(58)【調査した分野】(Int.Cl.,DB名)
前記反転制御ピンが前記ステアリングシャフトに固定され、前記第1および第2のピン受けストッパ壁が前記円筒部に形成されたことを特徴とする請求項1に記載の船舶のヘルム装置。
ねじ部材からなる前記反転制御ピンが前記ステアリングシャフトに固定され、前記第1および第2のピン受けストッパ壁が前記円筒部に形成されたことを特徴とする請求項1に記載の船舶のヘルム装置。
前記反転制御ピンが前記円筒部に固定され、前記第1および第2のピン受けストッパ壁が前記ステアリングシャフトに形成されたことを特徴とする請求項1に記載の船舶のヘルム装置。
ねじ部材からなる前記反転制御ピンが前記円筒部に固定され、前記第1および第2のピン受けストッパ壁が前記ステアリングシャフトに形成されたことを特徴とする請求項1に記載の船舶のヘルム装置。
【発明を実施するための形態】
【0013】
以下に第1の実施形態に係るヘルム装置を備えた船舶について、
図1から
図10を参照して説明する。
図1と
図2は船舶10の一例を示している。この船舶10は、船体11と、船外機12と、操舵装置13とを備えている。操舵装置13は、舵輪15を有するヘルム装置16と、船外機12の舵角を変える電動式のアクチュエータ部17と、制御部18などを含んでいる。制御部18は、ヘルム装置16とアクチュエータ部17とに電気的に接続されている。
【0014】
図3はヘルム装置16の一例を示す断面図である。ヘルム装置16は、防水仕様のケース21と、ケース21に挿入されたステアリングシャフト22と、ケース21の内部に設けられたストップ機構23と、アシストばね24と、ステアリングシャフト22の回転を検出するセンサ(ヘルムセンサ)25などを備えている。
【0015】
ケース21は、第1ケース部材21aと第2ケース部材21bとによって構成されている。第2ケース部材21bは、固定用部材30によって第1ケース部材21aに固定されている。第2ケース部材21bの内側にカバー部材31が挿入されている。カバー部材31は固定用部材32によって第2ケース部材21bに固定されている。
【0016】
第1ケース部材21aには、ステアリングシャフト22が挿入される孔35と、ストップ機構23を収容するチャンバ36と、アシストばね24を支持するばね受け面37などが形成されている。チャンバ36の内部にはオイルが収容されている。ストップ機構23はこのオイルに漬かっている。ステアリングシャフト22は軸受部材38,39によって回転自在に支持され、軸線X
0(
図3に示す)を中心に第1の方向Aと第2の方向Bに回転することができる。ステアリングシャフト22と孔35の内周面との間に、シール材40が設けられている。
【0017】
ケース21の外側に突き出るステアリングシャフト22の一方の端部に、舵輪15が固定される嵌合部41が形成されている。ケース21の内側に位置するステアリングシャフト22の他方の端部には、センサ25の一部をなす被検出体としてのマグネット45が設けられている。
【0018】
カバー部材31に形成された凹部50に回路基板52が収容されている。回路基板52は、固定用部材53によってカバー部材31に固定されている。回路基板52に、マグネット45を検出する素子55が配置されている。マグネット45と素子55とは、ステアリングシャフト22の回転量と回転方向を検出するためのセンサ(ヘルムセンサ)25を構成している。センサ25によって検出されたステアリングシャフト22の操作量(操作角)に関する電気信号は、配線部材56を介して制御部18に出力される。
【0019】
図3に示されるように、ケース21は、船体11の一部であるヘルム取付壁60に、取付用ボルト61とナット62によって固定される。取付用ボルト61はケース21に設けられており、ケース21の端面63から船体側の領域Sに突出している。取付用ボルト61は、ヘルム取付壁60に形成された貫通孔64に挿入されている。ヘルム取付壁60には、配線部材56を通すための貫通孔65が形成されている。
【0020】
ケース21の内側に位置するステアリングシャフト22の端部付近に、例えば皿ばね等からなる弾性部材70が配置されている。ステアリングシャフト22は、この弾性部材70によって、ケース21から突き出る方向(
図3に矢印Hで示す方向)に付勢されている。弾性部材70は、ステアリングシャフト22の軸線X
0方向に入力する荷重を受けたときに撓むため、軸線X
0方向の振動等を吸収する機能も兼ねている。
【0021】
ケース21の内側に位置するステアリングシャフト22の端部に、ホルダ部材71が設けられている。ホルダ部材71は、前記カバー部材31の中央部に形成された凹部72に挿入され、支持座73によってステアリングシャフト22の軸線X
