【課題を解決するための手段】
【0005】
好ましい実施形態では、前記方法には、前記検出工程の結果から所定の角度分解能に関して動的光散乱測定値を導出する工程を含めることができる。更に、前記方法には、前記検出工程の結果から所定の角度分解能に関して静的光散乱測定値を導出する工程を含めることができる。
【0006】
液体サンプルは、2つのウイッキング表面(流体を吸い上げる又は吸い付ける作用を有する表面)によって画定された間隙内に支持することができる。液体サンプルの下側に位置する下側光学部品の頂面によって画定されるウィッキング表面は、ウィッキング上表面(ウィッキング作用をするウエヒョウメン)と称し、液体サンプルの上側に位置する光学部品の底面によって画定されるウィッキング表面は、ウィッキング下表面(ウィッキング作用をするシタヒョウメン)と称する。前記照射工程は、前記液体サンプルの支持表面(支持されている表面)を通して実施することができる。あるいは、照射工程は、該サンプルの不支持表面(支持されていない表面)を通して実施することができる。検出工程は、該サンプルの支持表面を通して実施することができる。あるいは、検出工程は、前記サンプルの不支持表面を通して実施することができる。
【0007】
前記方法には、前記照射軸線に対して更に別の角度に方向づけされた複数の追加の検出軸線に沿って検出する複数の追加の検出工程を含めることができる。前記支持工程は、前記液体サンプルをサンプルキャリヤー内に支持することから成るものとすることができ、その場合、前記第1光学軸が前記液体サンプルと交差するように該サンプルキャリヤーを位置づけする工程を含める。前記検出工程では、後方散乱光を検出するようにすることができる。前記照射工程では、捕捉された液体サンプルを少なくとも部分的に干渉性の光で照射するようにすることができる。あるいは、前記照射工程では、捕捉された液体サンプルを干渉光で照射するようにすることができる。又、前記検出工程では、1つのサンプルに関して時間平均された散乱光を検出するようにすることができる。あるいは、又、前記検出工程では、1つのサンプルに関して時間依存散乱光を検出するようにすることができる。
【0008】
本発明は、その別の側面においては、液体サンプル中の粒子の特性を測定するための装置であって、1つ又はそれ以上のウイッキング表面と、光源からの空間的に干渉性をもつ光を散乱帯域を横切って散乱させるように該ウイッキング表面に近接するように向けられた照射軸線を有する空間的干渉性光源とを備えた粒子特性測定装置にある。少なくとも1つの空間的干渉性散乱光検出器が、上記液体サンプル中の粒子によって散乱された光を所定の第1散乱光検出軸線に沿って受容するように位置づけされる。この第1散乱光検出軸線は、液体サンプルが前記ウイッキング表面によって捕捉されているとき、前記光源の照射軸線に対して所定の角度に方向づけされたものとする。前記所定の第1散乱光検出軸線と照射軸線とのなす角度は、前記検出器が前記散乱帯域を横切って該角度で散乱された干渉光の実質的にすべてを検出することを可能にする角度とする。
【0009】
好ましい実施形態では、前記ウイッキング表面のうちの1つ又はそれ以上のウイッキング表面は、各々、1つ又はそれ以上の透明な光学部品の一部分とする。光源は、前記ウイッキング表面のうちの第1ウイッキング表面を通して光を差し向けるように位置づけすることができる。検出器は、前記ウイッキング表面のうちの第1ウイッキング表面を通して散乱光を受容するように位置づけすることができる。又、光源は、捕捉されたサンプルの、前記ウイッキング表面のいずれにも接触していない一表面上の1つの位置に向けて光を差し向けるように位置づけすることができる。検出器は、捕捉されたサンプルの、前記ウイッキング表面のいずれにも接触していない一表面上の1つの位置からの散乱光を受容するように位置づけすることができる。又、検出器は、該サンプルからの後方散乱光を受容するように位置づけすることができる。第1ウイッキング表面は、第1透明光学部品の一部とすることができ、第2ウイッキング表面は、該第1透明光学部品とは別個の第2透明光学部品の一部とすることができる。この装置には、更に、前記ウイッキング表面を所定位置に保持するように位置づけされた支持体を設けることができる。この支持体は、
粒子特性測定装置
の慣用のキュべットホルダーから取り外すことができる着脱自在のサンプルキャリヤー
