(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0030】
以下、適宜図面を参照しながら、本発明の実施形態を詳細に説明する。
【0031】
《第1実施例》
図1に示す車両用ブレーキシステムAは、原動機(エンジンやモータ等)の起動時に作動するバイ・ワイヤ(By Wire)式のブレーキシステムと、原動機の停止時などに作動する油圧式のブレーキシステムがともに機能するように構成されている。車両用ブレーキシステムAは、マスタシリンダ1と、ストロークシミュレータ2と、液圧発生装置(モータシリンダ装置20)と、ビークルスタビリティアシスト装置30(以下「液圧制御装置30」という。)と、を含んで構成されている。そして、マスタシリンダ1と、ストロークシミュレータ2と、モータシリンダ装置20と、液圧制御装置30は、外部配管を介して連通している。
【0032】
マスタシリンダ1には、常開型遮断弁(電磁弁)4,5と圧力センサ7,8が備わる一対のメイン液圧路9a,9bが接続されている。また、一方のメイン液圧路9aからは、連絡液圧路9cと分岐液圧路9eが分岐し、他方のメイン液圧路9bからは連絡液圧路9dが分岐している。
【0033】
マスタシリンダ1はタンデム式であり、2つのマスタピストン(第一マスタピストン1a,第二マスタピストン1b)を有する。この2つのマスタピストンは、シリンダ本体(第一シリンダ穴11a)に収容され、直列に配置されている。
2つのマスタピストンのうち、第二マスタピストン1bは、ブレーキ操作子(ブレーキペダルP)が接続されるプッシュロッドRに連結される。また、第一マスタピストン1aは、第二リターンスプリング1dを介して第二マスタピストン1bと連結される。さらに、第一シリンダ穴11aの底部と第一マスタピストン1aの間に第一リターンスプリング1cが配設される。
また、第一シリンダ穴11aには、底部と第一マスタピストン1aの間に第一圧力室1eが形成され、第一マスタピストン1aと第二マスタピストン1bの間に第二圧力室1fが形成される。
【0034】
第二マスタピストン1bには、ブレーキペダルPの踏力がプッシュロッドRを介して入力される。そして、ブレーキペダルPに対して踏み込み操作がなされると、第二マスタピストン1bが変位する。さらに、第二マスタピストン1bに入力された踏力は第一マスタピストン1aに入力され、第一マスタピストン1aも変位する。
そして、第一マスタピストン1aおよび第二マスタピストン1bの変位によって第一圧力室1eおよび第二圧力室1fでブレーキ液が加圧されて、ブレーキ液にブレーキ液圧が発生する。
第一圧力室1eで発生したブレーキ液圧はメイン液圧路9aから出力され、第二圧力室1fで発生したブレーキ液圧はメイン液圧路9bから出力される。
【0035】
このように、マスタシリンダ1は、2つのマスタピストン(第一マスタピストン1a,第二マスタピストン1b)の変位によって、ブレーキペダルPの踏み込み操作量に応じたブレーキ液圧を発生する装置である。
【0036】
ストロークシミュレータ2は、踏み込み操作されたブレーキペダルPに擬似的な操作反力を発生させる装置である。ストロークシミュレータ2は、シリンダ本体(第二シリンダ穴11b)内を摺動するピストン2aと、ピストン2aを付勢する2つのリターンスプリング(第一シミュレータスプリング2b,第二シミュレータスプリング2c)を備えている。
第一シミュレータスプリング2bは、第二シミュレータスプリング2cよりもバネ定数、軸系(コイルスプリングの直径)、および線径(構成する線材の直径)が大きい。ストロークシミュレータ2には、ピストン2a、第二シミュレータスプリング2c、第一シミュレータスプリング2bの順に直列に配設されている。
【0037】
また、ストロークシミュレータ2の第二シリンダ穴11bは、メイン液圧路9aおよび分岐液圧路9eを介して第一圧力室1eに通じており、第一圧力室1eで発生したブレーキ液圧で作動する。
マスタシリンダ1の第一圧力室1eで発生したブレーキ液圧がストロークシミュレータ2の第二シリンダ穴11bに入力されるとピストン2aが変位する。このとき、ブレーキ液圧の大きさに応じて第二シミュレータスプリング2c、第一シミュレータスプリング2bの順に圧縮されてピストン2aに反力を発生する。そして、ピストン2aに発生した反力が、分岐液圧路9e、メイン液圧路9aを介してマスタシリンダ1に入力される。マスタシリンダ1に入力された反力がブレーキペダルPに付与されて操作反力になる。
【0038】
マスタシリンダ1には、リザーバ3が備わっている。リザーバ3は、ブレーキ液を貯溜する容器であり、マスタシリンダ1に接続される給油口3a,3bと、メインリザーバ(図示せず)から延びるホースが接続される管接続口3cと、を備えている。