0回りに回転自在に支持されている。
【0022】
ホルダ部材71の端面に、被検出体の一例であるマグネット45が設けられている。マグネット45はステアリングシャフト22の軸線X
0の延長線上に位置している。回路基板52には、マグネット45の磁気によってステアリングシャフト22の回転位置を検出する素子55を含むセンサ25が配置されている。
【0023】
ホルダ部材71に、ピン75がホルダ部材71の径方向に設けられている。ステアリングシャフト22とホルダ部材71とは、ピン75によって互いに接続されている。ホルダ部材71はステアリングシャフト22と共に回転可能であり、かつ、ホルダ部材71はステアリングシャフト22に対して軸線X
0方向に相対移動できるようになっている。
【0024】
ステアリングシャフト22の端部に、例えば圧縮コイルばねからなるばね76が収容されている。ホルダ部材71は、このばね76によって、ステアリングシャフト22からセンサ25に向けて常時付勢されている。このためホルダ部材71は、ステアリングシャフト22の軸線X
0方向の位置にかかわらず、センサ25に対して軸線X
0方向の位置が常に一定となるように保持される。よって、ステアリングシャフト22の位置が軸線X
0方向にずれても、被検出体(マグネット31)からセンサ25までの距離を一定に保つことができ、センサ25が常時安定した信号を出力することができる。
【0025】
ケース21の内部の前記チャンバ36にストップ機構23が収容されている。
図4はストップ機構23の斜視図、
図5はストップ機構23の一部を示す分解斜視図である。また
図6は
図4中のF6−F6線に沿う断面図、
図7はストップ機構23の一部の側面図である。
【0026】
ストップ機構23は、ステアリングシャフト22に取付けられた回動部材80と、回動部材80と一体に回転する複数の回転側ディスク81と、回転側ディスク81と対向して配置された複数の固定側ディスク82と、電磁石83と、アーマチュア84とを含んでいる。回転側ディスク81と固定側ディスク82は、互いに板厚方向に交互に配置されている。このストップ機構23は、チャンバ36内に収容された前記オイルに接している。回動部材80は、後に詳しく説明する反転制御ピン機構125によって、ステアリングシャフト22に対して反転許容角θの範囲内で相対回転が可能となっている。
【0027】
回動部材80は、円筒部80aと、該円筒部80aよりも大径なディスク取付部80bとを有している。ディスク取付部80bの外周面に、軸線X
0に沿うスプライン85が形成されている。回転側ディスク81の内周部には、スプライン85に嵌合する歯部86が形成されている。このため回転側ディスク81は、回動部材80に対して軸線X
0方向に移動可能に保持され、かつ、回動部材80と一体に回転することができる。
【0028】
電磁石83は、ヨーク90とコイル91とを含んでいる。コイル91には、図示しない電源からの電力が制御部18を介して供給される。ヨーク90の外周面とケース21の内周面との間に、シール材92が設けられている。アーマチュア84は、ステアリングシャフト22の軸線X
0に沿う方向に移動可能である。このアーマチュア84は、コイル91に電力を供給したときに生じる磁力によってヨーク90側に吸引されることにより、回転側ディスク81と固定側ディスク82とを互いに押付ける方向に移動する。
【0029】
ヨーク90は、固定用部材93によって、ケース21に固定されている。ヨーク90の外周部に凸部95が形成されている。この凸部95に、固定側ディスク82の外周部に形成された凹部96が嵌合している。このため固定側ディスク82は、ケース21に対して、ステアリングシャフト22の軸線X
0方向に移動可能でかつ回転はしないようにヨーク90に保持されている。
【0030】
前記アシストばね24は、ケース21のばね受け面37とアーマチュア84との間に、初期荷重を与えて撓ませた状態で配置されている。このアシストばね24が発生する反発荷重によって、アーマチュア84がヨーク90に向けて常時付勢されている。
【0031】
電磁石83は、コイル91に電力が供給されているときのみ、アーマチュア84を吸引する。言い換えると、回転側ディスク81と固定側ディスク82とは、電磁石83が励磁されていないとき、アシストばね24の反発荷重によってアーマチュア84とヨーク90との間に挟まれて摩擦力(フリクション)を生じる。
【0032】
