点となる1/2位相にあたるe3に用いる変換フィルタと対照となるものは存在せず、唯一の特異点である。同様に走査線変換前から+0/4の垂直位相すなわち走査線変換前後で重心が等しい位相にあたるe5に用いる変換フィルタと対照となるものは存在せず、唯一の特異点である。走査線変換前から+1/4の垂直位相にあたるe4に用いる変換フィルタと、走査線変換前から−1/4の垂直位相にあたるe6に用いる変換フィルタは係数の(3/4)と(1/4)が上下対照になっており、同じ周波数特性のフィルタとなる。4つの垂直位相に対して3種類の周波数特性のフィルタで構成しており、
図6の場合より共通性や対照性に欠ける。
図7の(e)’では異なる特性のフィルタが走査線のライン毎に切り替わるので、フィルタの周波数特性を最大限合わせておかなければ映像出力にモアレを引き起こす。この実施例では変換フィルタの種類で異なる周波数特性を最大限近似させることでライン毎のモアレを低減する。そのため
図7の(p)”は良好ではない変換フィルタとして採用すべきではない。周波数特性の近似に関しては、偶数フィールドの説明に合わせe3とg3の関係で後述する。
【0059】
図7の(p)”’は奇数フィールドから4〜3ラインを用いた走査線変換フィルタと対応画素の影響比率を示している。走査線変換フィルタの周波数特性を向上するには、計算に用いる変換前の走査線のライン数と係数の分解能を増やす。ライン数を増やすことで、変換フィルタの係数の中には0になって実質使われないラインやマイナスの値となるものが有る。
図7の(p)”’の走査線変換フィルタでは、走査線変換前と重心が等しい+0/4の垂直位相にあたるe5に用いる変換フィルタに係数が0/16で0になって実質使われないラインが存在している。走査線変換前の重心+0/4の垂直位相のみ、重心に来るラインと上下の3ライン、他の3つの垂直位相は上下に2ラインずつで4ラインを用いて走査線変換している。+2/4の垂直位相と+0/4の垂直位相がそれぞれ唯一の特異点であることと、−1/4の垂直位相と+1/4の垂直位相が上下対照で3種類の変換フィルタになる点は
図7の(p)”と同様である。 周波数特性を近似させるためには、最悪の+2/4の垂直位相が存在するため、+0/4の垂直位相は元々有る最良の周波数特性を殺して3ラインを平均するような変換フィルタとする必要が有り、位相の特性は活かせない。
図7の(p)”の走査線変換フィルタと
図7の(p)”’の走査線変換フィルタは説明用に簡略化したものである。
【0060】
図7の(m)”は偶数フィールドからの走査線変換の垂直位相を示している。走査線変換の位相として4点の位相を用いる例を示しており、c2の重心であるc2+0/4の位相から、上下等間隔に1/4位相ずつの位相である−1/4、+0/4、+1/4、+2/4に対して変換フィルタが用意されている。
図7の(m)”’は順次走査の重心となる偶数フィールドからの走査線変換の垂直位相を示している。順次走査の重心となる垂直位相には、+2/4、+1/4、+0/4、−1/4が繰り返し現れ、この4点しか存在していないことが図示されている。
【0061】
図7の(q)”は偶数フィールドから2ラインを用いた良好でない走査線変換フィルタと対応画素の影響比率を示している。g3は
図7の(m)”’で走査線変換前から+0/4の垂直位相すなわち走査線変換前後で重心が等しい位相に相当し、2ラインのみを用いて変換フィルタを構成した場合はc4が比率の全てを占めて影響することになり、c4が白なら白、黒なら黒となる周波数特性が最良となる垂直位相だが、他の3点との違いが大きくなる。g5は
図7の(m)”’で走査線変換前から+2/4の垂直位相に相当し、c6*(1/2)+c8*(1/2)の変換フィルタを用いて、画素配置のa6とa7とa8とa9が平均した比率で影響することになり、c6とc8が白と黒でも平均した灰色としてしか扱えない周波数特性が最悪となる垂直位相である。