【0039】
常開型遮断弁4,5は、メイン液圧路9a,9bを開閉するものであり、いずれもノーマルオープンタイプの電磁弁からなる。一方の常開型遮断弁4は、メイン液圧路9aと分岐液圧路9eとの分岐点からメイン液圧路9aと連絡液圧路9cとの分岐点に至る区間においてメイン液圧路9aを開閉する。他方の常開型遮断弁5は、メイン液圧路9bと連絡液圧路9dとの分岐点よりも上流側においてメイン液圧路9bを開閉する。
【0040】
常閉型遮断弁6は、分岐液圧路9eを開閉するものであり、ノーマルクローズタイプの電磁弁からなる。
【0041】
圧力センサ7,8は、マスタシリンダ1で発生するブレーキ液圧を検出するセンサであり、メイン液圧路9a,9bに通じるセンサ装着穴(図示せず)に装着されている。一方の圧力センサ7は、常開型遮断弁4よりも下流側に配置されており、常開型遮断弁4が閉じられた状態(=メイン液圧路9aが遮断された状態)にあるときには、モータシリンダ装置20でブレーキ液に発生するブレーキ液圧を検出可能に構成されている。他方の圧力センサ8は、常開型遮断弁5よりも上流側に配置されており、常開型遮断弁5が閉じられた状態(=メイン液圧路9bが遮断された状態)にあるときに、マスタシリンダ1で発生したブレーキ液圧を検出する。圧力センサ7,8で検出された液圧は検出信号に変換されて、図示しない電子制御ユニット(ECU)に入力される。
【0042】
メイン液圧路9a,9bは、マスタシリンダ1を起点とする液圧路である。一方のメイン液圧路9aは第一圧力室1eに接続され、他方のメイン液圧路9bは第二圧力室1fに接続される。また、メイン液圧路9a,9bは、それぞれ液圧制御装置30と接続されている。連絡液圧路9c,9dは、メイン液圧路9a,9bから分岐する液圧路であり、それぞれモータシリンダ装置20と接続されている。
【0043】
分岐液圧路9eは、一方のメイン液圧路9aから分岐し、ストロークシミュレータ2に至る液圧路である。
【0044】
マスタシリンダ1は、メイン液圧路9a,9bを介して液圧制御装置30に連通している。そして、常開型遮断弁4,5が開弁状態にあるときにマスタシリンダ1で発生したブレーキ液圧は、メイン液圧路9a,9bを介して液圧制御装置30に入力される。
【0045】
モータシリンダ装置20は、
図2に示すように、規制ピン202で接続された2つのスレーブピストン(第一スレーブピストン201a,第二スレーブピストン201b)を有する。第一スレーブピストン201aおよび第二スレーブピストン201bは、基体となるシリンダ本体200の内部に直列に配置されている。そして、規制ピン202によって、第一スレーブピストン201aと第二スレーブピストン201bの最大変位が規制される。
第一スレーブピストン201aと第二スレーブピストン201bの間には、第二リターンスプリング203bが配設される。また、シリンダ本体200の底部200aと第一スレーブピストン201aの間には、第一リターンスプリング203aが配設される。
第一スレーブピストン201aと第二スレーブピストン201bの間に第二液圧室207bが形成される。また、シリンダ本体200の底部200aと第一スレーブピストン201aの間に第一液圧室207aが形成される。
【0046】
モータシリンダ装置20には、第一スレーブピストン201aの可動範囲を規制するストッパピン210が備わっている。第一スレーブピストン201aには扁平状の貫通孔210aが形成されており、ストッパピン210は貫通孔210aを貫通するように配設されてシリンダ本体200に固定される。そして、貫通孔210aの底部200a側の端部は、第一スレーブピストン201aの後退限を規定する。また、貫通孔210aの第二スレーブピストン201b側の端部は、第一スレーブピストン201aの前進限を規定する。
【0047】
シリンダ本体200の内部には、ボールねじ構造体205が備わっている。ボールねじ構造体205は電動アクチュエータであり、電動機(電動モータ204)の回転軸204aの回転運動を直進運動に変換する。
ボールねじ構造体205は、軸部材(ボールねじ軸205a)と、ナット部材(ボールねじナット205b)と、複数の動力伝達部材(ボール205c)と、エンドキャップ205dと、を含んで構成されている。
【0048】
ボールねじ軸205aは、第二スレーブピストン201bに連結される軸部材である。第1実施例では、ボールねじ軸205aの端部が、第二スレーブピストン201bの端面に当接している。また、ボールねじ軸205aの外周には、螺旋状の凹溝25が形成されている。ボールねじ軸205aは、自身が軸線方向(中心線CLに沿った方向)に直進運動(変位)して第二スレーブピストン201bをシリンダ本体200の軸線方向に変位させる。