電磁石83は、コイル91に供給される電力の大きさに応じた磁力を発生することによってアーマチュア84を吸引する。このため電磁石83が励磁されているときには、回転側ディスク81と固定側ディスク82は、アシストばね24の反発荷重と、電磁石83の吸引力とを合わせた力によって、アーマチュア84とヨーク90との間に挟まれる。すなわち電磁石83に供給する電力の大きさに応じて、ストップ機構23の摩擦力を変えることができることにより、舵輪15の操舵力(抵抗力)を変化させることができる。
【0033】
制御部18には、操船者の希望あるいは操船状況に応じてコイル91に供給する電力を変化させることが可能なコンピュータプログラムが組込まれている。例えば、船舶10の操舵席付近に配置された調整用操作部98を操作することにより、電磁石83に供給する電力を変化させることができる。
【0034】
舵輪15を操作する際の抵抗力(操舵力)を重くしたい場合には、調整用操作部98を「摩擦大」側に操作する。そうすると、電磁石83に供給される電力が大きくなることにより、電磁石83の磁界が増大する。このためアーマチュア84がより大きな力で吸引されることにより、ストップ機構23のフリクションが増加する。よって、操舵力を重くすることができる。操舵力を軽くしたい場合には、調整用操作部98を「摩擦小」側に操作する。そうすると、電磁石83に供給される電力が小さくなることにより、電磁石83の磁界が減少し、ストップ機構23のフリクションが減少することによって、操舵力が軽くなる。
【0035】
またこの制御部18は、舵輪15が中立位置から最大舵角まで回転したときに、舵輪15がそれ以上回転しないように、ステアリングシャフト22をロックする機能を有している。すなわち、舵輪15を面舵側あるいは取り舵側に前記舵輪回転数まで最大に回転させると、制御部18は電磁石83に供給する電力を最大とし、電磁石83の磁界を最大とすることにより、回転側ディスク81と固定側ディスク82とを互いにロックする。これにより、舵輪15がロック状態となり、舵輪15がそれ以上回転することが阻止される。すなわち制御部18には、舵輪15の回転数(中立位置からの回転量)が予め設定された舵輪回転数に達した状態において、回転側ディスク81と固定側ディスク82とを互いにロックさせる電力を電磁石83に供給する手段(コンピュータプログラム)が組込まれている。
【0036】
図3から
図7に示されるように、ステアリングシャフト22に径方向の貫通孔100が形成されている。そしてこの貫通孔100に反転制御ピン110が挿入されている。反転制御ピン110は、例えば貫通孔100に圧入することによって、ステアリングシャフト22に固定されてもよい。反転制御ピン110の両端は、ステアリングシャフト22の外周面からステアリングシャフト22の径方向に突出している。
【0037】
回動部材80は、円筒部80aと、ディスク取付部80bとを有している。この回動部材80は、ステアリングシャフト22に対して軸線X
0を中心として周方向に相対回転可能である。回動部材80には、一対のスリット120が円筒部80aの周方向180°対称位置に形成されている。これらスリット120は、円筒部80aの周方向に長い形状であり、円筒部80aの側面方向から見て長円形をなしている。スリット120の前記周方向の一端に、第1のピン受けストッパ壁121が形成されている。スリット120の前記周方向の他端に、第2のピン受けストッパ壁122が形成されている。
【0038】
これらピン受けストッパ壁121,122は、円柱形の反転制御ピン110の外周面の形状(円形)に対応して、それぞれ半円形に形成されている。スリット120の内側面123,124間の距離L1(
図7に示す)は、反転制御ピン110が前記周方向に移動することを許容するが、反転制御ピン110が軸線X
0方向に移動することを抑制できるように、反転制御ピン110の外径よりも僅かに大きい寸法としている。
【0039】
反転制御ピン110は、回動部材80の円筒部80aとステアリングシャフト22との双方にわたって、ステアリングシャフト22と円筒部80aの径方向に設けられている。一対のスリット120に反転制御ピン110の両端が前記周方向に移動可能に挿入されている。反転制御ピン110は、第1および第2のピン受けストッパ壁121,122間を反転許容角θの範囲内で移動することができる。このため回動部材80は、ステアリングシャフト22に対して反転許容角θの範囲内で相対的に回転することが可能である。反転許容角θは、センサ25の最小検出角よりも大きい。これら反転制御ピン110と、内側面123,124を有するスリット120と、第1および第2のピン受けストッパ壁121,122などによって、反転制御ピン機構125が構成されている。
【0040】
次に、アクチュエータ部17について説明する。