(添付図3及び4に全体図が示されている)の一部とすることができる。1つのサンプルに対して4つのウイッキング表面を設けることができる。これらの4つのウイッキング表面は、すべて、それぞれ透明な光学部品の一部とすることができる。前記光源の照射軸線は、前記ウィッキング表面のいずれをも通ることなく前記サンプルを透過するように位置づけすることができる。前記ウイッキング表面によって画定される間隙は、水性サンプルを第1ウイッキング表面と第2ウイッキング表面との間に表面張力によって保持するように寸法決めすることができる。前記第1ウイッキング表面と前記第2ウイッキング表面とは、互いに平行にしてもよい。あるいは、前記第1ウイッキング表面と前記第2ウイッキング表面とは、互いに角度をなして位置づけしてもよく、その角度は、前記光源の照射軸線と前記検出器の検出軸線との間の散乱角に等しい角度とすることができる。前記光源は、レーザとすることができる。
【0010】
別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための方法であって、液体サンプルをその少なくとも1つの被支持表面(支持されている表面)にかかる表面張力によって支持する工程と、該被支持液体サンプルを照射軸線に沿って該液体の被支持表面を通して光で照射する工程と、該照射された光が該被支持液体サンプル中の粒子によって散乱された後、該光の少なくとも一部分を第1散乱光検出軸線に沿って検出する工程を含む粒子特性測定方法にある。該照射軸線と該検出軸線は、互いに所定の角度に方向づけする。
【0011】
別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための装置であって、1つ又はそれ以上のウイッキング表面と、該ウイッキング表面の少なくとも1つを貫通するように向けられた照射軸線を有する光源と、液体サンプルが前記ウイッキング表面によって捕捉されているとき、前記光源の照射軸線に対して所定の角度に方向づけされた第1散乱光検出軸線に沿って液体サンプル中の粒子によって散乱された光を受容するように位置づけされた少なくとも1つの散乱光検出器を備えた粒子特性測定装置にある。
【0012】
更に別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための方法であって、液体サンプルをその少なくとも1つの被支持表面にかかる表面張力によって支持する工程と、該被支持液体サンプルを照射軸線に沿って光で照射する工程と、該照射された光が該被支持液体サンプル中の粒子によって散乱された後、該液体の不支持表面を通して該光の少なくとも一部分を第1散乱光検出軸線に沿って検出する工程を含む粒子特性測定方法にある。該照射軸線と該検出軸線は、互いに所定の角度に方向づけする。
【0013】
更に別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための装置であって、1つ又はそれ以上のウイッキング表面と、該ウイッキング表面に近接するように向けられた照射軸線を有する光源と、液体サンプルが前記ウイッキング表面によって捕捉されているとき、前記光源の照射軸線に対して所定の角度に方向づけされた第1散乱光検出軸線に沿って前記液体サンプル中の粒子によって散乱された光を前記ウイッキング表面によって支持されていない表面を通して受容するように位置づけされた少なくとも1つの散乱光検出器を備えた粒子特性測定装置にある。
【0014】
本発明の更に別の側面によれば、液体サンプル中の粒子の特性を測定するための方法であって、液体サンプルを毛管内に懸垂させる(流動可能状態に保持する)工程と、該懸垂された(被懸垂)液体サンプルを照射軸線に沿って光で照射する工程と、該照射された光が該被懸垂液体サンプル中の粒子によって散乱された後、該光の少なくとも一部分を第1検出軸線に沿って検出する工程を含む粒子特性測定方法にある。該照射軸線と該検出軸線は、互いに所定の角度に方向づけする。
【0015】
好ましい実施形態では、液体サンプルは、着脱自在のカバーを備えた毛管内に懸垂させることができる。あるいは、液体サンプルは、大気圧によって毛管内に懸垂させることができる。あるいは、液体サンプルは、毛管の管孔に流体連結された(hydraulically connected)(流体を連通することができるように連結された)、密封された上側表面によって毛管内に懸垂させてもよい。この密封された上側表面は、ピストンの表面とすることができる。あるいは又、液体サンプルは、ポンピング作用によって毛管内に懸垂させてもよい。この方法には、更に、該装置と共に毛管材を保管しておく工程と、サンプルを毛管内に懸垂する前記懸垂工程の前に、該保管された毛管材から前記毛管を切り取る工程を含めることができる。あるいは、この方法には、前記懸垂工程の前に、一定長の毛管材から前記毛管を切り取る工程を含めることができる。その場合、この切り取り工程と懸垂工程の両方を同じ使用者が実施することとする。