ボールねじナット205bは、ボールねじ軸205aに外嵌されて、ボールねじ軸205aの周り(外周)を回転するナット部材である。ボールねじナット205bの外周には、伝達ギヤ206に噛み合うギヤが形成されている。そして、電動モータ204の回転軸204aの回転が、複数の伝達ギヤ206を介してボールねじナット205bに伝達される。
また、ボール205cは、ボールねじ軸205aの凹溝25と、ボールねじナット205bの内周に設けられている雄ネジと、の間に配置されている。ボール205cは、ボールねじナット205bの回転にともなって凹溝25内で転動し、ボールねじ軸205aの外周を周回する。そして、転動しながら周回するボール205cが螺旋状の凹溝25を送り出し、これによってボールねじ軸205aが軸線方向に直進運動して変位する。
【0049】
このように、ボールねじ構造体205は、電動モータ204の回転駆動力でボールねじナット205bを回転してボールねじ軸205aを直進運動させる。また、直進運動して変位するボールねじ軸205aが第二スレーブピストン201bを直進運動させる(変位させる)。つまり、ボールねじ構造体205は、電動モータ204の回転駆動力で回転するボールねじナット205bの回転運動を、ボールねじ軸205aおよび第二スレーブピストン201bの直進運動に変換する機能を有する。
【0050】
また、複数の伝達ギヤ206によって減速機構が構成される。電動モータ204の回転軸204aの回転速度は減速機構で適宜減速されてボールねじナット205bに伝達される。複数の伝達ギヤ206で構成される減速機構の減速比(ギヤ比)は、電動モータ204の性能や、モータシリンダ装置20に要求される性能等にもとづいて適宜設定される。
【0051】
また、ボールねじ軸205aの端部(第二スレーブピストン201bと連結されない側の端部)には、エンドキャップ205d(第1実施例のガイド部)が被せられている。このエンドキャップ205dは、シリンダ本体200に回転不能に固定される。エンドキャップ205dには、軸線の方向に延伸するガイド溝(スリット251)が形成されている。スリット251には、ボールねじ軸205aの外周に突設される突起部(ガイドピン252)が係合する。
ガイドピン252は、スリット251に係合することによってボールねじ軸205aの軸線回りの回転(中心線CLを中心とする回転)を規制する。また、ボールねじ軸205aが軸線方向に変位するとき、ボールねじ軸205aとともに変位するガイドピン252がスリット251にガイドされる。
【0052】
なお、シリンダ本体200にはリザーバ208が備わり、シリンダ本体200に供給されるブレーキ液がリザーバ208に貯留されている。
【0053】
電動モータ204は、電子制御ユニット(図示せず)から入力される制御信号に基づいて駆動して回転軸204aを回転させる。回転軸204aの回転は複数の伝達ギヤ206を介してボールねじナット205bに伝達され、ボールねじナット205bをボールねじ軸205aの外周の周りで回転(周回)させる。ボールねじナット205bがボールねじ軸205aの周囲を回転するとボール205cが転動する。ボール205cは、ボールねじ軸205aの外周に螺旋状に刻設された凹溝25に沿って転動しながら循環してボールねじ軸205aを周回する。これによって、ボールねじ軸205aが軸線方向に変位する。
このように、電動モータ204が出力する回転駆動力でボールねじ構造体205のボールねじ軸205aが直進運動する。
【0054】
ボールねじ軸205aがシリンダ本体200の底部200aの方向に変位すると第二スレーブピストン201bが底部200aの方向に変位し、第二リターンスプリング203bが圧縮される。さらに、圧縮された第二リターンスプリング203bの反力で第一スレーブピストン201aが底部200aの方向に変位する。
そして、第一スレーブピストン201aおよび第二スレーブピストン201bの変位によって、第一液圧室207aおよび第二液圧室207bでブレーキ液が圧縮されてブレーキ液圧が発生する。第一液圧室207aで発生したブレーキ液圧は第一出力ポート209aから連絡液圧路9cに出力される。また、第二液圧室207bで発生したブレーキ液圧は第二出力ポート209bから連絡液圧路9dに出力される。
【0055】
モータシリンダ装置20の第一液圧室207aおよび第二液圧室207bで発生したブレーキ液圧は、連絡液圧路9c,9d、および
図1に示すメイン液圧路9a,9bを介して液圧制御装置30に入力される。なお、リザーバ208には、リザーバ3(