図8は、船外機12の一部とアクチュエータ部17を示している。船外機12は、船体11の後部壁11aにブラケット130によって支持されている。
図9はアクチュエータ部17とブラケット130を上方から見た平面図である。
【0041】
ブラケット130は、船体11に固定された固定側ブラケット部131a,131bと、固定側ブラケット部131a,131bに対して回動軸132を中心に上下方向に移動可能な移動側ブラケット部133とを含んでいる。回動軸132の一例は、船外機12をチルトアップさせる際の中心となるチルト軸であり、船体11の幅方向すなわち水平方向に延びている。
【0042】
船外機12は移動側ブラケット部133に取付けられている。移動側ブラケット部133は図示しない油圧アクチュエータ等のチルト駆動源によって、チルトダウン位置とチルトアップ位置とにわたって、上下方向に移動させることができる。すなわちこの船外機12はチルトアップ機能を有している。
【0043】
移動側ブラケット部133には、船外機12の操舵方向を変えるための操舵アーム135が設けられている。操舵アーム135は、移動側ブラケット部133に設けられた旋回軸136(
図9)を中心に左右方向に回動させることができる。この操舵アーム135を左右方向に動かすことにより、船体11に対して船外機12を面舵方向あるいは取り舵方向に移動させることができるようになっている。
【0044】
図9は操舵アーム135が中立位置にあるときを示している。操舵アーム135が中立位置にあるとき、船外機12は舵角ゼロの中立位置にあるため、船舶10は直進する。
図9に2点鎖線Q1,Q2で示すように、操舵アーム135を面舵方向および取り舵方向に移動させることができる。操舵アーム135の先端部付近には、例えば孔からなる受け部139が設けられている。
【0045】
アクチュエータ部17は、第1の支持アーム140と第2の支持アーム141とを含んでいる。第1の支持アーム140は、ナット等の締結具142によって、回動軸(チルト軸)132の一端に固定されている。第2の支持アーム141は、ナット等の締結具144によって回動軸132の他端に固定されている。
【0046】
アクチュエータ部17は電動アクチュエータ150を備えている。この電動アクチュエータ150は、第1および第2の支持アーム140,141を介して、前記回動軸132の両端部に固定されている。
図10は電動アクチュエータ150の軸線方向に沿う断面図である。電動アクチュエータ150は、船体11の幅方向に延びる円筒形のカバー部材151と、カバー部材151の一端側に取付けられた第1の電動モータ152と、カバー部材151の他端側に取付けられた第2の電動モータ153と、これら電動モータ152,153によって回転する送りねじ154と、ナット部材155などを含んでいる。カバー部材151の軸線X1に沿ってスリット151aが形成されている。
【0047】
第1の電動モータ152は、モータボディ156と、電力によって回転する回転体157とを有している。モータボディ156は、ナット等の締結具158によって、第1の支持アーム140に固定されている。第2の電動モータ153は、モータボディ160と、電力によって回転する回転体161とを有している。モータボディ160は、ナット等の締結具163によって第2の支持アーム141に固定されている。これらの電動モータ152,153が互いに同期して同じ方向に回転することにより、送りねじ154の両端側から送りねじ154にトルクを与えることができるようになっている。
【0048】
第1の電動モータ152のモータボディ156と、第2の電動モータ153のモータボディ160との間に、複数(例えば4本)の連結ロッド165が互いに平行に設けられている。これらの連結ロッド165は、カバー部材151の外側に位置し、カバー部材151の軸線X1(
図10に示す)に沿って延びている。これら連結ロッド165によって、第1の電動モータ152のモータボディ156と、第2の電動モータ153のモータボディ160が互いに結合されている。
【0049】
カバー部材151の内側に、カバー部材151の軸線X1に沿って送りねじ154が配置されている。送りねじ154は、第1の電動モータ152と第2の電動モータ153が発生するトルクによって、第1の方向R1と第2の方向R2(
図10に示す)に回転することができる。
【0050】
カバー部材151の内部にナット部材155が収容されている。ナット部材155は、送りねじ154に回転自在に螺合している。送りねじ154がナット部材155に対して相対回転すると、ナット部材155がカバー部材151の内部を軸線X1に沿って第1の方向F1または第2の方向F2(
図10に示す)に往復移動する。
【0051】