毛管を用意する工程では、ガラス製の毛管を用意することができる。あるいは、プラスチック製の毛管を用意することができる。サンプルを導入する工程では、約50μl(マイクロリットル)未満の液体を毛管内へ導入することができる。あるいは、サンプルを導入する工程では、約10μl未満の液体を毛管内へ導入することができ、あるいは、約1μl未満の液体を毛管内へ導入することもできる。更に、この方法には、毛管を処分する工程を含めることができ、以後の各サンプルに対して各々新しい毛管を用いて、サンプルを毛管内へ導入し、毛管内へ懸垂させ、照射し、検出し、毛管を処分する前記各工程を反復することができる。処分工程では、毛管とサンプルを同時に処分してもよく、あるいは、毛管を処分する工程の前に毛管からサンプルを抜き取る工程を含めてもよい。
【0016】
この方法には、更に、前記検出工程の前に、液体サンプルを毛管内を通して検出位置へ流動させる工程を含めることができる。更に、後続のサンプルを次々に毛管を通して流す追加の工程を含め、各1つのサンプルを流す工程の後毎にそれぞれ検出を実施する追加の検出工程を含めることができる。液体サンプルを毛管内を通して流す工程は、連続的に実施することができる。あるいは又、この方法には、後続のサンプルを各々のための追加の毛管を通して流す工程を含め、各1つのサンプルを流す工程の後毎にそれぞれ検出を実施する追加の検出工程を含めることができる。その場合、サンプルを流す工程は、可処分(使い捨ての)毛管を通して実施することができ、更に、検出工程のうちの少なくともいくつかの検出工程の間に毛管を処分する追加の工程を含めることができる。
【0017】
本発明の更に別の側面においては、本発明は、液体サンプル中の粒子によって散乱された光を測定するための装置であって、光学的光出力軸線を有する光源と、該光源の光出力軸線内に配置されており、液体サンプルを懸垂させるための手段を備えた管のための管ホルダーと、該光源の光出力軸線に対して角度をなして方向づけされた軸線に沿って該管からの散乱光を受容するように位置づけされた少なくとも1つの散乱光検出器を含む光測定装置を提供する。
【0018】
好ましい実施形態では、この装置に一体の毛管切断機を設けることができる。毛管切断機は、毛管が光源の光出力軸線に沿って毛管ホルダー内に位置づけされている間に毛管を切断することができるように配置される。この毛管切断機には、毛管ホルダー(「管ホルダー」又は単に「ホルダー」とも称する)に取り付けられた固定ブレードを設けることができる。ホルダーは、装置から取り外すことができる着脱自在の毛管キャリヤーの一部とすることができる。毛管ホルダーは、方形の断面を有する毛管を保持する働きをする構成とすることができる。あるいは、毛管ホルダーは、円形の断面を有する毛管を保持する働きをする構成とすることもできる。又、この装置には、ホルダーによって保持された毛管を備えたものとすることもできる。この毛管は、ガラス製であってもよく、あるいは、プラスチック製としてもよい。又、この毛管は、一端が密封されたものであってもよく、両端を密封されたものとすることもできる。管ホルダーは、約50μl未満の液体を収容する管を保持する働きをする構成とすることができ、あるいは、約10μl未満の液体を収容する管を保持する働きをする構成とすることもでき、あるいは、約1μl未満の液体を収容する管を保持する働きをする構成とすることもできる。又、このホルダーは、約2mm未満の内径を有する管を保持する構造とし、かつ、該管を光源の光出力軸線内に保持することができるように適合することができ、該毛管の内径は、液体サンプルを懸垂するための手段を構成する。あるいは、この管ホルダーは、約0.5mm未満の内径を有する管を保持する構成とすることもできる。更に、この装置には、管をプロセスフロー(プロセス流体を流すための流路)に流体連結する(即ち、管とプロセスフローとの間に流体連通を設定する)ための1対の流体継手即ち流体コネクターを設けることができる。又、この装置には、管からの散乱光を光源の光出力軸線に対して(上記散乱光検出器とは異なる)別の角度に沿って受容するように位置づけされた少なくとも第2の散乱光検出器を設けることもできる。
【0019】
更に別の側面においては、本発明は、液体サンプル中の粒子によって散乱された光を測定するための装置であって、光学的光出力軸線を有する光源と、該光源の光出力軸線内に配置された毛管のための毛管ホルダーであり、約2mm未満の内径を有する毛管を保持する構造とされ、かつ、該管を光源の光出力軸線内に保持することができる構成とされている毛管ホルダーと、該光源の光出力軸線に対して角度をなして方向づけされた軸線に沿って該毛管からの散乱光を受容するように位置づけされた少なくとも1つの散乱光検出器を含む光測定装置にある。