図7の(q)”の偶数フィールドからの走査線変換フィルタの計算式を、
図7の(p)”の奇数フィールドからの走査線変換フィルタの計算式と比べると、利用する順序が異なるが、走査線変換前の垂直位相の+0/4、−1/4、+2/4、+1/4に対する変換フィルタは全く同じ構成になっており、奇数フィールドでの3種類4位相のフィルタと共用できることが示されている。
【0062】
図7の(q)”’は偶数フィールドから4〜3ラインを用いた走査線変換フィルタと対応画素の影響比率を示している。
図7の(q)”’の偶数フィールドからの走査線変換フィルタの計算式を、
図7の(p)”’の奇数フィールドからの走査線変換フィルタの計算式と比べると、利用する順序が異なるが、走査線変換前の垂直位相の+0/4、−1/4、+2/4、+1/4に対する変換フィルタは全く同じ構成になっており、奇数フィールドでの3種類4位相のフィルタと共用できることが示されている。
【0063】
図7の(e)’の奇数フィールドの飛越走査から変換された順次走査映像の走査線におけるe3は、
図6の(g)’は偶数フィールドの飛越走査から変換された順次走査映像の走査線のg3と同じ走査線にあたり、飛越走査側のフィールド毎に順次走査側にe3とg3が交互に現れる。
図7の(p)”の良好でない走査線変換フィルタと
図7の(q)”の良好でない走査線変換フィルタでは、e3は変換前走査線2ラインの平均値で最悪の周波数特性となり、対してg3は変換前走査線と等しくなり最良の周波数特性である。このe3とg3が交互に現れ順次走査映像に強烈なフリッカが起こる。e5とg5にも同様にも強烈なフリッカが起こり、e3とe5およびg3とg5にはそれぞれ強烈なモアレが起こる。この実施例でも複数の種類で構成される走査線変換フィルタの周波数特性を合わせることでモアレとフリッカを軽減できる。走査線変換フィルタは変換前走査線から+0/4の垂直位相の変換フィルタと、−1/4の垂直位相と+1/4の垂直位相で共用する対照の変換フィルタと、+2/4の垂直位相の変換フィルタの3種類で構成されている。フリッカを低減するためには例えば
図7の(p)”’の4〜3ラインの走査線変換フィルタと
図7の(q)”’の4〜3ラインの走査線変換フィルタを用いる。3種類の変換フィルタの周波数特性を合わせるには、最悪の1/2位相の特性に他の変換フィルタの合成比率を近似させるしかなく、重心が等しい最良の垂直位相は2ライン平均に近似されてしまい特性を活かせない。
図7の(p)”’でe3は+2/4の垂直位相の変換フィルタで2ライン平均を上下に裾野を広げて、a3からa6を中心にa1からa8までとなり、
図7の(q)”’でg3は+0/4の垂直位相の変換フィルタで、これを3ライン平均に近いa2からa7までとすることで、フィルタの形状を近似させている。
【0064】
何らかの理由で
図6の方式を用いることが出来ない場合でも、この実施例のように変換フィルタの種類で異なる周波数特性を最大限近似させることでライン毎のモアレを低減するとともに、飛越走査のフィールド毎の順次走査映像のフリッカを軽減することは可能である。
【0065】
以上4相のIT−CCDを3ヶと色分解光学系を用いる撮像装置について詳細に動作を説明した。 しかし、IT−CCDのV1−V4とFIT−CCDのV1A−V4Aとの垂直転送加算動作と、IT−CCDのV1−V4とFIT−CCDのV1B−V4Bとの水平周期で一組ごとの垂直転送動作と、IT−CCDのH1−H2とFIT−CCDのH1−H2との水平転送動作とは同様である。FIT−CCDのV1A−V4AとV1B−V4Bとの垂直帰線期間での高速転送が異なる。つまり、本発明の動作は、IT−CCDだけではなく、FIT−CCDのも適用できる。
【0066】
また、垂直転送4相のCCDにかぎらず、垂直転送6相のCCDでも垂直転送8相のCCDでも適用できる。さらに単一のオンチップカラーフィルタ付きCCDでも白黒撮影の単一のCCDでも、本発明を適用できる。