図1参照)から延びるホース(図示せず)が接続される。
【0056】
図2に示すように構成されるモータシリンダ装置20は、電動モータ204の駆動によって、ブレーキペダルP(
図1参照)の踏み込み操作量に応じたブレーキ液圧を発生する。また、モータシリンダ装置20に備わるボールねじ構造体205は、電動モータ204が出力する回転駆動力でボールねじ軸205aを軸線方向に直進運動させる。
【0057】
図1に示す液圧制御装置30は、車輪のスリップを抑制するアンチロックブレーキ制御(ABS制御)、車両の挙動を安定化させる横滑り制御やトラクション制御などを実行し得るような構成を具備しており、管材を介してホイールシリンダW,W,…に接続されている。なお、図示は省略するが、液圧制御装置30は、電磁弁やポンプ等が設けられた液圧ユニット、ポンプを駆動するためのモータ、電磁弁やモータ等を制御するための電子制御ユニットなどを備えている。
【0058】
図3は、ボールねじ軸に嵌め込まれるエンドキャップを示す斜視図である。
エンドキャップ205dは、一端が開口した有底の筒状部材で、開口した側の開口部250aと、閉塞した側の閉塞部250bとを有する。そして、エンドキャップ205dの内側には、ボールねじ軸205aの端部(第二スレーブピストン201bと接続されない側の端部)が収容される。また、エンドキャップ205dには、周壁を貫通するようにスリット251(ガイド溝)が形成されている。
スリット251は、ボールねじ軸205aの外周に突設されるガイドピン252(突起部)と係合する。そして、スリット251は、ボールねじ軸205aが変位するときのガイドピン252の移動をガイドする。これによって、ボールねじ軸205aが変位するとき、ガイドピン252はスリット251の形状に沿って移動する。
【0059】
また、エンドキャップ205dは、シリンダ本体200(
図2参照)に固定される。このような構成によって、エンドキャップ205dのスリット251と係合するガイドピン252は、ボールねじ軸205aの軸線回りの回転を規制する。
さらに、エンドキャップ205dのスリット251が、ガイドピン252をガイドすることによって、ボールねじ軸205aの直進運動がスリット251によってガイドされる。このように、エンドキャップ205dは、ボールねじ軸205aの直進運動をガイドするガイド部として機能する。
【0060】
なお、エンドキャップ205dには、外周で対峙する位置(つまり、中心線CLを中心として180度回転した位置)に2本のスリット251が形成されている。また、ガイドピン252は、2本のスリット251にそれぞれ係合するように一対設けられている。このようなガイドピン252,252は、ボールねじ軸205aを貫通するピン部材の両端部をボールねじ軸205aの外周から突出させることで形成される。
【0061】
そして、ボールねじ軸205aは、シリンダ本体200の底部200a(
図2参照)に近接する方向に変位するとエンドキャップ205dから退出する。また、ボールねじ軸205aは、底部200aから離反する方向に変位するとエンドキャップ205dに収容される。エンドキャップ205dから退出する方向(シリンダ本体200の底部200aに近接する方向)へ変位するときにボールねじ軸205aが進む方向(変位する方向)を送り方向FWとする。また、エンドキャップ205dに収容される方向(シリンダ本体200の底部200aから離反する方向)へ変位するときにボールねじ軸205aが進む方向(変位する方向)を戻り方向REVとする。
【0062】
つまり、モータシリンダ装置20(
図2参照)は、ボールねじ軸205aが送り方向FWに変位するときに第二スレーブピストン201bと第一スレーブピストン201a(
図2参照)が変位してブレーキ液圧が発生するように構成されている。
また、ボールねじ軸205aが、送り方向FWや戻り方向REVに変位するとき、ガイドピン252がスリット251にガイドされて移動する。よって、ボールねじ軸205aの直進運動がスリット251にガイドされる。
【0063】
また、ボールねじ軸205aは、ボールねじナット205bの回転方向が切り替わることによって、変位する方向(送り方向FW,戻り方向REV)が切り替わる。例えば、
図3に示すように、エンドキャップ205dの側から見てボールねじナット205bが左方向(Rot1)に回転するときにボールねじ軸205aが送り方向FWに変位する。また、ボールねじナット205bが右方向(Rot2)に回転するときにボールねじ軸205aが戻り方向REVに変位する。
以下、ボールねじナット205bの回転方向は、エンドキャップ205dの側から見た回転方向とする。