ナット部材155に駆動アーム171が設けられている。駆動アーム171はカバー部材151に形成されたスリット151aに沿って、ナット部材155と一体に第1の方向F1または第2の方向F2に移動する。駆動アーム171に形成された長孔172に係合部材173が挿入されている。係合部材173は長孔172に沿って駆動アーム171の前後方向に移動することができるが、左右方向の移動は規制されている。
【0052】
係合部材173は操舵アーム135の受け部139に接続されている。このため駆動アーム171が第1の方向F1または第2の方向F2に移動すると、係合部材173が駆動アーム171と同じ方向に移動することにより、操舵アーム135が面舵方向または取り舵方向に移動することができる。送りねじ154は、軸線X1方向に伸縮自在な保護ブーツ180,181によって覆われている。
【0053】
このアクチュエータ部17は、操舵アーム135が中立位置にあることを検出するための中立位置検出センサ190と、操舵アーム135の舵角を検出するための舵角センサ191とを備えている。操舵アーム135が中立位置にあるときに、中立位置を示す信号が中立位置検出センサ190から制御部18に出力される。
【0054】
以下に前記構成のヘルム装置16とアクチュエータ部17とを備えた操舵装置13の作用について説明する。
舵輪15を回転させると、舵輪15の回転量(舵角)がセンサ25によって検出され、舵角の方向と舵角量に関する電気信号が制御部18に送られる。制御部18は、センサ25から制御部18に出力された目標舵角と、舵角センサ191によって検出される船外機12の実際の舵角が一致するように、第1および第2の電動モータ152,153を回転させる。
【0055】
第1および第2の電動モータ152,153が互いに同一の方向に回転することにより、送りねじ154の両端側から、電動モータ152,153のトルクが送りねじ154に入力する。送りねじ154が回転すると、送りねじ154の回転量と回転方向に応じて、ナット部材155と駆動アーム171が、カバー部材151の軸線X1に沿って、第1の方向F1または第2の方向F2(
図10に示す)に移動する。
【0056】
ナット部材155の位置すなわち操舵アーム135の舵角が舵角センサ191によって検出される。制御部18は、操舵アーム135の中立位置が中立位置検出センサ190によって検出されたときを舵角の基準位置とし、舵角センサ191によって検出される操舵アーム135の実際の舵角がセンサ25から送られる目標舵角と一致するように電動モータ152,153を制御する。
【0057】
例えば舵輪15が面舵方向に操舵されると、第1および第2の電動モータ152,153が第1の方向R1(
図10に示す)に回転することによって、駆動アーム171が第1の方向F1に移動する。駆動アーム171が第1の方向F1に移動すると、操舵アーム135が
図9に2点鎖線Q1で示す面舵位置に向かって移動する。そして舵角センサ191によって検出された舵角が目標舵角と一致したところで第1および第2の電動モータ152,153が停止し、駆動アーム171も停止する。
【0058】
逆に、舵輪15が取り舵方向に操舵されたときには、第1および第2の電動モータ152,153が第2の方向R2に回転することにより、駆動アーム171が第2の方向F2(
図10に示す)に移動すると、操舵アーム135が
図9に2点鎖線Q2で示す取り舵位置に向かって移動する。舵角センサ191によって検出された舵角が目標舵角と一致したところで第1および第2の電動モータ152,153が停止し、駆動アーム171も停止する。
【0059】
本実施形態の操舵装置13によれば、ヘルム装置16に設けられたストップ機構23の電磁石83が制御部18によって制御される。そして操船者が調整用操作部98を操作することにより、舵輪15の操作力(抵抗力)を調整することができる。また、制御部18に入力される各種センサからの信号に基いて電磁石83を自動で制御することにより、操船状況に適した状態となるようにヘルム装置16を調整することもできる。
【0060】
舵輪15によってステアリングシャフト22を第1の方向A(
図3と
図6に示す)に回転させると、反転制御ピン110が第1のピン受けストッパ壁121に当接することにより、回動部材80がステアリングシャフト22と一体に第1の方向Aに回転する。このとき反転制御ピン110は、第2のピン受けストッパ壁122からセンサ25の最小検出角以上離間する。舵輪15が第1の方向Aに最大舵角位置まで回転すると、制御部18は電磁石83に供給する電力を最大にする。このため回転側ディスク81と固定側ディスク82とが互いにロックされる。このロック状態において、舵輪15を逆側に回転(反転)させると、ステアリングシャフト22を反転許容角θ内で反転させることができるため、この反転方向の動きがセンサ25によって検出される。このとき制御部18は、センサ25からの信号に基いてストップ機構23のロックを解除する。こうして舵輪15は逆方向に回転することができる。