【0020】
更に別の側面においては、本発明は、液体サンプル中の粒子からの散乱光を測定するための方法であって、新しい一定長の毛管を受け入れる工程と、液体サンプルを該一定長の毛管内に導入する工程と、該毛管内の液体サンプルを光で照射する工程と、該照射された光が該液体サンプル中の粒子によって散乱された後、該光の少なくとも一部分を検出する工程と、該毛管を処分する工程と、次いで、後続のサンプルに対して各々新しい毛管を用いて、上記受け入れ、導入、照射、検出及び処分工程を反復することから成る散乱光測定方法にある。
【0021】
更に別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための方法であって、液体サンプルを大気圧によって支持する工程と、該支持された液体サンプルを照射軸線に沿って光で照射する工程と、該光が上記被支持液体サンプル中の粒子によって散乱された後、該散乱光の少なくとも一部分を第1検出軸線に沿って検出する工程を含み、該照射軸線と該検出軸線とは、互いに所定の角度に方向づけする、粒子特性測定方法にある。好ましい実施形態では、液体サンプルは、着脱自在のカバーを備えた毛管内に支持することができる。
【0022】
更に別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための装置であって、液体サンプルを保持するためにキャビティと、該キャビティに流体連結された密封された上側表面と、該キャビティを貫通するように向けられた照射軸線を有する光源と、該液体サンプルが前記キャビティ内に捕捉されているとき、前記光源の光出力軸線に対して所定の角度に方向づけされた第1検出軸線に沿って、液体サンプル中の粒子によって散乱された光を受容するように位置づけされた少なくとも1つの散乱光検出器とを含む粒子特性測定装置にある。好ましい実施形態では、前記キャビティは、管によって画定することができる。上記密封された上側表面は、着脱自在のカバーによって形成することができる。
【0023】
更に別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための方法であって、液体サンプルを毛管内を通して流動させる工程と、該流動する液体サンプルを該毛管の壁を通して照射軸線に沿って光で照射する工程と、該照射された光が該流動する液体サンプル中の粒子によって散乱された後、該光の少なくとも一部分を第1検出軸線に沿って検出する工程を含み、該照射軸線と該検出軸線を互いに所定の角度に方向づけする粒子特性測定方法にある。
【0024】
好ましい実施形態では、この方法には、液体サンプルを毛管内を通して流動させる追加の工程を含めることができ、後続の各1つのサンプルを流す工程の後毎にそれぞれ検出を実施する追加の検出工程を含めることができる。毛管内を通して液体(サンプル)を流す工程は、可処分(使い捨ての)毛管を通して実施することができ、更に、検出工程のうちの少なくともいくつかの検出工程の間に毛管を処分する追加の工程を含めることができる。液体サンプルを毛管内を通して流す工程は、連続的に実施することができる。
【0025】
更に別の側面においては、本発明は、液体サンプル中の粒子の特性を測定するための装置であって、第1開放端と第2開放端を有する一定長の開放毛管と、該第1開放端とプロセスフローの出力端との間の入力側流体連結部(hydraulic connection)と、該第2開放端とプロセスフローの入力端との間の出力側流体連結部と、該毛管を貫通するように向けられた照射軸線を有する光源と、該液体サンプルが前記キャビティ内に捕捉されているとき、前記光源の光出力軸線に対して所定の角度に方向づけされた第1検出軸線に沿って、液体サンプル中の粒子によって散乱された光を受容するように位置づけされた少なくとも1つの散乱光検出器とを含む粒子特性測定装置にある。
【0026】
本発明による測定システムは、散乱光測定を迅速、かつ、能率的に実施することができる。サンプル流体の小滴を入射ビームの光路内に保持することによって、1つ又は複数の光散乱モードにおいて散乱光の測定を極く小さなサンプルに対して実施することができる。従って、サンプルを保持するのに用いられる機材は、処分するか、あるいは、容易に洗浄することができる。又、複数のサンプルを支持するのにそれぞれ別個のウイッキング表面を使用するので、それらの表面の容易な洗浄を可能にし、あるいは、ウイッキング表面を使い捨ての光学部品上に形成することさえもできる。毛管は、いろいろな光散乱測定法のために非常に小量の液体を保持することができ、測定後廃棄することができる。