【0064】
図4はエンドキャップに形成されるスリットの形状を示す図である。
図4に示すように、第1実施例のエンドキャップ205dには、閉塞部250bの側から開口部250aの側に至るスリット251が形成されている。
そして、第1実施例のスリット251は、開口部250aの側で軸線方向に対して偏向する第一偏向部R1と、閉塞部250bの側で軸線方向に対して偏向する第二偏向部R2と、に区分される。また、第一偏向部R1と第二偏向部R2の間には、ボールねじ軸205aの軸線方向に平行な直線状の直線部L1が形成される。
【0065】
第二偏向部R2は、閉塞部250b側の所定の始点P1と、始点P1よりも開口部250aの側に設けられる終点P2までの間に形成される。また、直線部L1は、第二偏向部R2の終点P2を始点とし、始点P2よりも開口部250aの側に設けられる終点P3までの間に形成される。また、第一偏向部R1は、直線部L1の終点P3を始点とし、開口部250aに設けられる終点P4までの間に形成される。
【0066】
第二偏向部R2の終点P2は始点P1に対して中心線CL周りに回転した位置になる。つまり、閉塞部250bの側から見て、第二偏向部R2の終点P2は始点P1に対して中心線CLの周りに所定の角度だけ回転した位置にある。
また、第一偏向部R1の終点P4は始点P3に対して中心線CL周りに回転した位置になる。つまり、閉塞部250bの側から見て、第一偏向部R1の終点P4は始点P3に対して中心線CLの周りに所定の角度だけ回転した位置にある。
そして、第二偏向部R2の始点P1から終点P2に向かう回転の方向と、第一偏向部R1の始点P3から終点P4に向かう回転の方向と、が逆方向になる。このように、第1実施例のエンドキャップ205dには、ボールねじ軸205aの軸線方向に対して蛇行した山形を呈する形状のスリット251が形成されている。
【0067】
第二偏向部R2は、ボールねじ軸205aが送り方向FWに変位するときに、閉塞部250bの側から見て、中心線CL周りの右回りにガイドピン252を回動させるように形成される。また、第一偏向部R1は、ボールねじ軸205aが送り方向FWに変位するときに、閉塞部250bの側から見て、中心線CL周りの左回りにガイドピン252を回動させるように形成される。これによって、ボールねじ軸205aは、送り方向FWに変位するときに、ガイドピン252が第二偏向部R2でガイドされるときにはエンドキャップ205dの側から見て軸線回りに右回転する。また、ガイドピン252が第一偏向部R1でガイドされるときにはエンドキャップ205dの側から見て軸線回りに左回転する。以下、ボールねじ軸205aの軸線回りの回転方向は、エンドキャップ205dの側から見た回転方向とする。
【0068】
つまり、第1実施例のスリット251は、第一偏向部R1と第二偏向部R2を有する。第一偏向部R1と第二偏向部R2は、ボールねじ軸205aが直進運動する際(送り方向FWに変位する際)に、ボールねじ軸205aを軸線周りに回転させる回転機構部となる。換言すると、直進運動するボールねじ軸205aを軸線周りに回転させる回転機構部がスリット251で構成される。
【0069】
スリット251が
図4に示すように形成されると、ボールねじナット205b(
図3参照)の左方向Rot1への回転(左回転)にともなって送り方向FWに変位するボールねじ軸205aは、下記(1)〜(3)のように回転する。
(1)ガイドピン252が第二偏向部R2でガイドされるとき、ボールねじ軸205aは右回転し、ボールねじナット205bとボールねじ軸205aは逆方向に回転する。
(2)ガイドピン252が直線部L1でガイドされるとき、ボールねじ軸205aは回転しない。
(3)ガイドピン252が第一偏向部R1でガイドされるとき、ボールねじ軸205aは左回転し、ボールねじナット205bとボールねじ軸205aは同方向に回転する。
なお、ボールねじナット205bの回転速度はボールねじ軸205aの回転速度よりも速い。つまり、ボールねじナット205bが一回転してもボールねじ軸205aは一回転しない。
【0070】
また、第二偏向部R2は、送り方向FWに変位するボールねじ軸205aをボールねじナット205b(
図3参照)と逆方向に回転させる逆回転部となる。さらに、第一偏向部R1は、送り方向FWに変位するボールねじ軸205aをボールねじナット205bと同方向に回転させる正回転部となる。
【0071】
このように、エンドキャップ205d(スリット251)は、直進運動するボールねじ軸205aを軸線の回りに回転させる。
【0072】
モータシリンダ装置20(
図2参照)は、ボールねじ軸205a(