【0061】
舵輪15によってステアリングシャフト22を第2の方向B(
図3と
図6に示す)に回転させると、反転制御ピン110が第2のピン受けストッパ壁122に当接することにより、回動部材80がステアリングシャフト22と一体に第2の方向Bに回転する。このとき反転制御ピン110は第1のピン受けストッパ壁121からセンサ25の最小検出角以上離間する。舵輪15が第2の方向Bに最大舵角位置まで回転すると、制御部18は電磁石83に供給する電力を最大にする。このため回転側ディスク81と固定側ディスク82とが互いにロックされる。このロック状態において、舵輪15を逆側に回転(反転)させると、ステアリングシャフト22を反転許容角θ内で反転させることができるため、この反転方向の動きがセンサ25によって検出される。このとき制御部18は、センサ25からの信号に基いてストップ機構23のロックを解除する。こうして舵輪15は逆方向に回転することができる。
【0062】
このように、反転制御ピン110はスリット120内において第1のピン受けストッパ壁121と第2のピン受けストッパ壁122との間を移動できるため、ステアリングシャフト22は回動部材80に対して反転許容角θの範囲で相対的に回転することができる。このため最大舵角位置にてディスク81,82同士が電磁石83によって互いにロックされても、ステアリングシャフト22は、センサ25の最小検出角(検出分解能)を越える反転許容角θの範囲で逆方向に回動することができ、ロックを解除させるための信号をセンサ25が出力することができる。この反転許容角θは、反転制御ピン110の径(太さ)を変えたり、あるいはピン受けストッパ壁121,122間の距離を変えたりすることにより、容易に調整することができる。
【0063】
図11は第2の実施形態に係るストップ機構23Aを示している。このストップ機構23Aにおいて、第1の実施形態のストップ機構23(
図3〜
図7)と共通の部位には第1の実施形態のストップ機構23と共通の符号を付して説明を省略する。このストップ機構23Aの反転制御ピン機構125は、ねじ部材からなる一対の反転制御ピン110´がステアリングシャフト22の両側にねじ込むことによって固定されている。回動部材80の円筒部80aには、第1および第2のピン受けストッパ壁121,122を有する一対のスリット120が形成され、これらスリット120のそれぞれに反転制御ピン110´が挿入されている。ステアリングシャフト22は、回動部材80に対し前記反転許容角θの範囲で相対回転することができる。
【0064】
図12は第3の実施形態に係るストップ機構23Bを示している。このストップ機構23Bにおいて、第1の実施形態のストップ機構23(
図3〜
図7)と共通の部位には第1の実施形態のストップ機構23と共通の符号を付して説明を省略する。このストップ機構23Bの反転制御ピン110は、回動部材80の円筒部80aに固定されている。ステアリングシャフト22には反転制御ピン110が挿通するスリット120が形成されている。このスリット120の両端に第1および第2のピン受けストッパ壁121,122が形成されている。ステアリングシャフト22は、回動部材80に対し前記反転許容角θの範囲で相対回転することができる。
【0065】
図13は第4の実施形態に係るストップ機構23Cを示している。このストップ機構23Cにおいて、第1の実施形態のストップ機構23(
図3〜
図7)と共通の部位には第1の実施形態のストップ機構23と共通の符号を付して説明を省略する。このストップ機構23Cの反転制御ピン機構125は、一対のねじ部材からなる反転制御ピン110´が回動部材80の円筒部80aの両側にねじ込むことによって固定されている。ステアリングシャフト22には、第1および第2のピン受けストッパ壁121,122を有する一対のスリット120が形成されている。これらスリット120に、それぞれ反転制御ピン110´が挿入されている。ステアリングシャフト22は、回動部材80に対し前記反転許容角θの範囲で相対回転することができる。
【0066】
なお本発明を実施するに当たり、ヘルム装置のケースやステアリングシャフト、ストップ機構のディスクや電磁石、反転制御ピン、スリット、第1および第2のピン受けストッパ壁をはじめとして、ヘルム装置を構成する各部の構成や形状、配置などを種々に変更して実施できることは言うまでもない。