図3参照)が、戻り方向REVの終点位置まで変位した状態(この状態を「初期状態」とする)のときにブレーキ液圧を発生しない。よって、初期状態は、ボールねじ軸205aが変位していない状態であり、モータシリンダ装置20にブレーキ液圧が発生しない状態になる。さらに、モータシリンダ装置20が初期状態のとき、ボールねじ軸205aのガイドピン252(
図3参照)は、スリット251の第二偏向部R2(
図4参照)の位置にある。
また、モータシリンダ装置20は、電動モータ204(
図2参照)が駆動してボールねじ軸205aが送り方向FWに変位したときにブレーキ液圧を発生する。
【0073】
モータシリンダ装置20(
図2参照)が初期状態のとき、ガイドピン252(
図3参照)は、スリット251の第二偏向部R2(
図4参照)の位置にある。したがって、モータシリンダ装置20が初期状態のときに電動モータ204(
図2参照)が始動してボールねじ軸205a(
図3参照)が送り方向FWへの変位を開始した時点(電動モータ204の始動初期)で、ガイドピン252(
図3参照)は第二偏向部R2でガイドされる。このため、電動モータ204の始動初期に、左方向Rot1に回転するボールねじナット205b(
図3参照)の回転方向と、ボールねじ軸205aの回転方向(右回転)は異なる。つまり、電動モータ204の始動初期でボールねじ軸205aはボールねじナット205bと逆方向に回転する。
【0074】
第二偏向部R2は、ボールねじ軸205aが初期状態から所定量変位するまでガイドピン252(
図3参照)をガイドする。そして、第1実施例においては、第二偏向部R2が形成されている範囲(ボールねじ軸205aが初期位置から所定量変位するまで)を初期変位とする。初期変位の長さ(つまり、初期状態から変位の所定量)は、モータシリンダ装置20(
図2参照)に要求される性能等にもとづいて適宜設定されることが好ましい。
【0075】
ボールねじ軸205a(
図3参照)がボールねじナット205b(
図3参照)と逆方向に回転すると、ボールねじ軸205aが回転しない場合よりも、ボールねじナット205bに対するボールねじ軸205aの相対的な回転速度が高まる。これによって、ボールねじナット205bの回転速度が高まるのと同等の効果が生じる。
したがって、ボールねじ軸205aが回転しない場合よりも、ボールねじ軸205aが送り方向FWに変位する変位速度が高まる。そして、第二スレーブピストン201bおよび第一スレーブピストン201a(
図2参照)の変位速度が高くなる。
【0076】
つまり、ボールねじ軸205a(
図3参照)は、初期状態からの初期変位においてボールねじナット205b(
図3参照)と逆方向に回転し、送り方向FWに変位する変位速度が高まる。
【0077】
なお、ボールねじナット205bに対するボールねじ軸205aの相対的な回転速度が高まることは、ボールねじナット205bとボールねじ軸205aの間のギヤ比が低くなることと同等である。換言すると、電動モータ204(
図2参照)が出力する回転駆動力がボールねじ軸205aに伝達されるときのギヤ比が低くなることと同等の効果が生じる。
【0078】
また、ボールねじ軸205a(
図3参照)が送り方向FWに変位してガイドピン252(
図3参照)がスリット251の第一偏向部R1(
図4参照)でガイドされるとき、ボールねじ軸205aは左回転する。したがって、左方向Rot1に回転するボールねじナット205bの回転方向と、ボールねじ軸205aの回転方向(左回転)が一致する。つまり、ボールねじ軸205aはボールねじナット205bと同方向に回転する。
これによって、ボールねじ軸205aが回転しない場合よりも、ボールねじ軸205aが送り方向FWに変位する変位速度は低くなる。つまり、第二スレーブピストン201bおよび第一スレーブピストン201aの変位速度が低くなる。
【0079】
なお、エンドキャップ205dの第一偏向部R1(
図4参照)は、ボールねじ軸205aが、あらかじめ設定される所定の基準量を超えて送り方向FWに変位する範囲に設けられることが好ましい。さらに、第一偏向部R1を設定するためのボールねじ軸205aの変位の基準量は、モータシリンダ装置20(
図2参照)に要求される性能等にもとづいて適宜設定されることが好ましい。
【0080】
ボールねじ軸205a(
図3参照)がボールねじナット205b(
図3参照)と同方向に回転すると、ボールねじ軸205aが回転しない場合よりも、ボールねじナット205bに対するボールねじ軸205aの相対的な回転速度が低くなる。これによって、ボールねじナット205bとボールねじ軸205aの間のギヤ比が高くなったのと同等の効果が生じる。換言すると、電動モータ204(
図2参照)が出力する回転駆動力がボールねじ軸205aに伝達されるときのギヤ比が高くなることと同等の効果が生じる。
【0081】
ボールねじナット205bとボールねじ軸205aの間のギヤ比が高くなると、ボールねじ軸205aの変位速度は低くなるがボールねじナット205bからボールねじ軸205aに伝達されるトルクが高くなる。そして、ボールねじ軸205aが送り方向FWに変位する推進力が高くなる。したがって、第二スレーブピストン201bおよび第一スレーブピストン201a(
図2参照)の変位速度は低くなるが、第二スレーブピストン201bおよび第一スレーブピストン201aが変位するときの推進力が高くなる。
【0082】
このように、
図1に示す第1実施例の車両用ブレーキシステムA(モータシリンダ装置20)は、
図2に示すボールねじナット205bの回転速度に対するスレーブピストン(第一スレーブピストン201a,第二スレーブピストン201b)の変位速度が可変となるように構成されている。
【0083】
次に、
図1に示す車両用ブレーキシステムAの動作について概略説明する。
車両用ブレーキシステムAが正常に機能する正常時に運転者がブレーキペダルPを踏み込み操作すると、常開型遮断弁4,5が弁閉状態となり、常閉型遮断弁6が弁開状態となる。そして、マスタシリンダ1で発生したブレーキ液圧は、ホイールシリンダWに伝達されずにストロークシミュレータ2に伝達され、ピストン2aが変位することにより、ブレーキペダルPのストロークが許容されるとともに、擬似的な操作反力がブレーキペダルPに付与される。
【0084】
また、図示しないストロークセンサ等によってブレーキペダルPの踏み込みが検知されると、モータシリンダ装置20の電動モータ204(
図2参照)が駆動されてシリンダ本体200(
図2参照)にブレーキ液圧が発生する。
電子制御ユニット(図示せず)は、ブレーキペダルPの踏み込み操作量に応じた適切なブレーキ液圧(目標液圧)を算出するとともに、モータシリンダ装置20から出力されるブレーキ液圧(圧力センサ7で検出されるブレーキ液圧)が、算出した目標液圧となるようにモータシリンダ装置20(電動モータ204)を制御する。
【0085】
モータシリンダ装置20で発生したブレーキ液圧は、液圧制御装置30を介してホイールシリンダW,W,…に伝達され、各ホイールシリンダWが作動することにより各車輪に制動力が付与される。
【0086】
なお、モータシリンダ装置20が作動しない状況(例えば、電力が得られない場合や非常時など)においては、常開型遮断弁4,5がいずれも弁開状態となり、常閉型遮断弁6が弁閉状態となるので、マスタシリンダ1で発生したブレーキ液圧は、ホイールシリンダW,W,…に伝達される。
【0087】
図5は、モータシリンダ装置に発生するブレーキ液圧の変化を、電動モータの始動初期からの時間経過にしたがって示したグラフである。
図5のグラフの横軸は時間を示し、縦軸はブレーキ液圧を示す。
【0088】
従来、ボールねじ軸205a(
図4参照)は軸線回り(中心線CLの回り)に回転しないように構成されている。このため、電動モータ204(
図2参照)の始動初期で電動モータ204の回転軸204a(
図2参照)の回転速度が遅いとき、ブレーキ液の液損の影響によって、第一スレーブピストン201aと第二スレーブピストン201b(
図2参照)の動作で発生するブレーキ液圧がホイールシリンダW(
図1参照)に伝達するまでに時間的な遅れが生じる場合がある。また、ホイールシリンダWに伝達されるブレーキ液圧が高いときには、モータ負荷が大きくなってトルク負けが発生し、第一スレーブピストン201aと第二スレーブピストン201bの変位速度が遅くなる。
【0089】
このため、従来は、電動モータ204(
図2参照)の始動初期(t0→t1)においてブレーキ液圧の立ち上がりが遅くなる。また、ブレーキ液圧が高い状態では、ブレーキ液圧の上昇が鈍くなる。
【0090】
これに対し、第1実施例のボールねじ軸205a(
図3参照)は、電動モータ204(
図2参照)の始動初期にボールねじナット205b(
図3参照)と逆方向に回転する(ギヤ比が低いのと同じ状態になる)。したがって、電動モータ204の回転軸204a(
図2参照)の回転速度が遅くてもボールねじ軸205aが速やかに送り側FWに変位する。そして、これにともなって、第一スレーブピストン201aと第二スレーブピストン201b(
図2参照)が速やかに変位する。このため、実線で示すように、モータシリンダ装置20に発生するブレーキ液圧は速やかに上昇し、ブレーキ液圧の立ち上がりが速くなる(t0→t1)。因みに、時刻t0から時刻t1の間がボールねじ軸205aの初期変位になる。
【0091】
その後、電動モータ204が所定の回転速度で駆動するとモータシリンダ装置20(
図2参照)に発生するブレーキ液圧は規定通りに上昇する(t1→t2)。
さらに、ボールねじ軸205a(
図3参照)が送り方向FWに変位して、ガイドピン252(
図3参照)が第一偏向部R1でガイドされる状態になると、ボールねじ軸205aがボールねじナット205b(
図3参照)と同方向に回転する(ギヤ比が高いのと同じ状態になる)。これによって、ボールねじナット205bからボールねじ軸205aに伝達されるトルクが高くなり、ボールねじ軸205aが送り方向FWに変位する推進力が高くなる。
【0092】
そして、第一スレーブピストン201aおよび第二スレーブピストン201b(
図2参照)が変位するときの推進力が高くなる。したがって、シリンダ本体200(
図2参照)におけるブレーキ液圧が高くなっても、第一スレーブピストン201aと第二スレーブピストン201bが速やかに変位する。したがって、ブレーキ液圧の速やかな上昇が継続される(t2→t3)。
【0093】
このように、第1実施例のモータシリンダ装置20(
図2参照)は、電動モータ204(
図2参照)の始動初期(t0→t1)において、ブレーキ液圧が速やかに立ち上がる。また、ブレーキ液圧が高い状態でも、ブレーキ液圧の速やかな上昇が継続される(t2→t3)。
【0094】
《第2実施例》
図6は第2実施例に係るエンドキャップの断面図である。
第2実施例は、エンドキャップ205dの形状が第1実施例のエンドキャップ205d(
図3参照)の形状と異なっている。
例えば、第2実施例のエンドキャップ205dは、
図6に示すように、開口部250aの側から、第一螺旋部R10、連結部L10、第二螺旋部R20が形成されている。第一螺旋部R10と第二螺旋部R20は、螺旋状に内壁を周回する凹溝251aからなる。そして、第一螺旋部R10と第二螺旋部R20は逆方向に周回している。また、連結部L10は、内壁に形成される中心線CLに沿った直線状の凹溝251aからなる。さらに、第一螺旋部R10と第二螺旋部R20が連結部L10で連通される。そして、ボールねじ軸205aのガイドピン252(
図3参照)が、第一螺旋部R10、連結部L10、および第二螺旋部R20でガイドされる。
なお、エンドキャップ205dの第一螺旋部R10は開口部250aの側からピッチが漸増する(開口部250aの側からピッチが徐々に広がる)。
【0095】
第二螺旋部R20は、送り方向FWに変位するボールねじ軸205a(
図3参照)を、閉塞部250bの側から見て軸線回りに右回転させる凹溝251aからなる。また、第一螺旋部R10は、送り方向FWに変位するボールねじ軸205aを、閉塞部250bの側から見て軸線回りに左回転させる凹溝251aからなる。
【0096】
このような形状のエンドキャップ205dであっても、電動モータ204(
図2参照)の始動初期に、ボールねじ軸205a(
図3参照)をボールねじナット205b(
図3参照)と逆方向に回転させることが可能になる。さらに、ブレーキ液圧が高い状態で、ボールねじ軸205aをボールねじナット205bと同方向に回転させることが可能になる。
【0097】
なお、本発明は、前記した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
【0098】
例えば、
図4に示すスリット251は、エンドキャップ205dの周壁を貫通するように構成されている。しかしながら、スリット251と同形状の内溝(図示せず)がエンドキャップ205dの内壁に形成され、ボールねじ軸205aのガイドピン252が、この内溝にガイドされる構成であってもよい。
【0099】
また、基体となるシリンダ本体200(
図2参照)でボールねじ軸205a(
図2参照)の端部が収容される部位に、ガイドピン252をガイドする内溝(図示せず)が形成される構成であってもよい。そして、この内溝が、
図4に示すスリット251と同じ形状であってもよい。この構成であれば、
図3に示すエンドキャップ205dが不要になる。したがって、モータシリンダ装置20(
図2参照)の部品点数を削減できる。
【0100】
また、第1実施例,第2実施例の電動アクチュエータには、ボールねじ構造体205(
図2参照)が備わり、ボールねじナット205b(
図2参照)とボールねじ軸205a(
図2参照)の間に、動力伝達部材としてのボール205cが配置される。このような動力伝達部材は、ボール205cに限定されるものではない。例えば、ボールねじナット205bの回転に応じて転動するコロ部材(図示せず)が動力伝達部材として備わる構成であってもよい。